688 research outputs found

    Performance of a Self-Paced Brain Computer Interface on Data Contaminated with Eye-Movement Artifacts and on Data Recorded in a Subsequent Session

    Get PDF
    The performance of a specific self-paced BCI (SBCI) is investigated using two different datasets to determine its suitability for using online: (1) data contaminated with large-amplitude eye movements, and (2) data recorded in a session subsequent to the original sessions used to design the system. No part of the data was rejected in the subsequent session. Therefore, this dataset can be regarded as a “pseudo-online” test set. The SBCI under investigation uses features extracted from three specific neurological phenomena. Each of these neurological phenomena belongs to a different frequency band. Since many prominent artifacts are either of mostly low-frequency (e.g., eye movements) or mostly high-frequency nature (e.g., muscle movements), it is expected that the system shows a fairly robust performance over artifact-contaminated data. Analysis of the data of four participants using epochs contaminated with large-amplitude eye-movement artifacts shows that the system's performance deteriorates only slightly. Furthermore, the system's performance during the session subsequent to the original sessions remained largely the same as in the original sessions for three out of the four participants. This moderate drop in performance can be considered tolerable, since allowing artifact-contaminated data to be used as inputs makes the system available for users at ALL times

    Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Get PDF
    Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries

    Movement Type Prediction before Its Onset Using Signals from Prefrontal Area: An Electrocorticography Study

    Get PDF
    Power changes in specific frequency bands are typical brain responses during motor planning or preparation. Many studies have demonstrated that, in addition to the premotor, supplementary motor, and primary sensorimotor areas, the prefrontal area contributes to generating such responses. However, most brain-computer interface (BCI) studies have focused on the primary sensorimotor area and have estimated movements using postonset period brain signals. Our aim was to determine whether the prefrontal area could contribute to the prediction of voluntary movement types before movement onset. In our study, electrocorticography (ECoG) was recorded from six epilepsy patients while performing two self-paced tasks: hand grasping and elbow flexion. The prefrontal area was sufficient to allow classification of different movements through the area's premovement signals (-2.0 s to 0 s) in four subjects. The most pronounced power difference frequency band was the beta band (13-30Hz). The movement prediction rate during single trial estimation averaged 74% across the six subjects. Our results suggest that premovement signals in the prefrontal area are useful in distinguishing different movement tasks and that the beta band is the most informative for prediction of movement type before movement onset.open

    Brain signal analysis in space-time-frequency domain : an application to brain computer interfacing

    Get PDF
    In this dissertation, advanced methods for electroencephalogram (EEG) signal analysis in the space-time-frequency (STF) domain with applications to eye-blink (EB) artifact removal and brain computer interfacing (BCI) are developed. The two methods for EB artifact removal from EEGs are presented which respectively include the estimated spatial signatures of the EB artifacts into the signal extraction and the robust beamforming frameworks. In the developed signal extraction algorithm, the EB artifacts are extracted as uncorrelated signals from EEGs. The algorithm utilizes the spatial signatures of the EB artifacts as priori knowledge in the signal extraction stage. The spatial distributions are identified using the STF model of EEGs. In the robust beamforming approach, first a novel space-time-frequency/time-segment (STF-TS) model for EEGs is introduced. The estimated spatial signatures of the EBs are then taken into account in order to restore the artifact contaminated EEG measurements. Both algorithms are evaluated by using the simulated and real EEGs and shown to produce comparable results to that of conventional approaches. Finally, an effective paradigm for BCI is introduced. In this approach prior physiological knowledge of spectrally band limited steady-state movement related potentials is exploited. The results consolidate the method.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Bacteria Hunt: Evaluating multi-paradigm BCI interaction

    Get PDF
    The multimodal, multi-paradigm brain-computer interfacing (BCI) game Bacteria Hunt was used to evaluate two aspects of BCI interaction in a gaming context. One goal was to examine the effect of feedback on the ability of the user to manipulate his mental state of relaxation. This was done by having one condition in which the subject played the game with real feedback, and another with sham feedback. The feedback did not seem to affect the game experience (such as sense of control and tension) or the objective indicators of relaxation, alpha activity and heart rate. The results are discussed with regard to clinical neurofeedback studies. The second goal was to look into possible interactions between the two BCI paradigms used in the game: steady-state visually-evoked potentials (SSVEP) as an indicator of concentration, and alpha activity as a measure of relaxation. SSVEP stimulation activates the cortex and can thus block the alpha rhythm. Despite this effect, subjects were able to keep their alpha power up, in compliance with the instructed relaxation task. In addition to the main goals, a new SSVEP detection algorithm was developed and evaluated

    Sound-production Related Cognitive Tasks for Onset Detection in Self-Paced Brain-Computer Interfaces

    Get PDF
    Objective. The main goal of this research is proposing a novel method of onset detection for Self-Paced (SP) Brain-Computer Interfaces (BCIs) to increase usability and practicality of BCIs towards real-world uses from laboratory research settings. Approach. To achieve this goal, various Sound-Production Related Cognitive Tasks (SPRCTs) were tested against idle state in offline and simulated-online experiments. An online experiment was then conducted that turned a messenger dialogue on when a new message arrived by executing the Sound Imagery (SI) onset detection task in real-life scenarios (e.g. watching video, reading text). The SI task was chosen as an onset task because of its advantages over other tasks: 1) Intuitiveness. 2) Beneficial for people with motor disabilities. 3) No significant overlap with other common, spontaneous cognitive states becoming easier to use in daily-life situations. 4) No dependence on user’s mother language. Main results. The final online experimental results showed the new SI onset task had significantly better performance than the Motor Imagery (MI) approach. 84.04% (SI) vs 66.79% (MI) TFP score for sliding image scenario, 80.84% vs 61.07% for watching video task. Furthermore, the onset response speed showed the SI task being significantly faster than MI. In terms of usability, 75% of subjects answered SI was easier to use. Significance. The new SPRCT outperforms typical MI for SP onset detection BCIs (significantly better performance, faster onset response and easier usability), therefore it would be more easily used in daily-life situations. Another contribution of this thesis is a novel EMG artefact-contaminated EEG channel selection and handling method that showed significant class separation improvement against typical blind source separation techniques. A new performance evaluation metric for SP BCIs, called true-false positive score was also proposed as a standardised performance assessment method that considers idle period length, which was not considered in other typical metrics
    corecore