512 research outputs found

    Network Coding for Multi-Resolution Multicast

    Full text link
    Multi-resolution codes enable multicast at different rates to different receivers, a setup that is often desirable for graphics or video streaming. We propose a simple, distributed, two-stage message passing algorithm to generate network codes for single-source multicast of multi-resolution codes. The goal of this "pushback algorithm" is to maximize the total rate achieved by all receivers, while guaranteeing decodability of the base layer at each receiver. By conducting pushback and code generation stages, this algorithm takes advantage of inter-layer as well as intra-layer coding. Numerical simulations show that in terms of total rate achieved, the pushback algorithm outperforms routing and intra-layer coding schemes, even with codeword sizes as small as 10 bits. In addition, the performance gap widens as the number of receivers and the number of nodes in the network increases. We also observe that naiive inter-layer coding schemes may perform worse than intra-layer schemes under certain network conditions.Comment: 9 pages, 16 figures, submitted to IEEE INFOCOM 201

    STAIR: Practical AIMD Multirate Congestion Control

    Full text link
    Existing approaches for multirate multicast congestion control are either friendly to TCP only over large time scales or introduce unfortunate side effects, such as significant control traffic, wasted bandwidth, or the need for modifications to existing routers. We advocate a layered multicast approach in which steady-state receiver reception rates emulate the classical TCP sawtooth derived from additive-increase, multiplicative decrease (AIMD) principles. Our approach introduces the concept of dynamic stair layers to simulate various rates of additive increase for receivers with heterogeneous round-trip times (RTTs), facilitated by a minimal amount of IGMP control traffic. We employ a mix of cumulative and non-cumulative layering to minimize the amount of excess bandwidth consumed by receivers operating asynchronously behind a shared bottleneck. We integrate these techniques together into a congestion control scheme called STAIR which is amenable to those multicast applications which can make effective use of arbitrary and time-varying subscription levels.National Science Foundation (CAREER ANI-0093296, ANI-9986397

    Application-Oriented Flow Control: Fundamentals, Algorithms and Fairness

    Get PDF
    This paper is concerned with flow control and resource allocation problems in computer networks in which real-time applications may have hard quality of service (QoS) requirements. Recent optimal flow control approaches are unable to deal with these problems since QoS utility functions generally do not satisfy the strict concavity condition in real-time applications. For elastic traffic, we show that bandwidth allocations using the existing optimal flow control strategy can be quite unfair. If we consider different QoS requirements among network users, it may be undesirable to allocate bandwidth simply according to the traditional max-min fairness or proportional fairness. Instead, a network should have the ability to allocate bandwidth resources to various users, addressing their real utility requirements. For these reasons, this paper proposes a new distributed flow control algorithm for multiservice networks, where the application's utility is only assumed to be continuously increasing over the available bandwidth. In this, we show that the algorithm converges, and that at convergence, the utility achieved by each application is well balanced in a proportionally (or max-min) fair manner

    In-Network Congestion Control for Multirate Multicast

    Get PDF
    We present a novel control scheme that dynamically optimizes multirate multicast. By computing the differential backlog at every node, our scheme adaptively allocates transmission rates per session/user pair in order to maximize throughput. An important feature of the proposed scheme is that it does not require source cooperation or centralized calculations. This methodology leads to efficient and distributed algorithms that scale gracefully and can be embraced by low-cost wireless devices. Additionally, it is shown that maximization of sum utility is possible by the addition of a virtual queue at each destination node of the multicast groups. The virtual queue captures the desire of the individual user and helps in making the correct resource allocation to optimize total utility. Under the operation of the proposed schemes backlog sizes are deterministically bounded, which provides delay guarantees on delivered packets. To illustrate its practicality, we present a prototype implementation in the NITOS wireless testbed. The experimental results verify that the proposed schemes achieve maximum performance while maintaining low complexity.National Science Foundation (U.S.) (grant CNS-0915988)National Science Foundation (U.S.) (grant CNS-1116209)United States. Office of Naval Research (grant N00014-12-1-0064

    Back Pressure Based Multicast Scheduling for Fair Bandwidth Allocation

    Get PDF
    We study the fair allocation of bandwidth in multicast networks with multirate capabilities. In multirate transmission, each source encodes its signal in layers. The lowest layer contains the most important information and all receivers of a session should receive it. If a receiver’s data path has additional bandwidth, it receives higher layers which leads to a better quality of reception. The bandwidth allocation objective is to distribute the layers fairly. We present a computationally simple, decentralized scheduling policy that attains the maxmin fair rates without using any knowledge of traffic statistics and layer bandwidths. This policy learns the congestion level from the queue lengths at the nodes, and adapts the packet transmissions accordingly. When the network is congested, packets are dropped from the higher layers; therefore, the more important lower layers suffer negligible packet loss. We present analytical and simulation results that guarantee the maxmin fairness of the resulting rate allocation, and upper bound the packet loss rates for different layers

    A Multirate MAC Protocol for Reliable Multicast in Multihop Wireless Networks

    Get PDF
    Many multicast applications, such as audio/video streaming, file sharing or emergency reporting, are becoming quite common in wireless mobile environment, through the widespread deployment of 802.11-based wirelessnetworks. However, despite the growing interest in the above applications, the current IEEE 802.11 standard does not offer any medium access control (MAC) layer support to the efficient and reliable provision of multicast services. It does not provide any MAC-layer recovery mechanism for unsuccessful multicast transmissions. Consequently, lost frames cannot be detected, hence retransmitted, causing a significant quality of service degradation. In addition, 802.11 multicast traffic is sent at the basic data rate, often resulting in severe throughput reduction. In this work, we address these issues by presenting areliablemulticastMACprotocol for wirelessmultihopnetworks, which is coupled with a lightweight rate adaptation scheme. Simulation results show that our schemes provide high packet delivery ratio and when compared with other state-of-the-art solutions, they also provide reduced control overhead and data delivery dela

    Call blocking probabilities for Poisson traffic under the Multiple Fractional Channel Reservation policy

    Get PDF
    In this paper, we study the performance of the Multiple Fractional Channel Reservation (MFCR) policy, which is a bandwidth reservation policy that allows the reservation of real (not integer) number of channels in order to favor calls of high channel (bandwidth) requirements. We consider a link of fixed capacity that accommodates Poisson arriving calls of different service-classes with different bandwidth-per-call requirements. Calls compete for the available bandwidth under the MFCR policy. To determine call blocking probabilities, we propose approximate but recursive formulas based on the notion of reserve transition rates. The accuracy of the proposed method is verified through simulation

    Efficient Traffic Control of VoD System

    Full text link
    It has been a challenging issue to provide digital quality multimedia data stream to the remote user through the distributed system. The main aspects to design the real distributed system, which reduce the cost of the network by means of reduce packet loss and enhanced over all system performance. Since the number of user increased rapidly in the network it posed heavy load to the video servers. The requested clients, servers are all distributed in nature and the data stream delivered to the user without error. In this work I have presented the performance of the video on demand server by efficient traffic control at real time with respect to incoming multirate traffic pattern . In this work, I present how the overall system performance gradually decreases when the client population sized in the clusters increase. This work indicated the load balancing required for the on demand video distributed system to provide efficient cost effective service to the local or remote clients.Comment: 12 pages, 12 figur

    Routing and Broadcast Development for Minimizing Transmission Interruption in Multi rate Wireless Mesh Networks using Directional Antennas

    Get PDF
    Using directional antennas to reduce interference and improve throughput in multi hop wireless networks has attracted much attention from the research community in recent years. In this paper, we consider the issue of minimum delay broadcast in multi rate wireless mesh networks using directional antennas. We are given a set of mesh routers equipped with directional antennas, one of which is the gateway node and the source of the broadcast. Our objective is to minimize the total transmission delay for all the other nodes to receive a broadcast packet from the source, by determining the set of relay nodes and computing the number and orientations of beams formed by each relay node. We propose a heuristic solution with two steps. Firstly, we construct a broadcast routing tree by defining a new routing metric to select the relay nodes and compute the optimal antenna beams for each relay node. Then, we use a greedy method to make scheduling of concurrent transmissions without causing beam interference. Extensive simulations have demonstrated that our proposed method can reduce the broadcast delay significantly compared with the methods using omnidirectional antennas and single-rate transmission. In addition, the results also show that our method performs better than the method with fixed antenna beams. Keywords: Multihop, Wireless, Mesh, Omnidirectional 
    • 

    corecore