128 research outputs found

    Adaptive Communications for Next Generation Broadband Wireless Access Systems

    Get PDF
    Un dels aspectes claus en el disseny i gestió de les xarxes sense fils d'accés de banda ampla és l'ús eficient dels recursos radio. Des del punt de vista de l'operador, l'ample de banda és un bé escàs i preuat que s´ha d'explotar i gestionar de la forma més eficient possible tot garantint la qualitat del servei que es vol proporcionar. Per altra banda, des del punt de vista del usuari, la qualitat del servei ofert ha de ser comparable al de les xarxes fixes, requerint així un baix retard i una baixa pèrdua de paquets per cadascun dels fluxos de dades entre la xarxa i l'usuari. Durant els darrers anys s´han desenvolupat nombroses tècniques i algoritmes amb l'objectiu d'incrementar l'eficiència espectral. Entre aquestes tècniques destaca l'ús de múltiples antenes al transmissor i al receptor amb l'objectiu de transmetre diferents fluxos de dades simultaneament sense necessitat d'augmentar l'ample de banda. Per altra banda, la optimizació conjunta de la capa d'accés al medi i la capa física (fent ús de l'estat del canal per tal de gestionar de manera optima els recursos) també permet incrementar sensiblement l'eficiència espectral del sistema.L'objectiu d'aquesta tesi és l'estudi i desenvolupament de noves tècniques d'adaptació de l'enllaç i gestió dels recursos ràdio aplicades sobre sistemes d'accés ràdio de propera generació (Beyond 3G). Els estudis realitzats parteixen de la premissa que el transmisor coneix (parcialment) l'estat del canal i que la transmissió es realitza fent servir un esquema multiportadora amb múltiples antenes al transmisor i al receptor. En aquesta tesi es presenten dues línies d'investigació, la primera per casos d'una sola antenna a cada banda de l'enllaç, i la segona en cas de múltiples antenes. En el cas d'una sola antena al transmissor i al receptor, un nou esquema d'assignació de recursos ràdio i priorització dels paquets (scheduling) és proposat i analitzat integrant totes dues funcions sobre una mateixa entitat (cross-layer). L'esquema proposat té com a principal característica la seva baixa complexitat i que permet operar amb transmissions multimedia. Alhora, posteriors millores realitzades per l'autor sobre l'esquema proposat han permès també reduir els requeriments de senyalització i combinar de forma óptima usuaris d'alta i baixa mobilitat sobre el mateix accés ràdio, millorant encara més l'eficiència espectral del sistema. En cas d'enllaços amb múltiples antenes es proposa un nou esquema que combina la selecció del conjunt optim d'antenes transmissores amb la selecció de la codificació espai- (frequència-) temps. Finalment es donen una sèrie de recomanacions per tal de combinar totes dues línies d'investigació, així con un estat de l'art de les tècniques proposades per altres autors que combinen en part la gestió dels recursos ràdio i els esquemes de transmissió amb múltiples antenes.Uno de los aspectos claves en el diseño y gestión de las redes inalámbricas de banda ancha es el uso eficiente de los recursos radio. Desde el punto de vista del operador, el ancho de banda es un bien escaso y valioso que se debe explotar y gestionar de la forma más eficiente posible sin afectar a la calidad del servicio ofrecido. Por otro lado, desde el punto de vista del usuario, la calidad del servicio ha de ser comparable al ofrecido por las redes fijas, requiriendo así un bajo retardo y una baja tasa de perdida de paquetes para cada uno de los flujos de datos entre la red y el usuario. Durante los últimos años el número de técnicas y algoritmos que tratan de incrementar la eficiencia espectral en dichas redes es bastante amplio. Entre estas técnicas destaca el uso de múltiples antenas en el transmisor y en el receptor con el objetivo de poder transmitir simultáneamente diferentes flujos de datos sin necesidad de incrementar el ancho de banda. Por otro lado, la optimización conjunta de la capa de acceso al medio y la capa física (utilizando información de estado del canal para gestionar de manera óptima los recursos) también permite incrementar sensiblemente la eficiencia espectral del sistema.El objetivo de esta tesis es el estudio y desarrollo de nuevas técnicas de adaptación del enlace y la gestión de los recursos radio, y su posterior aplicación sobre los sistemas de acceso radio de próxima generación (Beyond 3G). Los estudios realizados parten de la premisa de que el transmisor conoce (parcialmente) el estado del canal a la vez que se considera que la transmisión se realiza sobre un sistema de transmisión multiportadora con múltiple antenas en el transmisor y el receptor. La tesis se centra sobre dos líneas de investigación, la primera para casos de una única antena en cada lado del enlace, y la segunda en caso de múltiples antenas en cada lado. Para el caso de una única antena en el transmisor y en el receptor, se ha desarrollado un nuevo esquema de asignación de los recursos radio así como de priorización de los paquetes de datos (scheduling) integrando ambas funciones sobre una misma entidad (cross-layer). El esquema propuesto tiene como principal característica su bajo coste computacional a la vez que se puede aplicar en caso de transmisiones multimedia. Posteriores mejoras realizadas por el autor sobre el esquema propuesto han permitido también reducir los requisitos de señalización así como combinar de forma óptima usuarios de alta y baja movilidad. Por otro lado, en caso de enlaces con múltiples antenas en transmisión y recepción, se presenta un nuevo esquema de adaptación en el cual se combina la selección de la(s) antena(s) transmisora(s) con la selección del esquema de codificación espacio-(frecuencia-) tiempo. Para finalizar, se dan una serie de recomendaciones con el objetivo de combinar ambas líneas de investigación, así como un estado del arte de las técnicas propuestas por otros autores que combinan en parte la gestión de los recursos radio y los esquemas de transmisión con múltiples antenas.In Broadband Wireless Access systems the efficient use of the resources is crucial from many points of views. From the operator point of view, the bandwidth is a scarce, valuable, and expensive resource which must be exploited in an efficient manner while the Quality of Service (QoS) provided to the users is guaranteed. On the other hand, a tight delay and link quality constraints are imposed on each data flow hence the user experiences the same quality as in fixed networks. During the last few years many techniques have been developed in order to increase the spectral efficiency and the throughput. Among them, the use of multiple antennas at the transmitter and the receiver (exploiting spatial multiplexing) with the joint optimization of the medium access control layer and the physical layer parameters.In this Ph.D. thesis, different adaptive techniques for B3G multicarrier wireless systems are developed and proposed focusing on the SS-MC-MA and the OFDM(A) (IEEE 802.16a/e/m standards) communication schemes. The research lines emphasize into the adaptation of the transmission having (Partial) knowledge of the Channel State Information for both; single antenna and multiple antenna links. For single antenna links, the implementation of a joint resource allocation and scheduling strategy by including adaptive modulation and coding is investigated. A low complexity resource allocation and scheduling algorithm is proposed with the objective to cope with real- and/or non-real- time requirements and constraints. A special attention is also devoted in reducing the required signalling. However, for multiple antenna links, the performance of a proposed adaptive transmit antenna selection scheme jointly with space-time block coding selection is investigated and compared with conventional structures. In this research line, mainly two optimizations criteria are proposed for spatial link adaptation, one based on the minimum error rate for fixed throughput, and the second focused on the maximisation of the rate for fixed error rate. Finally, some indications are given on how to include the spatial adaptation into the investigated and proposed resource allocation and scheduling process developed for single antenna transmission

    Investigation of Channel Adaptation and Interference for Multiantenna OFDM

    Get PDF

    Space-time-frequency block codes for MIMO-OFDM in next generation wireless systems

    Get PDF
    In this thesis the use of space-frequency block codes (SFBC) and space-time-frequency block codes (STFBC) in wireless systems are investigated. A variety of SFBC and STFBC schemes are proposed for particular propagation scenarios and system settings where each has its own advantages and disadvantages. The objective is to pro-pose coding strategies with improved flexibility, feasibility and spectral efficiency,and reduce the decoding complexity in an MIMO-OFDM system. Firstly an efficient SFBC with improved system performance is proposed for MIMO-OFDM systems. The proposed SFBC incorporates the concept of matched rotation precoding (MRP) to achieve full transmit diversity and optimal system performance foran arbitrary numberoftransmitantennas,subcarrierinterval andsubcarriergrouping. The MRP is proposed to exploit the inherent rotation and repetition properties of SFBC, arising from the channel power delay profile, in order to fully capture both space and frequency diversity of SFBC in a MIMO-OFDM system. It is able to relax restrictions on subcarrier interval and subcarrier grouping, making it ideal for adaptive/time-varying systems or multiuser systems. The SFBC without an optimization process is unstable in terms of achievable system performance and diversity order, and also risks diversity loss within a specific propagation scenario. Such loss or risk is prominent while wireless propagation channel has a limited number of dominant paths, e.g. relatively close to transmitters or relatively flat topography. Hence in orderto improve the feasibility of SFBC in dynamic scenarios, the lower bound of the coding gain for MRP is derived. The SFBC with MRP is proposed for more practical scenarios when only partial channel power delay profile information is known at the transmit end, for example the wireless channel has dominant propagation paths. The proposed rate one MRP has a relatively simple optimization process that can be transformed into an explicit diagram and hence an optimal result can be derived intuitively without calculations. Next, a multi-rate transmission strategy is proposed for both SFBCand STFBC to balance the system performance and transmission rate. A variety of rate adaptive coding matrices are obtained by a simple truncation of the coding matrix, or by parameter optimization for coding matrices for a given transmission rate and constellation. Pro-posed strategy can easily and gradually adjust the achievable diversity order. As a result it is capable of achieving a relatively smooth balance between system performance and transmission rate in both SFBC and STFBC, without a significant change of coding structure or constellation size. Such tradeoff would be useful to maintain stable Quality of Service (QoS) for users by providing more scalability of achievable performance in a time-varying channel. Finally the decoding procedure of space-time block code (STBC), SFBCand STFBC is discussed. The decoding of all existing STBC/SFBC/STFBC is unified at first, in order to show a concise procedure and make fair comparisons. Then maximum likelihood decoding (MLD) and arbitrary sphere decoding (SD) can be adopted. To reduce the complexity of decoding further, a novel decoding method called compensation de-coding (CD) is presented for a given space-time-frequency coding scheme. By taking advantage of the simplicity of zero-forcing decoding (ZFD) we are able to calculate a compensation vector for the output of ZFD. After modification by utilizing the com-pensation vector, the BER performance can be improved significantly. The decoding procedure is relatively simple and is independent of the constellation size. The per-formance of the proposed decoding method is close to maximum-likelihood decoding for low to medium SNR. A low complexity detection scheme, classifier based decoding (CBD), is further proposed for MIMO systems incorporating spatial multiplexing. The CBD is a hybrid of an equalizer-based technique and an algorithmic search stage. Based on an error matrix and its probability density functions for different classes of error, a particular search region is selected for the algorithmic stage. As the probability of occurrence of error classes with larger search regions is small, overall complexity of the proposed technique remains low, whilst providing a significant improvement in the bit error rate performance

    WiMAX Cross Layer Capacity Optimization

    Get PDF

    WiMAX Cross Layer Capacity Optimization

    Get PDF

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Radio resource management for OFDMA systems under practical considerations.

    Get PDF
    Orthogonal frequency division multiple access (OFDMA) is used on the downlink of broadband wireless access (BWA) networks such as Worldwide Interoperability for Microwave Access (WiMAX) and Long Term Evolution (LTE) as it is able to offer substantial advantages such as combating channel impairments and supporting higher data rates. Also, by dynamically allocating subcarriers to users, frequency domain diversity as well as multiuser diversity can be effectively exploited so that performance can be greatly improved. The main focus of this thesis is on the development of practical resource allocation schemes for the OFDMA downlink. Imperfect Channel State Information (CSI), the limited capacity of the dedicated link used for CSI feedback, and the presence of a Connection Admission Control (CAC) unit are issues that are considered in this thesis to develop practical schemes. The design of efficient resource allocation schemes heavily depends on the CSI reported from the users to the transmitter. When the CSI is imperfect, a performance degradation is realized. It is therefore necessary to account for the imperfectness of the CSI when assigning radio resources to users. The first part of this thesis considers resource allocation strategies for OFDMA systems, where the transmitter only knows the statistical knowledge of the CSI (SCSI). The approach used shows that resources can be optimally allocated to achieve a performance that is comparable to that achieved when instantaneous CSI (ICSI) is available. The results presented show that the performance difference between the SCSI and ICSI based resource allocation schemes depends on the number of active users present in the cell, the Quality of Service (QoS) constraint, and the signal-to- noise ratio (SNR) per subcarrier. In practical systems only SCSI or CSI that is correlated to a certain extent with the true channel state can be used to perform resource allocation. An approach to quantifying the performance degradation for both cases is presented for the case where only a discrete number of modulation and coding levels are available for adaptive modulation and coding (AMC). Using the CSI estimates and the channel statistics, the approach can be used to perform resource allocation for both cases. It is shown that when a CAC unit is considered, CSI that is correlated with its present state leads to significantly higher values of the system throughput even under high user mobility. Motivated by the comparison between the correlated and statistical based resource allocation schemes, a strategy is then proposed which leads to a good tradeoff between overhead consumption and fairness as well as throughput when the presence of a CAC unit is considered. In OFDMA networks, the design of efficient CAC schemes also relies on the user CSI. The presence of a CAC unit needs to be considered when designing practical resource allocation schemes for BWA networks that support multiple service classes as it can guarantee fairness amongst them. In this thesis, a novel mechanism for CAC is developed which is based on the user channel gains and the cost of each service. This scheme divides the available bandwidth in accordance with a complete partitioning structure which allocates each service class an amount of non-overlapping bandwidth resource. In summary, the research results presented in this thesis contribute to the development of practical radio resource management schemes for BWA networks
    corecore