62 research outputs found

    Performance Analysis of Heterogeneous Feedback Design in an OFDMA Downlink with Partial and Imperfect Feedback

    Full text link
    Current OFDMA systems group resource blocks into subband to form the basic feedback unit. Homogeneous feedback design with a common subband size is not aware of the heterogeneous channel statistics among users. Under a general correlated channel model, we demonstrate the gain of matching the subband size to the underlying channel statistics motivating heterogeneous feedback design with different subband sizes and feedback resources across clusters of users. Employing the best-M partial feedback strategy, users with smaller subband size would convey more partial feedback to match the frequency selectivity. In order to develop an analytical framework to investigate the impact of partial feedback and potential imperfections, we leverage the multi-cluster subband fading model. The perfect feedback scenario is thoroughly analyzed, and the closed form expression for the average sum rate is derived for the heterogeneous partial feedback system. We proceed to examine the effect of imperfections due to channel estimation error and feedback delay, which leads to additional consideration of system outage. Two transmission strategies: the fix rate and the variable rate, are considered for the outage analysis. We also investigate how to adapt to the imperfections in order to maximize the average goodput under heterogeneous partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    Partial joint processing for frequency selective channels

    Get PDF
    In this paper, we consider a static cluster of base stations where joint processing is allowed in the downlink. The partial joint processing scheme is a user-centric approach where subclusters or active sets of base stations are dynamically defined for each user in the cluster. In frequency selective channels, the definition of the subclusters or active set thresholding of base stations can be frequency adaptive (per resource block) or non-adaptive (averaged over all the resource blocks). Frequency adaptive thresholding improves the average sum-rate of the cluster, but at the cost of an increased user data interbase information exchange with respect to the non-adaptive frequency thresholding case. On the other hand, the channel state information available at the transmitter side to design the beamforming matrix is very limited and rank deficiency problems arise for low values of active set thresholding and users located close to the base station. To solve this problem, an algorithm is proposed that defines a cooperation area over the cluster where the partial joint processing scheme can be performed, frequency adaptive or non-adaptive, for a given active set threshold value

    An Analytical Framework for Heterogeneous Partial Feedback Design in Heterogeneous Multicell OFDMA Networks

    Full text link
    The inherent heterogeneous structure resulting from user densities and large scale channel effects motivates heterogeneous partial feedback design in heterogeneous networks. In such emerging networks, a distributed scheduling policy which enjoys multiuser diversity as well as maintains fairness among users is favored for individual user rate enhancement and guarantees. For a system employing the cumulative distribution function based scheduling, which satisfies the two above mentioned desired features, we develop an analytical framework to investigate heterogeneous partial feedback in a general OFDMA-based heterogeneous multicell employing the best-M partial feedback strategy. Exact sum rate analysis is first carried out and closed form expressions are obtained by a novel decomposition of the probability density function of the selected user's signal-to-interference-plus-noise ratio. To draw further insight, we perform asymptotic analysis using extreme value theory to examine the effect of partial feedback on the randomness of multiuser diversity, show the asymptotic optimality of best-1 feedback, and derive an asymptotic approximation for the sum rate in order to determine the minimum required partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    Partial joint processing with efficient backhauling using particle swarm optimization

    Get PDF
    In cellular communication systems with frequency reuse factor of one, user terminals (UT) at the cell-edge are prone to intercell interference. Joint processing is one of the coordinated multipoint transmission techniques proposed to mitigate this interference. In the case of centralized joint processing, the channel state information fed back by the users need to be available at the central coordination node for precoding. The precoding weights (with the user data) need to be available at the corresponding base stations to serve the UTs. These increase the backhaul traffic. In this article, partial joint processing (PJP) is considered as a general framework that allows reducing the amount of required feedback. However, it is difficult to achieve a corresponding reduction on the backhaul related to the precoding weights, when a linear zero forcing beamforming technique is used. In this work, particle swarm optimization is proposed as a tool to design the precoding weights under feedback and backhaul constraints related to PJP. The precoder obtained with the objective of weighted interference minimization allows some multiuser interference in the system, and it is shown to improve the sum rate by 66% compared to a conventional zero forcing approach, for those users experiencing low signal to interference plus noise ratio

    A precoding aided space domain index modulation scheme for downlink multiuser MIMO systems

    Get PDF
    In this correspondence, we propose a space domain index modulation (IM) scheme for the downlink of multiuser multiple-input multiple-output (MU-MIMO) systems. Instead of the most common approach where spatial bits select active receiver antennas, in the presented scheme the spatial information is mapped onto the transmitter side. This allows IM to better exploit large dimensional antenna settings which are typically easier to deploy at the base station. In order to mitigate inter-user interference and allow single user detection, a precoder is adopted at the BS. Furthermore, two alternative enhanced signal construction methods are proposed for minimizing the transmitted power or enable an implementation with a reduced number of RF chains. Simulation results for different scenarios show that the proposed approach can be an attractive alternative to conventional precoded MU-MIMO.info:eu-repo/semantics/acceptedVersio
    corecore