4 research outputs found

    Studies on automatic parallelization for heterogeneous and homogeneous multicore processors

    Get PDF
    制度:新 ; 報告番号:甲3537号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/25 ; 早大学位記番号:新587

    Studies on parallelism improvement and power reduction in multigrain automatic parallelizing compiler

    Get PDF
    制度:新 ; 文部省報告番号:甲2421号 ; 学位の種類:博士(工学) ; 授与年月日:2007/3/15 ; 早大学位記番号:新450

    Hybrid analysis of memory references and its application to automatic parallelization

    Get PDF
    Executing sequential code in parallel on a multithreaded machine has been an elusive goal of the academic and industrial research communities for many years. It has recently become more important due to the widespread introduction of multicores in PCs. Automatic multithreading has not been achieved because classic, static compiler analysis was not powerful enough and program behavior was found to be, in many cases, input dependent. Speculative thread level parallelization was a welcome avenue for advancing parallelization coverage but its performance was not always optimal due to the sometimes unnecessary overhead of checking every dynamic memory reference. In this dissertation we introduce a novel analysis technique, Hybrid Analysis, which unifies static and dynamic memory reference techniques into a seamless compiler framework which extracts almost maximum available parallelism from scientific codes and incurs close to the minimum necessary run time overhead. We present how to extract maximum information from the quantities that could not be sufficiently analyzed through static compiler methods, and how to generate sufficient conditions which, when evaluated dynamically, can validate optimizations. Our techniques have been fully implemented in the Polaris compiler and resulted in whole program speedups on a large number of industry standard benchmark applications
    corecore