5 research outputs found

    Achieving Covert Communication in Large-Scale SWIPT-Enabled D2D Networks

    Full text link
    We aim to secure a large-scale device-to-device (D2D) network against adversaries. The D2D network underlays a downlink cellular network to reuse the cellular spectrum and is enabled for simultaneous wireless information and power transfer (SWIPT). In the D2D network, the transmitters communicate with the receivers, and the receivers extract information and energy from their received radio-frequency (RF) signals. In the meantime, the adversaries aim to detect the D2D transmission. The D2D network applies power control and leverages the cellular signal to achieve covert communication (i.e., hide the presence of transmissions) so as to defend against the adversaries. We model the interaction between the D2D network and adversaries by using a two-stage Stackelberg game. Therein, the adversaries are the followers minimizing their detection errors at the lower stage and the D2D network is the leader maximizing its network utility constrained by the communication covertness and power outage at the upper stage. Both power splitting (PS)-based and time switch (TS)-based SWIPT schemes are explored. We characterize the spatial configuration of the large-scale D2D network, adversaries, and cellular network by stochastic geometry. We analyze the adversary's detection error minimization problem and adopt the Rosenbrock method to solve it, where the obtained solution is the best response from the lower stage. Taking into account the best response from the lower stage, we develop a bi-level algorithm to solve the D2D network's constrained network utility maximization problem and obtain the Stackelberg equilibrium. We present numerical results to reveal interesting insights

    Performance Enhancement for Full-Duplex Relaying with Time-Switching-Based SWIPT in Wireless Sensors Networks

    Get PDF
    Full-duplex (FD) with simultaneous wireless information and power transfer (SWIPT) in wireless ad hoc networks has received increased attention as a technology for improving spectrum and energy efficiency. This paper studies the outage performance for a SWIPT-based decode-and-forward (DF) FD relaying network consisting of a single-antenna source S, a two-antenna relay R, and a multi-antenna destination D. Specifically, we propose four protocols, namely static time-switching factor with selection combining (STSF-SC), static time-switching factor with maximal ratio combining (STSF-MRC), optimal dynamic time-switching factor with selection combining (ODTSF-SC), and optimal dynamic time-switching factor with maximal ratio combining (ODTSF-MRC) to fully investigate the outage performance of the proposed system. In particular, the optimal time-switching factor from the ODTSF-SC and ODTSF-MRC methods is designed to maximize the total received data at the destination. In this context, we derive exact closed-formed expressions for all schemes in terms of the outage probability (OP). Finally, the Monte Carlo simulations are conducted to corroborate the theoretical analysis’s correctness and the proposed schemes’ effectiveness

    Performance enhancement for full-duplex relaying with time-switching-based SWIPT in wireless sensors networks

    Get PDF
    Full-duplex (FD) with simultaneous wireless information and power transfer (SWIPT) in wireless ad hoc networks has received increased attention as a technology for improving spectrum and energy efficiency. This paper studies the outage performance for a SWIPT-based decode-and-forward (DF) FD relaying network consisting of a single-antenna source S, a two-antenna relay R, and a multi-antenna destination D. Specifically, we propose four protocols, namely static time-switching factor with selection combining (STSF-SC), static time-switching factor with maximal ratio combining (STSF-MRC), optimal dynamic time-switching factor with selection combining (ODTSF-SC), and optimal dynamic time-switching factor with maximal ratio combining (ODTSF-MRC) to fully investigate the outage performance of the proposed system. In particular, the optimal time-switching factor from the ODTSF-SC and ODTSF-MRC methods is designed to maximize the total received data at the destination. In this context, we derive exact closed-formed expressions for all schemes in terms of the outage probability (OP). Finally, the Monte Carlo simulations are conducted to corroborate the theoretical analysis's correctness and the proposed schemes' effectiveness.Web of Science2111art. no. 384

    Performance Enhancement for Full-Duplex Relaying with Time-Switching-Based SWIPT in Wireless Sensors Networks

    Get PDF
    Full-duplex (FD) with simultaneous wireless information and power transfer (SWIPT) in wireless ad hoc networks has received increased attention as a technology for improving spectrum and energy efficiency. This paper studies the outage performance for a SWIPT-based decode-andforward (DF) FD relaying network consisting of a single-antenna source S, a two-antenna relay R, and a multi-antenna destination D. Specifically, we propose four protocols, namely static timeswitching factor with selection combining (STSF-SC), static time-switching factor with maximal ratio combining (STSF-MRC), optimal dynamic time-switching factor with selection combining (ODTSFSC), and optimal dynamic time-switching factor with maximal ratio combining (ODTSF-MRC) to fully investigate the outage performance of the proposed system. In particular, the optimal timeswitching factor from the ODTSF-SC and ODTSF-MRC methods is designed to maximize the total received data at the destination. In this context, we derive exact closed-formed expressions for all schemes in terms of the outage probability (OP). Finally, the Monte Carlo simulations are conducted to corroborate the theoretical analysis’s correctness and the proposed schemes’ effectiveness

    Integrating Drones and Wireless Power Transfer into Beyond 5G Networks

    Get PDF
    As fifth generation (5G) standards have been established and 5G commercial products are just around the corner, both academia and industry have started to look at requirements for beyond 5G networks. Network flexibility and long battery life are among the key requirements for beyond 5G wireless communication systems. These critical requirements, which have not been sufficiently addressed in the previous generations, are the focus of this thesis. The first half of this thesis explores two important use cases of drones to provide flexible communication networks. First, the performance of a cellular network with underlay drone cell for temporary events inside a stadium is studied. Using stochastic geometry, a general analytical framework is proposed to analyze the uplink and the downlink coverage probabilities for both the aerial and the terrestrial systems. Our results show that for urban environment and dense urban environment, the drone is best deployed at a low height (e.g., 200 m or lower), regardless of the distance between the center of the stadium and the terrestrial base station. However, for suburban environment and high-rise urban environment, the best drone altitude varies. Second, the performance of emergency information dissemination in public safety scenarios using drone is studied. A drone-assisted multihop multicast device-to-device (D2D) network is considered, where an emergency alert message broadcasted by a drone at the first time slot is multicasted by the D2D users that have successfully received the message through multihop. The impact of different system parameters on the link and the network performance is investigated. Our results demonstrate that a higher drone altitude provides better link and network coverage probabilities and lower mean local delay. Under practical setups, the cell edge user located 2 km from the ground projection of the drone has a link coverage probability around 90% after 5 time slots and a mean local delay of 2.32 time slots with a drone height as low as 200 m. The second half of this thesis investigates wireless power transfer networks. Specifically, the use of power beacons in a millimeter wave wireless ad hoc network is considered, where transmitters adopt the harvest-then-transmit protocol. First, the characteristic of the aggregate received power from power beacons is analyzed and the lognormal distribution is found to provide the best complementary cumulative distribution function approximation compared to other distributions considered in the literature. Then, a tractable model with discrete transmit power for each transmitter is proposed to compute the channel coverage probability and the total coverage probability. Our results show that our model provides a good accuracy and reveal the impact of different system parameters on the total coverage probability. Our results also illustrate that under practical setups, for power beacon transmit power of 50 dBm and transmitters with maximum transmit power between 20 - 40 dBm, which are safe for human exposure, the total coverage probability is around 90%. Thus, it is feasible and safe to power transmitters in a millimeter wave ad hoc network using power beacons
    corecore