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Abstract

As fifth generation (5G) standards have been established and 5G commercial products
are just around the corner, both academia and industry have started to look at require-
ments for beyond 5G networks. Network flexibility and long battery life are among
the key requirements for beyond 5G wireless communication systems. These critical
requirements, which have not been sufficiently addressed in the previous generations,
are the focus of this thesis.

The first half of this thesis explores two important use cases of drones to provide
flexible communication networks. First, the performance of a cellular network with
underlay drone cell for temporary events inside a stadium is studied. Using stochastic
geometry, a general analytical framework is proposed to analyze the uplink and the
downlink coverage probabilities for both the aerial and the terrestrial systems. Our re-
sults show that for urban environment and dense urban environment, the drone is best
deployed at a low height (e.g., 200 m or lower), regardless of the distance between
the center of the stadium and the terrestrial base station. However, for suburban envi-
ronment and high-rise urban environment, the best drone altitude varies. Second, the
performance of emergency information dissemination in public safety scenarios using
drone is studied. A drone-assisted multihop multicast device-to-device (D2D) network
is considered, where an emergency alert message broadcasted by a drone at the first
time slot is multicasted by the D2D users that have successfully received the message
through multihop. The impact of different system parameters on the link and the net-
work performance is investigated. Our results demonstrate that a higher drone altitude
provides better link and network coverage probabilities and lower mean local delay.
Under practical setups, the cell edge user located 2 km from the ground projection of
the drone has a link coverage probability around 90% after 5 time slots and a mean
local delay of 2.32 time slots with a drone height as low as 200 m.

The second half of this thesis investigates wireless power transfer networks. Specif-
ically, the use of power beacons in a millimeter wave wireless ad hoc network is con-
sidered, where transmitters adopt the harvest-then-transmit protocol. First, the char-
acteristic of the aggregate received power from power beacons is analyzed and the
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lognormal distribution is found to provide the best complementary cumulative distri-
bution function approximation compared to other distributions considered in the lit-
erature. Then, a tractable model with discrete transmit power for each transmitter is
proposed to compute the channel coverage probability and the total coverage proba-
bility. Our results show that our model provides a good accuracy and reveal the impact
of different system parameters on the total coverage probability. Our results also il-
lustrate that under practical setups, for power beacon transmit power of 50 dBm and
transmitters with maximum transmit power between 20− 40 dBm, which are safe for
human exposure, the total coverage probability is around 90%. Thus, it is feasible and
safe to power transmitters in a millimeter wave ad hoc network using power beacons.
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Chapter 1

Introduction

1.1 Motivation

The growth and adoption of wireless communications has proven to be hugely success-
ful over the past four decades. It has been reported by Cisco that the number of mobile
devices worldwide is 7.4 billion in 2014 and is predicted to increase to 11.5 billion in
2019 [3]. The first introduction of cellular communications took place in the 1980s,
where the first generation (1G) of mobile terminals used analogue signals to connect
to the network. Since then, a new generation of mobile communication system with
higher capacities and better coverage has been introduced every decade. Evolving
from 1G to the second generation Global System for Mobile Communications (GSM),
the third generation Universal Mobile Telecommunication System (UTMS) and the
fourth generation (4G) long-term evolution (LTE), the analog communication system
has transitioned to digital one and the core services have moved from voice calling
and short messaging service (SMS) to voice over Internet Protocol (VoIP) and data
service [4].

The introduction of the next generation of wireless communication network, i.e.,
the fifth generation (5G) network is on its way with major commercial deployments
expected to start in 2020 globally. The 5G communication system promises to han-
dle markedly higher mobile data traffic with significantly faster bit rates and notably
lower latency than current 4G network [4, 5]. To achieve these network requirements,
the three building-block technologies forming the backbone of 5G communication
system, named as the big 3 in [6], are densification (e.g., small cells and hetero-
geneous networks), massive multiple input multiple output (MIMO) and millimeter
wave (mmWave). Besides the big 3, the development of 5G network also provides
opportunities for many other emerging technologies, such as full duplex communi-
cation, cognitive radio network, device-to-device (D2D) communication, vehicle-to-
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2 Introduction

vehicle (V2V) communication, machine-to-machine (M2M) communication, an ad-
vanced range of Internet of Things (IoT) communications, software defined network,
network function virtualization and network slicing [4, 5, 6].

It is important and timely to consider the research for the future of wireless com-
munication network, a future that goes beyond 5G network. Beyond 5G, there are even
more opportunities and even bigger challenges ahead. Beyond 5G networks will not
only take 5G networks into faster speed with lower latency, but are also expected to
be able to operate on diverse spectrum types and bands. A major transformation in the
beyond 5G era is software-based design, which will address the requirements for high
cost efficiency, high reliability and high security [7]. The continued growth in the num-
ber of dynamic connected network devices inevitably increases the need for massive
connectivity and flexibility for beyond 5G communication systems. Flexible wireless
communication networks are expected to be effortlessly designed, configured, man-
aged and maintained to meet the various requirements of service quality and spectrum
bandwidth for fundamentally new applications, e.g., industrial automation and smart
cities, which will transform our everyday lives and business and change how people
engage with the environment. Moreover, the demand for communication devices with
long battery life grows gradually in beyond 5G networks [4].

The evolution and development of wireless communication networks stimulates
the growth of many exciting new technologies and introduces innovating applications
for existing technologies. This thesis focuses on drone communications and wireless
power transfer (WPT) which are two emerging technologies for beyond 5G networks.
Some key technical aspects, significant research challenges, critical open problems
and detailed motivation for these two technologies are discussed in the following sub-
sections.

1.1.1 Drone Communication Networks

Drones have been proposed as an enabling technology to fulfill the flexibility require-
ment in beyond 5G networks because of their high mobility. They can be easily and
flexibly deployed and rapidly and dynamically reconfigured to provide on-demand
wireless communication to terrestrial users. Drones avoid the need for highly con-
strained and expensive infrastructures as terrestrial base stations (TBSs) do. Due to
the unique features of drones, a number of prospective use cases for the deployment
of drones in wireless communication systems have been identified in [8, 9, 10]. These
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include imminent scenarios, such as providing service to rural areas that are out of
coverage of cellular networks, recovering the service for malfunctioning terrestrial in-
frastructures damaged or even destroyed by natural disasters and offloading cellular
data traffic in cases of radio access network congestion and/or core network conges-
tion. The use of drones is proposed in vehicular ad hoc networks (VANETs) to serve
users with high mobility. Drones can also be deployed to provide additional resources
for temporary blind spots and for temporary events (e.g., concerts and sports events
inside stadiums). In the application for smart agriculture, drones can reduce energy
consumption of wireless sensors for sending information by moving towards them.
Furthermore, drones can be deployed to provide robust service between first respon-
ders and victims for search and rescue operations. In public safety situations (e.g.,
bushfire and flood), drones can support terrestrial networks for rapid information dis-
semination by broadcasting emergency messages to ground devices. Drones are also
proposed as an effective caching solution, since they can dynamically cache the pop-
ular contents and track the mobility pattern of mobile users. In addition, city aerial
delivery services can be realized using drone user equipments (DUEs) that are con-
nected to cellular networks.

In most of the scenarios described above, drones operate under one or more of the
communication models shown in Figure 1.1. Similar to the conventional terrestrial
communications, these four models are [11]:

(a) Downlink, where the drone acts as an aerial base station (ABS) and sends inde-
pendent information to multiple ground nodes;

(b) Uplink, where the drone acts as an ABS and collect independent information
from multiple ground terminals;

(c) Relaying, where drone is deployed to provide wireless connectivity between two
distant nodes without reliable direct communication link;

(d) Broadcasting, where drone transmits common information to all ground devices.

In this thesis, we focus on the use of drones as ABSs to provide additional cov-
erage for temporary events, such as concerts or sports events. Such temporary events
are happening more frequently in cities all over the world with very high number of
users gathering. A large number of IoT devices are expected to be deployed in a sta-
dium to help the event operators to provide superior experience to event participants
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(a) Downlink. (b) Uplink.

(c) Relaying. (d) Broadcasting.

Figure 1.1: Drone communication models.

efficiently and effectively. Note that network users inside a stadium are not limited to
smartphones, but can also be security cameras, noise and temperature sensors inside
the stadium and performance monitoring devices on the sports players. For example,
security cameras being used to monitor all corners of the venue and keep the crowd
safe. Sensors being used to provide up-to-date information on queues for merchandise
stalls. Temperature sensors being used to monitor and control the air conditioning sys-
tem. Therefore, effective and reliable wireless connectivity, high data rates and ultra
low latency are required. It is not possible to rely solely on the conventional wire-
less networks (e.g., cellular system) to support all these network devices. The high
data rates and the numerous number of connected network nodes would quickly and
constantly overload base stations and put pressure on network resources. Therefore,
assessing the usefulness of ABSs to provide downlink and uplink coverage for tem-
porary events is an important open problem in the literature which has great practical
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importance as well.

Natural and human-instigated disasters, such as bushfires and floods, strike coun-
tries such as Australia every year. They cause loss of life, injury, property damage and
economic disruption. In unexpected public safety situations, fast, flexible and reliable
emergency communication systems will not only provide ubiquitous connectivity, but
can also minimize and even prevent the loss for the affected community. However,
the existing terrestrial communication infrastructures can be partially or completely
damaged during the disasters. Moreover, wireless network coverage may not reach all
locations where mobile terminals are located, such as rural areas and forests. In this
regard, drones can be used to fulfill the vital need of public safety communications
by broadcasting common emergency information to a large number of ground nodes.
Furthermore, D2D communications is an effective technique for network coverage im-
provement in terrestrial communication systems by enabling direct communications
between nearby mobile terminals [12]. Therefore, efficient and rapid emergency in-
formation dissemination can be achieved in public safety scenarios by exploiting both
D2D communications and drone mobility. The investigation of drone-assisted D2D
networks for the rapid spread of emergency messages in public safety scenarios is a
timely and significant open problem in the literature which is addressed in this thesis.

1.1.2 Wireless Power Transfer Networks

Due to the proliferation of mobile devices with powerful processing capabilities such
as smart phones, tablets, and personal digital assistants, the demand for long battery
life is increasing significantly [13]. WPT is an emerging and promising next gener-
ation technology to maximise the lifetime of energy constrained wireless communi-
cation networks in comparison with other possible techniques. Ongoing studies have
focused on converting energy embedded in the ambient environment to the DC elec-
trical power in a process known as energy harvesting. Compared to energy harvesting
from ambient energy sources, e.g., solar power, wind energy, thermal energy, kinetic
energy from human walking or ambient man-made radio-frequency (RF) electromag-
netic wave, which may change rapidly with time, location and weather conditions,
WPT leveraging the property that wireless signal carries both information and energy
has a significant advantage of being always available and controllable [13]. There
are currently two main approaches to WPT: (i) simultaneous wireless information and
power transfer (SWIPT) and (ii) power beacon (PB) based approach.



6 Introduction

Information transmission: (1− τ)TPower transfer: τT

One time slot, T

Figure 1.2: Illustration of the harvest-then-transmit TX architecture.

In SWIPT network, the receiver (RX) extracts the information and energy simul-
taneously from the same wireless signal transmitted by RF signal transmitters (TXs).
The two common SWIPT practical RX architectures adopted in the literature are time
switching and power splitting. For the time switching RX architecture, the receiving
antenna is periodically switched between the information decoding RX and the en-
ergy harvesting RX, which have time slots with different lengths [14]. In this way, the
SWIPT RX is able to detect information for a certain time, and harvesting energy in
the rest of the time. For the power splitting RX architecture, the power of the received
signal at the antenna is split into two separate streams with different magnitudes by
a passive power splitter, one is used for energy harvesting and the other is used for
information decoding [14]. Besides the two architectures mentioned above, there are
other SWIPT RX architectures proposed in the literature, such as antenna switching
RX architecture and integrated information decoding/energy harvesting RX architec-
ture [15].

While SWIPT has been the subject of intense research in the academic commu-
nity [13, 14, 16, 17], industry has preferred to adopt the PB approach. In this approach,
low cost PBs, which do not require backhaul links, are deployed to provide dedicated
power transfer in wireless networks. For example, the Cota Tile is a PB designed to
wirelessly charge devices like smartphones in a home environment and was showcased
at the 2017 Consumer Electronics Show (CES) [18].

For PB based WPT networks, time is divided into slots and let T denote one time
slot. Each TX adopts the harvest-then-transmit architecture to perform power transfer
and information transmission, as shown in Figure 1.2. Specifically, each time slot T
is divided into two parts with ratio τ ∈ (0, 1): in the first τT seconds TXs harvest
energy from the RF signal transmitted by randomly deployed PBs. In the remaining
(1− τ)T seconds, TXs use all the harvested energy to transmit information to their
desired RXs.

There are two key challenges in the application of PBs to wider networks. The
first challenge is the lack of tractable models for analysis and design of such networks.
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Figure 1.3: Overview of the thesis.

Although large-scale Monte Carlo simulations can be used in this regard, exhaustive
simulation of every possible scenario of interest will be extremely time-consuming
and onerous. The insights and relationships of different system parameters drawn are
restricted by the possibility and repeatability of the simulations. Hence, it is important
to explore tractable, efficient and accurate analytical models for PB-assisted commu-
nications in wireless networks. The second challenge is the use of practical models for
WPT, which capture realistic aspects of WPT. For instance, practical state-of-art RF
energy harvesting circuits have power sensitivity requirement and WPT RXs can only
harvest power if the incident received power is greater than the power circuit activa-
tion threshold (typically around −20 dBm [13]). Similarly, WPT TXs have to adhere
to maximum transmit power constraints due to safety considerations. Therefore, it is
important to adopt a realistic and practical model for WPT process in analyzing the
performance of PB-assisted wireless communication networks.

This thesis aims to tackle the research challenges identified above and applies
stochastic geometry to model, analyze and design the integration of drone and PB
based WPT techniques into beyond 5G networks in Chapters 2 – 5. Figure 1.3 shows
an overview of the thesis. In the remainder of this chapter, we first discuss the relevant
existing studies in the literature on drone communication networks and WPT networks.
Finally, the scope and contributions of the thesis are summarized in Section 1.3.
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1.2 Literature Review

This section describes the state of the art work that is relevant to this thesis and is
divided into two parts. Section 1.2.1 summarizes the recent work on drone communi-
cation networks. Next, Section 1.2.2 presents an overview of current studies on WPT
networks.

1.2.1 Drone Communication Networks

Depending on the use of drones as base stations or as aerial users, the integration of
drones into cellular networks can be categorized into two main paradigms [11]: (i)
drone-assisted wireless communications and (ii) cellular-connected drones. For both
paradigms, an essential requirement is accurate drone channel model. The work in [19]
presented a comprehensive overview of existing research related to aerial (also known
as air-to-ground) channel measurements, including large and small-scale fading chan-
nel models. Models for path-loss exponents and shadowing for the aerial radio channel
between drones and cellular networks were presented in [20, 21] based on field mea-
surements. Using the general geometrical statistics of various environments provided
by the International Telecommunication Union (ITU-R), the authors proposed location
and environment dependent path-loss model for low altitude platforms in [1, 22].

In this thesis, our focus is on drone-assisted wireless networks. The investigation
of these networks has drawn attention in the literature from different perspectives, such
as drone deployment and optimization of trajectories [1, 23, 24, 25, 26, 27, 28, 29] and
performance analysis of drone enable cellular systems [30, 31, 32, 33, 34, 35]. Opti-
mal drone trajectory was designed for a drone base station in cellular network in [23]
and for a drone enabled relaying network in [24]. An analytical model for finding op-
timal placement of a drone was provided in [25] to maximize the number of covered
users and optimal height and antenna beamwidth was found in [26] for throughput
optimization. Optimal density of the underlay drones was investigated in [27] and
optimal placement for multiple drones in a large-scale network was studied in [28].
The work in [29] studied the joint user scheduling and drone trajectory optimization
for maximizing the minimum average rate of ground users. In [1], the authors derived
the optimal altitude enabling a single drone to achieve a maximum coverage radius on
the ground. [30] investigated the uplink performance of a drone cell in the presence
of a Poisson field of ground interferers. The downlink performance of a single static
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drone and a single mobile drone with underlay D2D users was studied in [31], while
[32] analyzed the downlink coverage of a finite network formed by multiple drones.
The downlink coverage probability of a network with multiple directional beamform-
ing drones was investigated in [33]. The downlink coverage performance of multiple
drones in an urban environment was studied in [34]. The downlink coverage and rate
in a Poisson field of drone base stations was investigated in [35]. In particular, we
focus on the works related to temporary events and information dissemination.

Temporary events:

Recently, there are some works investigating the application of drone in temporary
events from different aspects. Specifically, the Aerial Base Stations with Opportunis-
tic Links for Unexpected and Temporary Events (ABSOLUTE) project in Europe
aims to provide reliable network coverage through a combination of aerial, terres-
trial and satellite links for unexpected and temporary events [36]. A heuristically ac-
celerated reinforcement learning based framework was proposed in [37] for dynamic
spectrum sharing in a temporary event scenario. In [38], the authors constructed a
non-cooperative game and studied the equilibrium beaconing durations in terms of en-
ergy efficiency of the competing drones for temporary events. A proactive drone cell
deployment scheme was investigated in [39] to cope with flash crowd traffic in dif-
ferent scenarios, including stadiums. A limited feedback scheme for non-orthogonal
multiple access was designed for mmWave drone to provide coverage over a stadium
in [40].

The above literature review motivates the performance analysis of drone in a tem-

porary event scenario using stochastic geometry. In particular, this thesis studies the

performance of cellular network with underlay drone cell dedicated to provide cover-

age for IoT devices inside a stadium for a temporary event.

Information dissemination:

Furthermore, we are interested in utilizing drone for information dissemination. By
exploiting both D2D communications and the drone mobility, the authors presented an
idea to use D2D communications to help drone to achieve efficient information dis-
semination to a large number of ground nodes in [8]. An energy efficient data dissem-
ination approach based on the fire fly optimization algorithm was proposed in [41] for
wireless sensor networks by the use of multiple drones. Optimal transmission strategy
for data dissemination was investigated in [42] to maximize the network throughput
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of a cooperative drone assisted VANETs while guarantee the delay constraint. In [43],
the authors studied the data dissemination problem in VANETs with the assistance of
drones as relay nodes. The recursive least squares algorithm and the maximum vehicle
coverage algorithm were proposed to maximize the system throughput and minimize
the transmission delay.

There are also some previous works on multicast transmission without the assis-
tance from drone [44, 45, 46, 47, 48]. For example, the time and the average energy
consumption of serving a content request via D2D unicast and multicast content de-
livery were investigated in [44]. In [45], the joint optimization of power control and
channel allocations was studied to maximize the aggregate rate of a cellular network
with unicast cellular users and underlay multicast D2D users. In [46], the authors an-
alyzed the coverage probability, the mean number of covered RXs and the throughput
of a multicast D2D network with and without the help from overlay cellular networks
and explored how to improve the network performance by optimizing the multicast
rate and the number of retransmission times. The average multicast rate and the out-
age rate of small-scale two-hop D2D multicast networks were studied in [47]. In [48],
the authors investigated the multicast transmission capacity of single-hop and multi-
hop multicast ad hoc networks. For the multihop scheme, each multicast cluster was
considered to tessellate into smaller multicast regions of equal area. A packet was as-
sumed to deliver slot by slot from one region to the next until all the tessellated regions
have been visited by the packet.

The above mentioned works motivate the investigation of drone-assisted multihop

multicast D2D network, where an emergency alert message broadcasted by a drone at

the first time slot is multicasted by the D2D users that have successfully received the

message through multihop. To the best of our knowledge, this scenario and its study

have not yet been presented in the literature to date.

1.2.2 Wireless Power Transfer Networks

Establishing fully sustainable communication networks has attracted significant re-
search interest very recently. Although, periodic battery replacement or recharging
can avoid the need for the energy harvesting process, it suffers from a high cost and
can be inconvenient or dangerous (e.g., in a toxic environment), or highly undesir-
able (e.g., sensors inside human body) [14]. Therefore, WPT which can prolong the
lifetime of low-power devices in the network, is currently in the spotlight as a key
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enabling technology in future wireless communication networks [13, 49, 50].

In WPT systems, the aggregate received power (which determines the harvested
power) plays a key role in the system performance. For instance, (i) in SWIPT sys-
tems, a common assumption is that the energy constrained node has a large battery
to store the received power and, therefore, it transmits with a constant transmit power
which is proportional to the aggregate received power [51, 52], (ii) in PB systems, the
complementary cumulative distribution function (CCDF) of the aggregate received
power plays a key role in determining the power outage probability [53, 54, 55], and
(iii) in low power applications, statistical information such as the mean and variance
of the aggregate received power can potentially be used to develop efficient sleep and
transmission protocols [13, 56]. Thus, it is crucial to accurately characterize the ag-
gregate received power. In this regard, the moment generating function (MGF) of the
aggregate received power, which opens the door for application of powerful toolsets
from stochastic geometry, has been numerically evaluated in microwave cellular and
D2D networks with ambient RF energy harvesting [57, 58], mmWave SWIPT sys-
tems [59, 60] and microwave PB systems [54].

To the best of our knowledge, a closed-form expression for the MGF of the ag-

gregate received power in mmWave PB systems, incorporating the key propagation

characteristics of mmWave transmission, is not available in the literature.

Microwave (below 6 GHz) systems:

Recently, the investigation of PBs has drawn attention in the literature from differ-
ent aspects. For point-to-point or point-to-multipoint communication systems, the re-
source allocation for PB-assisted system was considered in [61, 62], where the authors
mainly aimed at finding the optimum time ratio for power transfer and information
transmission. In [63], the authors studied the PB-assisted network in the context of
physical layer security, where an energy constrained source is powered by a dedi-
cated PB. For large scale networks, some papers have characterized the performance
of PB-assisted communications using stochastic geometry, which is a powerful math-
ematical tool to provide tractable analysis by incorporating the randomness of users.
Specifically, the feasibility of PB deployment in a cellular network, under the outage
constraint at the base station, was investigated in [53], where cellular users are charged
by PBs for uplink transmission. By considering that the secondary TX is charged by
the primary user in a cognitive network, the authors derived the spatial throughput for
the secondary network in [64]. Adaptively directional PBs were proposed for sensor
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network in [65] and the authors found the optimal charging radius for different sens-
ing tasks. In [66], three WPT schemes were proposed to select the PB for charging
in a D2D-aided cognitive cellular network. The authors in [54] formulated the total
outage probability in a PB-assisted ad hoc network by including the energy harvesting
sensitivity into the analysis. Note that all the aforementioned works considered the
conventional microwave frequency band, i.e., below 6 GHz.

MmWave systems:

MmWave communication, which aims to use the spectrum band typically around 30
GHz, is emerging as a key technology for the 5G systems [67]. Considerable ad-
vancements have already been made in the understanding, modeling and analysis of
mmWave communication using stochastic geometry [68, 69, 70, 71]. From the prior
work, we can summarize two distinctive features of mmWave communication: (i) ow-
ing to the smaller wavelength, mmWave allows a large number of antenna arrays with
directional beamforming to be equipped at the TX and RX; (ii) since the mmWave
propagation is susceptible to blockage, it causes the large difference for path-loss and
fading characteristics between line-of-sight (LOS) and non-line-of-sight (NLOS) en-
vironment.

MmWave communication can be beneficial for WPT since both technologies in-
herently operate over short distances and the narrow beams in mmWave communica-
tion can focus the transmit power. Very recently, some papers have used stochastic
geometry to analyse mmWave SWIPT networks [59, 60].

To the best of our knowledge, the study of a PB-assisted mmWave network using

stochastic geometry, taking into account realistic and practical WPT and mmWave

characteristics such as building blockages, beamforming, power circuit activation

threshold, maximum harvested power and maximum transmit power, is not available

in the literature.

1.3 Thesis Overview and Contributions

The main focus of this thesis is to investigate two critical requirements for beyond 5G
networks, which are network flexibility and long battery life. In this regard, we focus
on the modeling, analysis and design of the integration of drone and WPT techniques
into wireless communication networks using stochastic geometry. In the first half of
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the thesis, we explore the use of drones to provide flexible communication networks
for temporary events and emergency information dissemination. The second half of
the thesis looks into the use of PBs in a mmWave wireless ad hoc network. The spe-
cific contributions of each chapter are detailed below:

Chapter 2 - Underlay Drone Cell for Temporary Events: Impact of
Drone Height and Aerial Channel Environments

Chapter 2 considers a drone system coexisting with a single-cell cellular network,
where an ABS is designated to provide service to IoT devices (namely the ABS-
supported devices (AsDs), such as smartphones, security cameras, noise and temper-
ature sensors and performance monitoring devices) inside a stadium for a temporary
event (e.g., a concert or a sporting event). Since the ABS shares the same spectrum
resources (i.e., in an underlay fashion) with the TBS, the concurrent transmission of
both systems can cause interference to each other and impact the network performance.
In Chapter 2, we consider a general aerial channel model and study both uplink and
downlink network performance. The novel contributions of the chapter are summa-
rized as follows:

• Leveraging tools from stochastic geometry, we develop a general analytical
framework to analyze the uplink coverage probability of the TBS and the ABS
and the downlink coverage probability of the TBS-supported user equipment
(TsUE) and the AsD. The proposed framework is able to accommodate any
aerial channel model.

• Our proposed framework depends on the Laplace transforms of the interference
power distribution at the TBS, the ABS, the TsUE and the AsD. We derive the
key factors that determining the Laplace transforms of the interference power
distribution, the distribution function of the three-dimensional distance between
the ABS and an independently and uniformly distributed (i.u.d.) AsD and the
distribution function of the three-dimensional distance between the ABS and an
i.u.d. TsUE. Note that such distance distributions take into account the hole
effects (i.e., the TsUE are prohibited from the ABS serving region and the AsD
are contained in the ABS serving region).

• Our results show that for urban environment and dense urban environment the
ABS is best deployed at a low height (e.g., 200 m or lower), regardless of the
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distance between the center of the stadium and the TBS. However, for suburban
environment and high-rise urban environment, the best ABS deployment height
depends on the distance between the center of the stadium and the TBS and the
task of the system (i.e., prioritize the terrestrial link or the aerial link, prioritize
the uplink or the downlink communication).

The results of this chapter have appeared in the following publication [72]:

J2. X. Zhou, S. Durrani, J. Guo, and H. Yanikomeroglu, “Underlay Drone Cell for
Temporary Events: Impact of Drone Height and Aerial Channel Environments,”
IEEE Internet Things J., vol. 6, no. 2, pp. 1704–1718, Apr. 2019.

Chapter 3 - Drone-assisted Multihop Multicast Device-to-Device Net-
works for Emergency Information Dissemination

Chapter 3 explores the use of drone for emergency information dissemination in public
safety scenarios. We consider a drone-assisted multihop multicast D2D network where
a drone is deployed to broadcast an emergency alert message to all terrestrial D2D
users at the first time slot. After that, the drone leaves and the D2D users that have
successfully received the message become the active TXs for the next time slots to
multicast the emergency alert message through multihop. Using stochastic geometry,
we investigate the link coverage probability and the mean local delay for a D2D user
and the network coverage probability. The main contributions of the chapter are as
follows:

• We propose a general analytical framework to compute the link coverage prob-
ability and the mean local delay for a D2D user in terms of the link success
probability, the network outage probability and the Laplace transform of the ag-
gregate received signal power. The framework is able to accommodate any aerial
channel model.

• For tractable analysis of the network performance, we propose an approximation
for the link success probability. Using this approximated link success probabil-
ity, we derive the network success probability and the network coverage proba-
bility. The simulation results verify the accuracy of the approximation.
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• Based on our proposed models, we analyze the effect of the different system pa-
rameters (i.e., height and transmit power of the drone and density and sensitivity
radius of the D2D users) on the link coverage probability and the mean local
delay of a D2D user and the network coverage probability.

The results of this chapter are under preparation for journal paper submission [73]:

J3. X. Zhou, S. Durrani, and J. Guo, “Drone-initiated D2D-aided Multihop Multicast
Networks for Emergency Information Dissemination,” submitted to IEEE Access,
under major revision.

Chapter 4 - Characterization of Aggregate Received Power from
Power Beacons in Millimeter Wave Ad Hoc Networks

In Chapter 4, we consider a mmWave wireless ad hoc network where PBs are de-
ployed. Using stochastic geometry, we characterize the aggregate received power at a
reference RX. The aggregate received power plays a key part in determining the over-
all system performance, which is discussed in Chapter 5. The novel contributions of
the chapter are:

• We derive the closed-form expressions for the MGF and the nth cumulant of
the aggregate received power at the reference RX, taking a mmWave three-state
propagation model and multi-slope path-loss model into account. The MGF
allows the CCDF of the aggregate received power from PBs to be numerically
evaluated.

• We test the accuracy of well known closed-form distributions to model the ag-
gregate received power. Our results show that the lognormal distribution pro-
vides the best CCDF approximation, compared to other distributions commonly
considered in the literature.

• We investigate the feasibility of PBs to power users in a mmWave ad hoc net-
work. Our results show that under practical setups, for PB deployment density
between 10− 100 per km2, the required PB transmit power to achieve an aver-
age harvested power of 15 dBm is between 1.5− 40 W, which is practical and
safe for human exposure.

The results of this chapter have appeared in the following publication [74]:
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C1. X. Zhou, S. Durrani, and J. Guo, “Characterization of Aggregate Received Power
from Power Beacons in Millimeter Wave Ad Hoc Networks,” in Proc. IEEE ICC,
May. 2017.

Chapter 5 - Power Beacon-Assisted Millimeter Wave Ad Hoc Net-
works

In Chapter 5, we consider a PB-assisted wireless ad hoc network under mmWave trans-
mission where TXs adopt the harvest-then-transmit protocol, i.e., they harvest energy
from the aggregate RF signal transmitted by PBs and then use the harvested energy
to transmit the information to their desired RXs. Both the power transfer and in-
formation transmission phases are carried out using antenna beamforming under the
mmWave channel environment, which is subjected to building blockages. Using tools
from stochastic geometry, we develop a tractable analytical framework to investigate
the power coverage probability, the channel coverage probability and the total cov-
erage probability at a reference RX taking a mmWave three-state propagation model
and multi-slope bounded path-loss model into account. In the proposed framework,
the power coverage probability is efficiently and accurately computed by numerical
inversion using the closed-form expression for the Laplace transform of the aggregate
received power at the typical TX. The novel contributions of this chapter are summa-
rized as follows:

• We adopt a realistic model of wirelessly powered TXs by taking into considera-
tion (i) the power circuit activation threshold, which accounts for the minimum
aggregate received power required to activate the energy harvesting circuit, (ii)
the allowed maximum harvested power, which accounts for the saturation of the
energy harvesting circuit and (iii) the maximum transmit power, which accounts
for the safety regulation and the electrical rating of the antenna circuit.

• For tractable analysis of the channel coverage probability and the total coverage
probability, we propose to discretize the transmit power of each TX into a finite
number of discrete power levels in the log scale. Using this approximation, we
derive the channel coverage probability and the total coverage probability at the
typical RX. Comparison with simulation results shows that the model, with only
10 discrete levels for the transmit power of TXs, has good accuracy in the range
of 5%− 10%.
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• Based on our proposed model, we investigate the impact of varying important
system parameters (e.g., PB transmit power, PB density, allowed maximum har-
vested power, directional beamforming parameters etc.) on the network perfor-
mance.

• We investigate the feasibility of using PBs to power up TXs while providing an
acceptable performance for information transmission towards RXs in mmWave
ad hoc network. Our results show that under practical setups, for PB trans-
mit power of 50 dBm and TXs with a maximum transmit power between 20−
40 dBm, which are safe for human exposure, the total coverage probability is
around 90%.

The results of this chapter have appeared in the following publication [75]:

J1. X. Zhou, J. Guo, S. Durrani, and M. D. Renzo, “Power Beacon-Assisted Millime-
ter Wave Ad Hoc Networks,” IEEE Trans. Commun., vol. 66, no. 2, pp. 830–844,
Feb. 2018.
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Chapter 2

Underlay Drone Cell for Temporary
Events: Impact of Drone Height and
Aerial Channel Environments

Providing seamless connection to a large number of IoT devices is one of the biggest
challenges for beyond 5G networks. Using a drone as an ABS to provide coverage to
IoT devices or mobile terminals on ground is envisaged as a promising solution for
beyond 5G networks. In this chapter, we consider a communication network with an
underlay ABS to provide coverage for a temporary event, such as a sporting event or
a concert in a stadium. Using stochastic geometry, we propose a general analytical
framework to compute the uplink and downlink coverage probabilities for both the
aerial and the terrestrial cellular system. Our framework is valid for any aerial channel
model for which the probabilistic functions of LOS and NLOS links are specified. The
accuracy of the analytical results is verified by Monte Carlo simulations considering
two commonly adopted aerial channel models. Our results show the non-trivial impact
of the different aerial channel environments (i.e., suburban, urban, dense urban and
high-rise urban) on the uplink and downlink coverage probabilities and provide design
guidelines for best ABS deployment height.

The chapter is organized as follows: Section 2.1 describes the system model and
assumptions. Section 2.2 focuses on the uplink coverage probability at the TBS and the
ABS. Section 2.3 details the analysis of the downlink coverage probability at the TsUE
and the AsD. Section 2.4 presents the results and the effect of the system parameters
on the network performance. Finally, the chapter is summarized in Section 2.5.

19
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(a) Three-dimensional view.
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(b) Projection on the ground.

Figure 2.1: Illustration of the underlay drone cell system model.

2.1 System Model

A two-cell communication network comprised of a TBS and an ABS is considered,
where the network region S1 is a disk with radius R1, i.e., |S1| = πR2

1 and a TBS is
located at the center. We assume that there is a temporary event held inside a stadium
within the network region and a large number of IoT devices are active inside the
stadium. The stadium’s building area S2 is modeled as a disk with radius R2 and
its center is at a distance d from the TBS. A drone is placed as an ABS1 to provide
additional resources for the event. The ABS is assumed to be deployed at a height
of h above the center of the stadium, as shown in Figure 2.1. The TsUEs served by
the TBS are uniformly distributed over the network region excluding the stadium, i.e.,
S1 \ S2. At the same time, the AsDs2 are independently uniformly deployed on the
ground inside the stadium S2. For tractability, we assume that all AsDs are connected
to the ABS only. In this chapter, we focus our analysis on one terrestrial cell and
its underlay drone cell without inter terrestrial cell interference. This is based on the
assumption that the terrestrial adjacent cells use different frequencies, while the TBS
and the underlay ABS share the same spectrum resource. Hence, the interference from
far away cells becomes negligible and can be ignored [39, 76]. Note that the single
terrestrial cell model is commonly used in literature for underlay network analysis
[77, 78].

1Current drone regulations prohibit a drone from flying over stadiums or sports events. This is
expected to change in the future.

2The analysis in this chapter focuses on single channel use, so an assumption on the number of
TsUEs or AsDs is not required.
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2.1.1 Channel Model

There are two types of communication links in the considered system model: aerial
links and terrestrial links. The link between the TsUE and the TBS and the link be-
tween the AsD and the TBS are terrestrial links. The link between the TsUE and the
ABS and the link between the AsD and the ABS are aerial links.

Terrestrial links: A general power-law path-loss model is considered for terrestrial
links, in which the signal power decays at a rate `−αT with the propagation distance `

and αT is the path-loss exponent. Furthermore, we assume the terrestrial links expe-
rience small-scale Rayleigh fading and additive white Gaussian noise (AWGN) with
variance σ2.

Aerial links: The channel characteristics of the aerial links (or known as air-to-
ground links) are significantly different from the terrestrial links. Depending on alti-
tude and type of the drone, elevation angle and type of propagation environment, the
aerial links can be either LOS or NLOS with different probabilities of occurrence pL

and pN [22].

The path-loss of the NLOS link is higher than LOS one, because of the shadowing
effect and the reflection of signals from obstacles. Following [31], the path-loss of the
aerial link is modeled as

PLa(z) =

ηLz−αL , LOS

ηNz−αN , NLOS
, (2.1)

where z is the three-dimensional propagation distance between the TsUE and the ABS
and between the AsD and the ABS, αL and αN is the path-loss exponent of LOS aerial
link and NLOS aerial link respectively, ηL and ηN is the additional attenuation factor
for LOS aerial link and NLOS aerial link respectively and ηL > ηN.

Most previous works using aerial channel model ignore the impact of small-scale
fading [25, 31]. However, small-scale fading characteristics are measured and reported
in the literature recently for various aerial propagation environments [19]. In this chap-
ter, the small-scale fading of the aerial link is modeled as Nakagami-m fading, which
is a flexible model that mimics various fading environments. For example, Nakagami-
m fading is equivalent to Rayleigh fading when m equals to 1 and Nakagami-m fading
can also closely approximate Rician fading by matching the m values. The fading
parameter for the LOS aerial link and NLOS aerial link is denoted by mL and mN

respectively. The difference between including and ignoring the small-scale fading
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will be discussed in the result section. The aerial links also experience AWGN with
variance σ2.

2.1.2 Uplink Network Model

For uplink, we assume that orthogonal multiple access technique is employed [79].
Hence, there is no interference among TsUEs (or AsDs). However, both the TBS and
the ABS share the same spectrum resource, i.e., in an underlay fashion. We assume
that the number of the TsUEs and the AsDs are sufficiently high. That is to say, there
will always be one TsUE and one AsD to be served per each channel at the same time.
Therefore, interference exists between TsUEs and AsDs. In this chapter, we focus
our analysis on one uplink channel since other channels share the same interference
statistics.

For reliable and successful uplink communication, the TsUE controls its transmit
power such that the average signal received at the TBS is equal to the RX sensitivity
ρT. Power control is deployed at the AsD as well. Perfect channel state information
(CSI) knowledge is assumed at TsUE and AsD. We also set a maximum transmit power
constraint at the AsD, to avoid the transmit power for AsD going to very large when
the ABS is placed at a high altitude. In other words, the AsD compensates for the path-
loss to keep the average signal power at the ABS equal to the RX sensitivity ρA if the
transmit power required for the path-loss inversion is less than Pmax

AsD. Otherwise, the
AsD tries to establish an uplink connection with the ABS by transmitting with a power
of Pmax

AsD. Therefore, the instantaneous transmit power for the AsD, PAsD, depends on
the propagation distance between the AsD and the ABS and can be shown as:

PAsD=



Pmax
AsD, cond.1L ||

(
cond.2L & ZA>

(
Pmax

AsDηL

ρA

) 1
αL

)
ρA

ηL
ZαL

A , cond.3L ||
(

cond.2L & ZA<

(
Pmax

AsDηL

ρA

) 1
αL

)
LOS

Pmax
AsD, cond.1N ||

(
cond.2N & ZA>

(
Pmax

AsDηN

ρA

) 1
αN

)
ρA

ηN
ZαN

A , cond.3N ||
(

cond.2N & ZA<

(
Pmax

AsDηN

ρA

) 1
αN

)
NLOS

, (2.2)

where ZA is the Euclidean distance between the AsD and the ABS and the conditions
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are:

cond.1k : h >
(

Pmax
AsDηk

ρA

) 1
αk

, (2.3)

cond.2k :

√√√√(Pmax
AsDηk

ρA

) 2
αk−R2

2 < h <

(
Pmax

AsDηk

ρA

) 1
αk

, (2.4)

cond.3k : h 6

√√√√(Pmax
AsDηk

ρA

) 2
αk − R2

2, (2.5)

where k (in ηk and αk) is L for LOS case or N for NLOS case. These conditions come
from the fact that AsD will transmit with its maximum power regardless of where it is
located inside the stadium, if the ABS is placed at a high enough altitude. On the other
hand, the AsD will always be under full channel inversion if the altitude of the ABS is
low.

SINR: For the considered setup, the instantaneous uplink signal-to-interference-
plus-noise ratio (SINR) at the TBS is given as

SINRu
T=

PTsUEHu
Td−αT

T

PAsDHu
Ad−αT

A +σ2
=

ρTHu
T

PAsDHu
Ad−αT

A +σ2
, (2.6)

where PTsUE = ρTdαT
T is the TsUE transmit power. Hu

T and Hu
A are the uplink fad-

ing power gain between the TsUE and the TBS and between the AsD and the TBS,
respectively, which follow exponential distribution. dT and dA are the Euclidean dis-
tance between the TsUE and the TBS and between the AsD and the TBS, respectively.
The transmit power of the AsD PAsD is given in (2.2).

The instantaneous uplink SINR at the ABS is given as

SINRu
A =

PAsDGu
APLa(ZA)

PTsUEGu
TPLa(ZT) + σ2 , (2.7)

where Gu
A and Gu

T are the uplink fading power gain between the AsD and the ABS
and between the TsUE and the ABS, respectively, which follow Gamma distribution.
ZA and ZT are the Euclidean distance between the AsD and the ABS and between the
TsUE and the ABS, respectively.
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2.1.3 Downlink Network Model

Different from uplink transmission, the TBS and ABS are assumed to transmit at a
constant power PTBS and PABS respectively.

SINR: For the considered setup, the instantaneous downlink SINR at the TsUE is
given as

SINRd
T=

PTBSHd
Td−αT

T

PABSGd
TPLa(ZT) + σ2

, (2.8)

where Hd
T is the downlink fading power gain between the TsUE and the TBS, which

follows exponential distribution and Gd
T is the downlink fading power gain between

the TsUE and the ABS, which follows Gamma distribution.

The instantaneous downlink SINR at the AsD is given as

SINRd
A =

PABSGd
APLa(ZA)

PTBSHd
Ad−αT

A + σ2
, (2.9)

where Gd
A is the downlink fading power gain between the AsD and the ABS, which

follows Gamma distribution and Hd
A is the downlink fading power gain between the

AsD and the TBS, which follows exponential distribution.

2.2 Uplink Coverage Probability

In this section, we propose the analytical framework to compute the uplink perfor-
mance by adopting coverage probability as the performance metric. The uplink cover-
age probability is formally defined as

Pu,b
cov , Pr(SINRu

b > γu
b ), (2.10)

where superscript b is T for TBS and A for ABS, and γu
b is the uplink SINR threshold.

SINRu
T and SINRu

A can be found in (2.6) and (2.7), respectively. The results for the
uplink coverage probability of the TBS and the ABS are presented in the next two
subsections.
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2.2.1 TBS Uplink Coverage Probability

First we present two lemmas, which are used in deriving the coverage probability of
the TBS in Theorem 1.

Lemma 1 The Laplace transform of the interference power distribution at the TBS is

LIu
T
(s)=



∫√h2+R2
2

h

∫ 2π
0 LIu

T
(s, Pmax

AsD|θ, z) 1
2π fZA(z)dθdz, cond.1L

∫ (
Pmax

AsDηL
ρA

)
1

αL

h

∫ 2π
0 pLLIu

T
(s, ρA

ηL
zαL |θ, z) 1

2π fZA(z)dθdz

+
∫√h2+R2

2

(
Pmax

AsDηL
ρA

)
1

αL

∫ 2π
0 pLLIu

T
(s, Pmax

AsD|θ, z) 1
2π fZA(z)dθdz

+
∫√h2+R2

2
h

∫ 2π
0 pNLIu

T
(s, Pmax

AsD|θ, z) 1
2π fZA(z)dθdz, cond.4 || cond.8

∫ (
Pmax

AsDηL
ρA

)
1

αL

h

∫ 2π
0 pLLIu

T
(s, ρA

ηL
zαL |θ, z) 1

2π fZA(z)dθdz

+
∫√h2+R2

2

(
Pmax

AsDηL
ρA

)
1

αL

∫ 2π
0 pLLIu

T
(s, Pmax

AsD|θ, z) 1
2π fZA(z)dθdz

+
∫ (

Pmax
AsDηN

ρA
)

1
αN

h

∫ 2π
0 pNLIu

T
(s, ρA

ηN
zαN |θ, z) 1

2π fZA(z)dθdz

+
∫√h2+R2

2

(
Pmax

AsDηN
ρA

)
1

αN

∫ 2π
0 pNLIu

T
(s, Pmax

AsD|θ, z) 1
2π fZA(z)dθdz, cond.5

∫√h2+R2
2

h

∫ 2π
0 pLLIu

T
(s, ρA

ηL
zαL |θ, z) 1

2π fZA(z)dθdz

+
∫√h2+R2

2
h

∫ 2π
0 pNLIu

T
(s, Pmax

AsD|θ, z) 1
2π fZA(z)dθdz, cond.6

∫√h2+R2
2

h

∫ 2π
0 pLLIu

T
(s, ρA

ηL
zαL |θ, z) 1

2π fZA(z)dθdz

+
∫ (

Pmax
AsDηN

ρA
)

1
αN

h

∫ 2π
0 pNLIu

T
(s, ρA

ηN
zαN |θ, z) 1

2π fZA(z)dθdz

+
∫√h2+R2

2

(
Pmax

AsDηN
ρA

)
1

αN

∫ 2π
0 pNLIu

T
(s, Pmax

AsD|θ, z) 1
2π fZA(z)dθdz, cond.7 || cond.9

∫√h2+R2
2

h

∫ 2π
0 pLLIu

T
(s, ρA

ηL
zαL |θ, z) 1

2π fZA(z)dθdz

+
∫√h2+R2

2
h

∫ 2π
0 pNLIu

T
(s, ρA

ηN
zαN |θ, z) 1

2π fZA(z)dθdz, cond.3N

, (2.11)
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where

LIu
T
(s, p|θ, z)=

1
1 + sp

(z2−h2+d2−2
√

z2−h2d cos(θ))
αT
2

, (2.12)

conds.1k and 3k is given in (2.3) and (2.5) respectively and the other conditions are

given below:

cond.4 :

√√√√(Pmax
AsDηL

ρA

) 2
αL− R2

2<

(
Pmax

AsDηN

ρA

) 1
αN
<h<

(
Pmax

AsDηL

ρA

) 1
αL

, (2.13)

cond.5 :

√√√√(Pmax
AsDηL

ρA

) 2
αL − R2

2 < h 6
(

Pmax
AsDηN

ρA

) 1
αN

, (2.14)

cond.6 :
(

Pmax
AsDηN

ρA

) 1
αN

6 h <

√√√√(Pmax
AsDηL

ρA

) 2
αL − R2

2, (2.15)

cond.7 :

√√√√(Pmax
AsDηN

ρA

) 2
αN−R2

2<h6

√√√√(Pmax
AsDηL

ρA

)2
αL−R2

2<

(
Pmax

AsDηN

ρA

) 1
αN
, (2.16)

cond.8 :
(

Pmax
AsDηN

ρA

) 1
αN
<

√√√√(Pmax
AsDηL

ρA

) 2
αL − R2

26h<
(

Pmax
AsDηL

ρA

) 1
αL

, (2.17)

cond.9 :

√√√√(Pmax
AsDηN

ρA

) 2
αN−R2

2<h<
(

Pmax
AsDηN

ρA

) 1
αN
<

√√√√(Pmax
AsDηL

ρA

) 2
αL−R2

2. (2.18)

These conditions come from the fact that as the height of the ABS increases, the AsD

is first under full channel inversion and then reaches its maximum power constraint.

Depending on whether
(

Pmax
AsDηN

ρA

) 1
αN is greater or smaller than

√(
Pmax

AsDηL
ρA

) 2
αL − R2

2,

we can further specify conds. 1N, 2L, 2N and 3L as the conditions above.

Proof: See Appendix A.1.
From Lemma 1, we can see that the transmit power of the AsD PAsD and the

distance between the AsD and the TBS dA are related to the distance between the AsD
and the ABS ZA. This important distance distribution is presented in the following
lemma.
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Lemma 2 The probability density function (PDF) of the distanceZA between the ABS

at height h above the center of S2 and an i.u.d. AsD inside S2 is

fZA(z) =
2z
R2

2
, h 6 z 6

√
R2

2 + h2. (2.19)

Proof: See Appendix A.2.

Theorem 1 Based on the system model in Section 2.1, the uplink coverage probability

of the TBS is

Pu,T
cov = exp

(
−

γu
T

ρT
σ2
)
LIu

T
(s), (2.20)

where Iu
T = PAsDHu

Ad−αT
A , s = γu

T
ρT

, and LIu
T
(s) is given by Lemma 1.

Proof: From (2.6) and (2.10), we can have

Pu,T
cov =Pr(SINRu

T > γu
T)=Pr

(
ρTHu

T

PAsDHu
Ad−αT

A +σ2
>γu

T

)

=Pr
(

Hu
T >

γu
T

ρT
(PAsDHu

Ad−αT
A + σ2)

)
= exp

(
−

γu
T

ρT
(PAsDHu

Ad−αT
A + σ2)

)
(2.21a)

= exp
(
−

γu
T

ρT
σ2
)

exp
(
−

γu
T

ρT
PAsDHu

Ad−αT
A

)
, (2.21b)

where (2.21a) follows from the fact that the link between the TsUE and the TBS experi-
ences Rayleigh fading with a PDF of fHu

T
(h) = exp(−h). Letting Iu

T = PAsDHu
Ad−αT

A

and s = γu
T

ρT
in (2.21b), we can arrive at Theorem 1.

Substituting (2.11) and (2.19) into (2.20), we can obtain the uplink coverage prob-
ability of the TBS.

2.2.2 ABS Uplink Coverage Probability

We begin by presenting three lemmas, which will then be used to compute the uplink
coverage probability of the ABS in Theorem 2.
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Lemma 3 The Laplace transform of the interference power distribution at the ABS is

LIu
A
(s)=

∫ √(R1−d)2+h2

√
R2

2+h2

∫ 2π

0
LIu

A
(s|ω, z) fΩ(ω|z) fZT(z)dωdz

+
∫ √(R1+d)2+h2

√
(R1−d)2+h2

∫ ω̂

−ω̂
LIu

A
(s|ω, z) fΩ(ω|z) fZT(z)dωdz, (2.22)

where

LIu
A
(s|ω, z)= pLmmL

L

(
mL+sρTz−αLηL

(
z2−h2+d2−2

√
z2−h2d cos(ω)

) αL
2

)−mL

+ pNmmN
N

(
mN+sρTz−αNηN

(
z2−h2+d2−2

√
z2−h2d cos(ω)

) αN
2

)−mN

, (2.23)

and ω̂ = arcsec
(

2d
√

z2−h2

d2+z2−h2−R2
1

)
.

Proof: See Appendix A.3.
The PDF of the distance between the TsUE and the ABS fZT(z), and the condi-

tional PDF of the angle, fΩ(ω|z), between the ground projection of ZT and dT are
given in Lemma 4 and Lemma 5, respectively.

Lemma 4 The PDF of the distance ZT between the ABS at height h above the center

of S2 and an i.u.d. TsUE inside S1 \ S2 is

fZT(z)=


2z

R2
1−R2

2
,

√
R2

2+h26z6
√
(R1−d)2+h2

2zω̂
π(R2

1−R2
2)

,
√
(R1−d)2+h2< z6

√
(R1+d)2+h2

. (2.24)

Proof: See Appendix A.4.

Lemma 5 The PDF of the angle, fΩ(ω|z), between the ground projection of ZT and

dT conditioned on ZT is

fΩ(ω|z)=

 1
2π ,

√
R2

2+h26z6
√
(R1−d)2+h2

1
2ω̂ ,

√
(R1−d)2+h2< z6

√
(R1+d)2+h2

. (2.25)

Proof: This lemma can be proved by using cosine rule and simple trigonometry.
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Theorem 2 Based on the system model in Section 2.1, the uplink coverage probability
of the ABS is given as

Pu,A
cov =



∫√h2+R2
2

h P
u,L
cov (Pmax

AsD|z) fZA(z)dz

+
∫√h2+R2

2
h P

u,N
cov (Pmax

AsD|z) fZA(z)dz, cond.1L

∫ ( Pmax
AsDηL

ρA

) 1
αL

h P
u,L
cov

(
ρA
ηL

zαL |z
)

fZA(z)dz

+
∫√h2+R2

2(
Pmax

AsD
ρA

) 1
αL

P
u,L
cov (Pmax

AsD|z) fZA(z)dz

+
∫√h2+R2

2
h P

u,N
cov (Pmax

AsD|z) fZA(z)dz, cond.4 || cond.8

∫ ( Pmax
AsDηL

ρA

) 1
αL

h P
u,L
cov

(
ρA
ηL

zαL |z
)

fZA(z)dz

+
∫√h2+R2

2(
Pmax

AsD
ρA

) 1
αL

P
u,L
cov (Pmax

AsD|z) fZA(z)dz

+
∫ ( Pmax

AsDηN
ρA

) 1
αN

h P
u,N
cov

(
ρA
ηN

zαN |z
)

fZA(z)dz

+
∫√h2+R2

2(
Pmax

AsD
ρA

) 1
αN

P
u,N
cov (Pmax

AsD|z) fZA(z)dz, cond.5

∫√h2+R2
2

h P
u,L
cov

(
ρA
ηL

zαL |z
)

fZA(z)dz

+
∫√h2+R2

2
h P

u,N
cov (Pmax

AsD|z) fZA(z)dz, cond.6

∫√h2+R2
2

h P
u,L
cov

(
ρA
ηL

zαL |z
)

fZA(z)dz

+
∫ ( Pmax

AsDηN
ρA

) 1
αN

h P
u,N
cov

(
ρA
ηN

zαN |z
)

fZA(z)dz

+
∫√h2+R2

2(
Pmax

AsD
ρA

) 1
αN

P
u,N
cov (Pmax

AsD|z) fZA(z)dz, cond.7 || cond.9

∫√h2+R2
2

h P
u,L
cov

(
ρA
ηL

zαL |z
)

fZA(z)dz

+
∫√h2+R2

2
h P

u,N
cov

(
ρA
ηN

zαN |z
)

fZA(z)dz, cond.3N

, (2.26)
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where

Pu,L
cov(p|z) =

mL−1

∑
n=0

(−s1)
n

n!
exp(−s1σ2)

n

∑
k=0

(
n
k

)
(−σ2)n−k dk

dsk
1
LIu

A
(s1)pL, (2.27)

s1 =
mLγu

AzαL

ηL p and LIu
A
(s1) is given by Lemma 3 and

Pu,N
cov (p|z) =

mN−1

∑
n=0

(−s2)
n

n!
exp(−s2σ2)

n

∑
k=0

(
n
k

)
(−σ2)n−k dk

dsk
2
LIu

A
(s2)pN, (2.28)

s2 =
mNγu

AzαN

ηN p and LIu
A
(s2) is given by Lemma 3. The PDF of the distance between

the AsD and the ABS fZA(z) is provided in Lemma 2. conds.1k, 3k, 4–9 are given

in (2.3), (2.5) and (2.13)–(2.18). These conditions come from the fact that the AsD

is first under full channel inversion and then transmits with its maximum power as

the height of the ABS increases. Note that we can further specify conds. 1N, 2L, 2N

and 3L as conds. 4–9 depending on whether
(

Pmax
AsDηN

ρA

) 1
αN is larger or smaller than√(

Pmax
AsDηL
ρA

) 2
αL − R2

2.

Proof: See Appendix A.5.

Combining Lemma 3, 4, and 5 with Theorem 2, we can calculate the uplink cov-
erage probability of the ABS.

2.3 Downlink Coverage Probability

In this section, we present the analytical framework to analyze the performance metric,
the downlink coverage probability, which is formally defined as

Pd,b
cov , Pr(SINRd

b > γd
b), (2.29)

where superscript b is T for TsUE and A for AsD, and γd
b is the downlink SINR

threshold. SINRd
T and SINRd

A can be found in (2.8) and (2.9), respectively. The next
two subsections investigate the downlink coverage probability of the TsUE and the
AsD.
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2.3.1 TsUE Downlink Coverage Probability

First we present a lemma, which is used in deriving the coverage probability of the
TsUE in Theorem 3

Lemma 6 The conditional Laplace transform of the interference power distribution

at the TsUE is

LId
T
(s|z) = pLmmL

L

(
mL + sPABSηLz−αL

)−mL + pNmmN
N

(
mN + sPABSηNz−αN

)−mN .

(2.30)

Proof: The proof follows the same lines as Lemma 3 and is skipped for the
sake of brevity.

Theorem 3 Based on the system model in Section 2.1, the downlink coverage proba-

bility of the TsUE is given as

Pd,T
cov=

∫ √(R1−d)2+h2

√
R2

2+h2

∫ 2π

0
LId

T
(s|z) exp(−sσ2) fΩ(ω|z) fZT(z)dωdz

+
∫ √(R1+d)2+h2

√
(R1−d)2+h2

∫ ω̂

−ω̂
LId

T
(s|z) exp(−sσ2) fΩ(ω|z) fZT(z)dωdz, (2.31)

where s = γd
T

PTBS

(
z2−h2+d2−2

√
z2−h2d cos(ω)

) αT
2

, LId
T
(s|z) is given by Lemma 6,

fΩ(ω|z) is given by Lemma 5 and fZT(z) is given by Lemma 4.

Proof: Using the fact that the downlink fading power gain between the TBS
and the TsUE Hd

T follows exponential distribution with unit mean and cosine rule, we
can derive the TsUE downlink coverage probability.

2.3.2 AsD Downlink Coverage Probability

First we present a lemma, which is used in deriving the coverage probability of the
AsD in Theorem 4

Lemma 7 The conditional Laplace transform of the interference power distribution

at the AsD is

LId
A
(s|z, θ) =

1

1 + sPTBS

(z2−h2+d2−2
√

z2−h2d cos(θ))
αT
2

. (2.32)
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Proof: The proof follows the same lines as Lemma 1 and is skipped for the
sake of brevity.

Theorem 4 Based on the system model in Section 2.1, the downlink coverage proba-

bility of the AsD is given as

Pd,A
cov =

∫ √R2
2+h2

h

∫ 2π

0

mL−1

∑
n=0

(−s1)
n

n!
exp(−s1σ2)

×
n

∑
k=0

(
n
k

)
(−σ2)n−k dk

dsk
1
LId

A
(s1|z, θ)pL

1
2π

fZA(z)dθdz

+
∫ √R2

2+h2

h

∫ 2π

0

mN−1

∑
n=0

(−s2)
n

n!
exp(−s2σ2)

×
n

∑
k=0

(
n
k

)
(−σ2)n−k dk

dsk
2
LId

A
(s2|z, θ)pN

1
2π

fZA(z)dθdz, (2.33)

where s1 =
mLγd

AzαL

PABSηL
, s2 =

mNγd
AzαN

PABSηN
, LId

A
(s|z, θ) is given by Lemma 7 and fZA(z) is

given by Lemma 2.

Proof: The proof follows the same lines as Theorem 2 and is skipped for the
sake of brevity.

2.4 Results

In this section, we first validate the analytical results and then discuss the design in-
sights of an underlay drone system for IoT devices inside a stadium. The simulation
results are generated using Matlab by averaging over 107 Monte Carlo simulation runs.
Similar to [23, 34, 80], we set the path-loss exponents of LOS and NLOS aerial links
as 2.5 and 4 respectively. Unless stated otherwise, the values of the parameters sum-
marized in Table 2.1 are used.

2.4.1 Aerial Channel Model Parameter Values

Before presenting results to validate our analytical model, we first discuss about the
ariel channel model. The probabilities of LOS and NLOS are functions of the en-
vironment, density and height of buildings, altitude of the drone and elevation angle
between the drone and the devices on ground. There are two models commonly used
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Table 2.1: Parameter Values.
Parameter Value Parameter Value Parameter Value

R1 500 m αT 4 ρT -75 dBm
R2 100 m αL 2.5 ρA -50 dBm
d 200 m αN 4 Pmax

AsD 20 dBm
mL 5 γu

A 0 dB PABS 20 dBm
mN 1 γu

T 0 dB PTBS 40 dBm
ηL 0 dB γd

A 0 dB σ2 -100 dBm
ηN -20 dB γd

T 0 dB

Table 2.2: Aerial Channel Model Parameter Values [1, 2].
Model 1 Environment Suburban Urban Dense Urban High-rise Urban

Parameter (C1, B1) (4.88, 0.43) (9.6117, 0.1581) (11.95, 0.136) (27.23, 0.08)

in literature [1, 22], which are both based on the statistical parameters provided by the
ITU-R.

Model 1: The LOS probability is given by

pL =
1

1 + C1 exp
(
−B1

[
180
π sin−1

(
h
z

)
− C1

]) . (2.34)

The NLOS probability is

pN = 1− pL, (2.35)

where C1 and B1 are constant values that depend on the environment (suburban, urban,
dense urban, high-rise urban) and typical values are listed in Table 2.2.

Model 2: The LOS probability is expressed as

pL = C2

(
180
π

sin−1
(

h
z

)
− 15

)B2

. (2.36)

The NLOS probability is

pN = 1− pL, (2.37)

where C2 and B2 are environment dependent parameters. C2 = 0.6 and B2 = 0.11 for
2 GHz signal transmission in an urban environment [22].
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Remark 1 Both models above are focusing on the lower stratosphere (for drone al-

titude between 200 m and 3000 m). A broader aerial communication model that can

fit for different operational environments (e.g., hill, sea, rural and urban areas) is still

an open problem. The 3rd generation partnership project (3GPP) is actively engaged

in developing a three-dimensional aerial channel model valid for drone altitude from

10 m to 300 m [81]. However, such a model is still under development and is cur-

rently not available. Thus, in the figures, we consider drone altitude between 200 m

and 1000 m. However, it must be noted that current drone regulations generally limit

drone height to below 150 m. The analytical framework proposed in this chapter is

able to accommodate any aerial channel model for which the probabilistic functions

of LOS and NLOS are given, such as Model 1 and 2.

2.4.2 Coverage Probabilities

Figure 2.2 and Figure 2.3 plot the uplink coverage probability of the TBS and the
ABS and the downlink coverage probability of the TsUE and the AsD against the
ABS height respectively with Model 1 and Model 2 urban parameters. The analyti-
cal results are obtained using Theorem 1, Theorem 2, Theorem 3 and Theorem 4. In
Figure 2.2(b), Figure 2.3(a) and Figure 2.3(b), two sets of simulation results are gen-
erated. One with Nakagami-m fading for the aerial channel model and one without
small-scale fading. For the TBS uplink coverage probability, the simulation results
match very well with the analytical results. For the ABS uplink coverage probability,
the TsUE downlink coverage probability and the AsD downlink coverage probabil-
ity, the analytical results agree with the simulation results with Nakagami-m fading
and hold similar trends with the simulation results without small-scale fading. This
validates the accuracy of our analytical framework.

Figure 2.2 and Figure 2.3 show almost the same trends for Model 1 and Model 2.
Therefore, we focus on Model 1 for the results presented later in this chapter. Also we
only show the numerical results in the later subsections, since the numerical results are
verified by comparison with the simulation.

2.4.3 Impact of ABS Height

In Figure 2.4 and Figure 2.5, we investigate the effect of ABS height on the uplink cov-
erage performance at the TBS and the ABS and the downlink coverage performance



§2.4 Results 35

200 400 600 800 1000

ABS height h (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9
T

B
S

 u
pl

in
k 

co
ve

ra
ge

 p
ro

ba
bi

lit
y

Analytical
Simulation

Model 2 (Urban)

Model 1 (Urban)

(a) TBS uplink coverage probability with differ-
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(b) ABS uplink coverage probability with differ-
ent aerial channel models and simulations with
and without Nakagami-m fading.

Figure 2.2: Uplink coverage probabilities versus height of ABS h with simulations.
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(a) TsUE downlink coverage probability with dif-
ferent aerial channel models and simulations with
and without Nakagami-m fading.
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(b) AsD downlink coverage probability with dif-
ferent aerial channel models and simulations with
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Figure 2.3: Downlink coverage probabilities versus height of ABS h with simulations.

at the TsUE and the AsD under different considered environments.

Insights: Figure 2.4(a) plots the uplink coverage probability of the TBS against
the height of the ABS with different propagation environments (i.e., suburban, ur-
ban, dense urban and high-rise urban). From the figure, we can see that for most
cases the uplink coverage probability of the TBS first decreases as the ABS height
increases. This is because the transmit power of the AsD increases with the height
of ABS, whereby the interference at the TBS increases. This decreases the coverage
probability. After a certain ABS height, the coverage probability of the TBS stays as a



36 Underlay Drone Cell for Temporary Events

200 400 600 800 1000
ABS height h (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
B

S
 u

pl
in

k 
co

ve
ra

ge
 p

ro
ba

bi
lit

y Suburban
Urban
Dense urban
High-rise urban

400 400.1 400.2 400.3
0.589

0.5895

0.59

(a) TBS uplink coverage probability with differ-
ent aerial channel environments.

200 400 600 800 1000
ABS height h (m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
B

S
 u

pl
in

k 
co

ve
ra

ge
 p

ro
ba

bi
lit

y Suburban
Urban
Dense urban
High-rise urban

(b) ABS uplink coverage probability with differ-
ent aerial channel environments.

Figure 2.4: Uplink coverage probabilities versus height of ABS h.
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(a) TsUE downlink coverage probability with dif-
ferent aerial channel environments.
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ferent aerial channel environments.

Figure 2.5: Downlink coverage probabilities versus height of ABS h.

constant. This is due to the fact that the AsD has reached its maximum transmit power
and the interference generated at the TBS keeps the same on average. Note that the
height where the coverage probability of the TBS starts to level off is independent of
the considered propagation environments.

Figure 2.4(b) plots the uplink coverage probability of the ABS against the height
of the ABS with different considered environments in Table 2.2. For suburban envi-
ronment, the ABS uplink coverage probability first increases and then decreases with
the ABS height. In contrast, the ABS uplink coverage probability first decreases as the
ABS height increases, then increases to its local maximum for other propagation en-
vironments. Thereafter it decreases again as the ABS height further increases. When
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the ABS height is low, there is higher probability that the interference link between
TsUE and ABS is in LOS as the height of ABS rises. Therefore, the ABS uplink cov-
erage probability drops. As the height increases further, the interference link is highly
likely in LOS, but the interference power drops and the average desired signal power
received at the ABS stays the same under full channel inversion. Hence, the coverage
probability increases. When the ABS height is above the global/local optimal height
(depends on considered propagation environments), the AsD transmits with its maxi-
mum power Pmax

AsD and the received power of the desired signal reduces as the height
increases further. This leads to the drop of the uplink coverage probability at the ABS.

Figure 2.5(a) shows the downlink coverage probability of the TsUE versus the
height of the ABS with different propagation environments in Table 2.2. The TsUE
downlink coverage probability increases with the ABS height for suburban environ-
ment, but decreases for high-rise urban environment. For the other environments, the
TsUE downlink coverage probability decreases with the increased ABS height and
then increases as the ABS height further increases. When the ABS height increases,
the interference link between TsUE and ABS has a higher chance of being in LOS,
but the three-dimensional propagation distance and the path-loss also increases. This
interplay leads to the above mentioned trends.

From Figure 2.5(b), we can see that the AsD downlink coverage probability first
increases and then decreases as the ABS height increases in high-rise urban environ-
ment. For the other environments, the downlink coverage probability of the AsD drops
with the increase in the height of ABS. Unlike uplink power control, the ABS transmits
with a constant power for downlink communication. Therefore, the received power of
the desired signal at the AsD reduces as the height increases and so does the AsD
downlink coverage probability.

2.4.4 Impact of Environment

Insights: From Figure 2.4 and Figure 2.5, we can also see that different propagation
environments heavily impact the network performance. Figure 2.4(a) shows that the
TBS uplink coverage probability is ordered from highest to lowest as follows: subur-
ban, urban, dense urban and high-rise urban when the ABS height is low. Figure 2.4(b)
illustrates that the ABS uplink coverage probability is ordered from highest to lowest
as follows: high-rise urban, dense urban, urban and suburban. This is because build-
ing blockage is severe for dense urban and high-rise urban environment. Therefore, the
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path-loss between the ABS and the TsUE and between the ABS and the AsD is strong.
The received interference power at the ABS from the TsUE is less. The AsD how-
ever needs to transmit with a higher power to overcome the path-loss, thus generates a
higher interference power for the TBS.

The TsUE downlink coverage probability is ordered from highest to lowest as
follows: high-rise urban, dense urban, urban and suburban in Figure 2.5(a), but the
AsD downlink coverage probability is lowest for high-rise urban environment in Fig-
ure 2.5(b). The severe building blockage in the dense urban and high-rise urban en-
vironment reduces the received interfering power at the TsUE from the ABS and the
received power of the desired signal at the AsD from the ABS.

These figures reveal that the height of the ABS and the propagation environment
affect the network performance. In the next subsection, we are going to find the ABS
heights which maximize TBS uplink coverage probability, ABS uplink coverage prob-
ability, TsUE downlink coverage probability and AsD downlink coverage probability
under different propagation environments and how the optimal heights of ABS change
with the distance between the center of the stadium and the TBS d in the next section.

2.4.5 Impact of Distance Between Center of Stadium and TBS

Figure 2.6(a), Figure 2.6(b), Figure 2.7(a) and Figure 2.7(b) plot the maximum uplink
coverage probability at the TBS, the maximum uplink coverage probability at the ABS,
the maximum downlink coverage probability at the TsUE and the maximum downlink
coverage probability at the AsD against the distance between the center of the stadium
and the TBS d with the corresponding ABS heights marked, respectively, for different
propagation environment parameters.

Insights: From the figures, we can see that both the uplink and downlink network
performance improve when the distance between the center of the stadium and the
TBS d increases. This is because, the interference experienced at the drone cell and
the terrestrial cell decreases, when the two cells are further apart.

From Figure 2.6(a), we can see that for most cases, the uplink coverage probability
at the TBS is maximized when the ABS is placed as low as possible (which is 200 m for
the aerial channel model considered). The optimal ABS height which maximizes the
TBS uplink coverage probability increases with the distance between the center of the
stadium and the TBS d for high-rise urban environment. If we refer to Figure 2.4(a),
we can see that the TBS uplink coverage probability for high-rise urban environment
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Figure 2.6: Maximum uplink coverage probabilities versus distance between the center
of the stadium and the TBS d.

100 150 200 250 300 350 400
Distance between center of stadium and TBS d (m)

0

0.2

0.4

0.6

0.8

1

M
ax

 T
sU

E
 d

ow
nl

in
k 

co
ve

ra
ge

 p
ro

ba
bi

lit
y

Suburban
Urban
Dense urban
High-rise urban

h*=200 m

h*=200 m

h*=200 m

Urban

High-rise urban

h*=200 m h*=200 m h*=200 m h*=200 mh*=200 m

Dense urban

h*=200 m
h*=200 m

h*=200 m

h*=200 m
h*=200 m

h*=200 m
h*=200 m

Suburban

h*=1000 m
h*=1000 m h*=1000 m h*=1000 m h*=1000 m

(a) Maximum TsUE downlink coverage probabil-
ity with different aerial channel environments.

100 150 200 250 300 350 400

Distance between center of stadium and TBS d (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

 A
sD

 d
ow

nl
in

k 
co

ve
ra

ge
 p

ro
ba

bi
lit

y

Suburban
Urban
Dense urban
High-rise urban

High-rise urban

h*=218 m

h*=314 m

h*=469 m

h*=674 m
h*=912 m

Suburban 200 m
Urban 200 m
Dense 200 m

Suburban 204 m
Urban 434 m
Dense 512 m

Suburban 200 m
Urban 311 m
Dense 366 m

Suburban 200 m
Urban 200 m
Dense 237 m

Suburban 200 m
Urban 200 m
Dense 200 m

(b) Maximum AsD downlink coverage probabil-
ity with different aerial channel environments.

Figure 2.7: Maximum downlink coverage probabilities versus distance between the
center of the stadium and the TBS d.

increases a little before dropping to a constant level. When d increases, the drop starts
at a higher ABS altitude.

Figure 2.6(b) shows that the uplink coverage probability at the ABS is maximized
when the ABS is placed as low as possible (i.e., 200 m) for urban, dense urban and
high-rise urban environments and at 629 m for suburban environment. Referring to
Figure 2.4(b), the global maximum of ABS uplink coverage probability exists at 629
m for suburban environment, and at a lower altitude for other environments. The
optimal ABS height is independent to the distance between the center of the stadium
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and the TBS.

Figure 2.7(a) illustrates that the TsUE downlink coverage probability is maximized
when the ABS is placed as low as possible (i.e., 200 m) for urban, dense urban and
high-rise urban environments, but as high as possible (i.e., 1000 m) for the suburban
environments. As shown in Figure 2.5(a), the TsUE downlink coverage probability in-
creases with the ABS height for the suburban environment, but decreases for high-rise
urban environment. For other environments, the maximum TsUE downlink coverage
probability can be found at 200 m, even though the downlink coverage probability
increases when the ABS height further increases. The optimal height of ABS is inde-
pendent to the distance between the center of the stadium and the TBS.

Figure 2.7(b) shows that the height of ABS which maximizes the AsD downlink
coverage probability increases with the distance between the center of the stadium and
the TBS d. From Figure 2.5(b), we can see that the AsD downlink coverage probability
first increases and then decreases as the ABS height increases. When d increases, the
drop starts at a higher ABS altitude.

From Figure 2.6 and Figure 2.7, we can find that the uplink coverage probabili-
ties at the TBS and the ABS and the downlink coverage probability at the TsUE are
maximized when the ABS is deployed at 200 m for urban environment and dense ur-
ban environment. Although the maximum AsD downlink coverage probability is not
achieved with an ABS height of 200 m and a large distance d, the downlink coverage
probability at the AsD is much higher than the one at the TsUE for urban environment
and dense urban environment. Therefore, it is best to place the ABS at a low height

(e.g., 200 m or lower) for urban environment and dense urban environment regardless

of the distance between the center of the stadium and the TBS d. In contrast, the ABS

should be placed at different heights depending on the distance between the center of

the stadium and the TBS d and the task of the system (i.e., prioritize the terrestrial link

or the aerial link, prioritize the uplink or the downlink communication) for suburban

environment and high-rise urban environment.

2.5 Summary

In this chapter, a two-cell network with a TBS and an underlay ABS for IoT de-
vice coverage in temporary events was considered. We presented a general analyti-
cal framework for uplink coverage probability of the TBS and the ABS and downlink
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coverage probability of the TsUE and the AsD in terms of the Laplace transforms of
the interference power distribution and the distance distribution between the ABS and
an i.u.d. AsD and between the ABS and an i.u.d. TsUE. The framework is able to ac-
commodate any aerial channel model. The simulation results confirmed the accuracy
of the proposed model. The results have shown that the ABS is best to be deployed at
200 m or lower for urban environment and dense urban environment regardless of the
distance between the center of the stadium and the TBS.
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Chapter 3

Drone-Assisted Multihop Multicast
Device-to-Device Networks for
Emergency Information Dissemination

In Chapter 2, we have investigated the use of underlay drone cell to provide cover-
age for a temporary event in a stadium. In this chapter, we analyze another use case
for drone in wireless network, which is emergency information dissemination in pub-
lic safety scenarios. We consider a drone-assisted multihop multicast D2D network
where a drone is deployed to broadcast an emergency alert message to all terrestrial
D2D users at the first time slot. After that, the drone leaves and the D2D users that
have successfully received the message become the active TXs for the next time slots.
Using stochastic geometry, we propose a general analytical framework to compute
the link coverage probability and the mean local delay for a D2D user and the net-
work coverage probability. The framework is able to accommodate any aerial channel
model for which the probabilistic functions of LOS and NLOS links are specified. The
Monte Carlo simulation results confirm the accuracy of the proposed model. Our re-
sults reveal the impacts of the different system parameters (i.e., height and transmit
power of the drone and density and sensitivity radius of the D2D users) on the link
performance and the network performance.

This chapter is organized as follows: Section 3.1 describes the system model and
assumptions. Section 3.2 focuses on the link performance of a D2D user. Section 3.3
details the analysis of the network coverage probability. Section 3.4 presents the re-
sults and the effect of the system parameters on the link performance and the network
performance. Finally, Section 3.5 summarizes the chapter.

43
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3.1 System Model

We consider a drone-assisted multihop multicast D2D network, in which an emergency
alert message needs to be conveyed to all terrestrial D2D users under a public safety
scenario. The terrestrial D2D users are assumed to be uniformly distributed over a
disk network region |S| with radius RC, i.e., |S| = πR2

C and their locations form
a finite Poisson point process (PPP) φ with density λ. Throughout the chapter, we
use Xi to denote both the random location as well as the ith D2D user itself. We
assume that the cellular network is unavailable or not operational, for instance, due
to a natural disaster. So a drone is deployed at a height of h above the center of the
network region and broadcasts an emergency alert message. Then the drone flies out
of the network region to broadcast the emergency alert message in other areas and the
terrestrial users multicast the emergency alert message to each others using D2D links.
In this chapter, we focus our analysis on one terrestrial cell without inter terrestrial
cell interference. This is based on the assumption that the terrestrial adjacent cells use
different frequencies. Hence, the interference from far away cells becomes negligible
and can be ignored [39, 76].

3.1.1 Channel Model

There are two types of communication links in the considered system model: aerial
links and terrestrial links. The link between the D2D users are terrestrial links. The
link between the drone and the D2D users are aerial links.

Terrestrial links: A general power-law path-loss model is considered for terrestrial
links, in which the signal power decays at a rate `−αT with the propagation distance `

and αT is the path-loss exponent. Furthermore, we assume the terrestrial links experi-
ence independent small-scale Rayleigh fading and AWGN with variance σ2.

Aerial links: The channel characteristics of the aerial links (or known as air-to-
ground links) are significantly different from the terrestrial links. Depending on alti-
tude and type of the drone, elevation angle and type of propagation environment, the
aerial links can be either LOS or NLOS with different probabilities of occurrence pL

and pN [22].

The path-loss of the NLOS aerial link is greater than the LOS one, because of
the shadowing effect and the reflection of signals from obstacles. Following [31], the
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Figure 3.1: Illustration of the multihop multicast system model.

path-loss of the aerial link is modeled as

PLa(z) =

ηLz−αL , LOS

ηNz−αN , NLOS
, (3.1)

where z is the three-dimensional propagation distance between the drone and the D2D
user, αL and αN is the path-loss exponent of LOS aerial link and NLOS aerial link
respectively, ηL and ηN is the additional attenuation factor for LOS aerial link and
NLOS aerial link respectively and ηL > ηN.

Similar to Chapter 2, the small-scale fading of the aerial link is modeled as Nakagami-
m fading in this chapter. The fading parameter for the LOS aerial link and NLOS aerial
link is denoted by mL and mN respectively and mL > mN. The aerial links also expe-
rience AWGN with variance σ2.

3.1.2 Transmission Model

For the considered multihop multicast transmission scheme, time is slotted and the
emergency alert message is delivered slot by slot to the D2D users on the ground
through two phases, as shown in Figure 3.1.

Drone broadcasting phase: In the first time slot T0, the drone broadcasts an emer-
gency alert message to all terrestrial D2D users. At the end of the first time slot,
terrestrial D2D users attempt to decode the message. User Xi decodes successfully if
and only if the received signal-to-noise ratio (SNR) is greater than a threshold γ. The
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instantaneous SNR at the D2D user at the first time slot T0 is given as

SNR0 =
PAGPLa(Z)

σ2 , (3.2)

where PA is the transmit power of the drone. G is the aerial link fading power gain,
which follows Gamma distribution. Z is the Euclidean distance between the drone
and the terrestrial D2D user. The path-loss of the aerial link PLa(·) is given in (3.1).

D2D multicasting phase: From the second time slot onwards, all D2D users that
have successfully received the emergency alert message in the previous time slot be-
come the active TXs and multicast the common message for the current time slot.
Since the emergency alert message is a common message for all the terrestrial D2D
users, there is no mutual interference between the D2D transmissions. The inactive
D2D user is able to receive the aggregate signal from all the active neighbor D2D
TXs within its sensitivity region with radius RD. As before, user Xj decodes the non-
coherent sum of message successfully and becomes active at the end of the current
time slot if the received SNR is above the threshold γ. The delivery of the emergency
alert message by the multihop multicast scheme proceeds slot by slot in this way (for
time slots Tn, n 6= 0). Furthermore, we assume that mutual synchronization among
the terrestrial D2D users is achieved by distributed synchronization algorithm and the
terrestrial D2D users are static during the whole transmission [82, 83, 84].

SNR is an important measure that affects the state of the D2D user, whether being
active (acting as a TX) or inactive (acting as a RX). For the considered setup, the
instantaneous SNR at the inactive D2D user at the later time slots Tn, n 6= 0 is shown
as

SNRn =
PD ∑Xi∈φactive

Hi`
−αT
i

σ2 , n 6= 0, (3.3)

where PD is the transmit power of the active D2D users. Hi is the fading power gain
between the inactive D2D user and the ith active D2D TX within its sensitivity region,
which follows exponential distribution. The fading power gain Hi is assumed to be
independent during successive time slots. `i is the Euclidean distance between the
inactive D2D user and the ith active D2D TX within its sensitivity region.
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3.2 Link Performance

In this section, we provide the mathematical formulations to analyze the link perfor-
mance at the given D2D user, which incorporate the analysis of both phases. We are
interested in the following two performance metrics that directly reflect the perceived
experience of D2D users:

• Link coverage probability after time slot Tn, Pn
cov(Xi): The link coverage prob-

ability after time slot Tn measures the probability that the specific D2D user Xi

has successfully received the message after the given time slot.

• Mean local delay, D(Xi): The local delay is defined as the number of transmis-
sion attempts needed until the first success of message transmission. The mean
local delay characterizes that the specific D2D user Xi successfully receives the
message after D(Xi) time slots on average.

Before calculating these two metrics, we need to first look at the link success prob-
ability at each time slot which is defined as follows:

Definition 1 The link success probability at time slot Tn is the probability that the

received SNR at the D2D user Xi is higher than the threshold γ. It can be expressed

as

Pn
s (Xi) , Pr(SNRn > γ). (3.4)

Theorem 5 Based on the system model in Section 3.1, the link success probability at

the first time slot T0 is given as

P0
s (Xi) =

mL−1

∑
i=0

pL

i!

(
mLγσ2zαL

i
PAηL

)i

exp

(
−

mLγσ2zαL
i

PAηL

)

+
mN−1

∑
j=0

pN

j!

(
mNγσ2zαN

i
PAηN

)j

exp

(
−

mNγσ2zαN
i

PAηN

)
, (3.5)

where zi =
√

X2
i + h2.
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Proof: From (3.2) and (3.4), we have

P0
s (Xi) = Pr(SNR0 > γ) = Pr

(
PAGPLa(Z)

σ2 > γ

)
= Pr

(
G >

γσ2

PAPLa(Z)

)

=
mL−1

∑
i=0

pL

i!

(
mLγσ2zαL

i
PAηL

)i

exp

(
−

mLγσ2zαL
i

PAηL

)

+
mN−1

∑
j=0

pN

j!

(
mNγσ2zαN

i
PAηN

)j

exp

(
−

mNγσ2zαN
i

PAηN

)
, (3.6)

where (3.6) comes from the fact that G follows Gamma distribution with parameter mL

and mN for LOS and NLOS aerial link respectively and we can arrive at Theorem 5.

After the first time slot T0, the drone leaves the network region and all D2D users
that have successfully received the emergency alert message become the TXs and mul-
ticast the message. However, the network will be in outage if none of the D2D users
has successfully received the message from the drone at the first time slot T0.

Theorem 6 Based on the system model in Section 3.1, the network outage probability

at the first time slot T0 is given as

Pout = exp

(
−
∫ √R2

C+h2

h

(
mL−1

∑
i=0

pL

i!

(
mLγσ2zαL

PAηL

)i

exp
(
−mLγσ2zαL

PAηL

)

+
mN−1

∑
j=0

pN

j!

(
mNγσ2zαN

PAηN

)j

exp
(
−mNγσ2zαN

PAηN

))
2πλzdz

)
. (3.7)

Proof: The network will be in outage if none of the D2D users has successfully
received the message from the drone at the first time slot T0. From Theorem 5, we
have

Pout = Eφ

[
∏
x∈φ

(
1−P0

s (x)
)]

= exp
(
−
∫ RC

0
P0

s (x)2πλxdx
)

(3.8a)

= exp

(
−
∫ √R2

C+h2

h
P0

s (
√

z2 − h2)2πλzdz

)
, (3.8b)
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where (3.8a) follows from the probability generating functional for PPP. Substituting
(3.5) into (3.8b), we can arrive at Theorem 6.

Now let us assume there is at least one active D2D user broadcasting the message at
time slot Tn for n 6= 0, the inactive D2D user receives the message from all the active
TXs within its sensitivity region. The following remark discusses the challenges and
proposes solution for modeling the locations of the active D2D TXs.

Remark 2 After the first time slot T0, the D2D users closer to the drone have higher

chances to become active than the ones further away from the drone. Therefore, the

positions of the active TXs within the sensitivity region of a D2D user Xi are inho-

mogeneous with more active TXs located closer to the center of the network region.

Moreover, the locations of the active TXs at the current time slot is correlated with

their locations in the previous time slots. However, it is very difficult to identify

and fit a spatial point process for the location of the active TXs inside the sensitiv-

ity region. Hence, for analytical tractability, we propose to model the active TXs

inside the D2D user Xi’s sensitivity region at time slot Tn as an independent ho-

mogeneous PPP. At time slot T1, the active TXs inside the D2D user Xi’s sensitiv-

ity region have a density of λ1
i = P0

s (Xi)λ. The accumulated density of the active

TXs inside the D2D user Xi’s sensitivity region at time slot Tn for n = 2, 3, 4... is

λn
i = (P0

s (Xi) + ∑n−1
k=1 Pk

s(Xi)(1 − Pout)∏k−1
l=0 (1 − Pl

s(Xi)))λ. The accuracy of

this approximation will be validated in Section 3.4.

In this chapter, we adopt a numerical inversion method, which is easy to compute
and also provides controllable error estimation [85, 86]. By numerically inverting the
Laplace transform of the aggregate received signal power via a trapezoidal summation,
we can express the link success probability of D2D user Xi at time slot Tn for n 6= 0
as below

Pn
s (Xi) =1−

2−BPDexp(A
2 )

γσ2

B

∑
b=0

(
B
b

)C+b

∑
c=0

(−1)c

Dc
Re

[
LPn

i
(s)

s

]
, (3.9)

where Re[·] is the real part operator, s = (A+j2πc)PD
2γσ2 , LPn

i
(s) is the Laplace transform

of the aggregate received signal power at the user Xi, Pn
i = ∑Xj∈φactive

Hj`
−αT
j , Dc = 2

(if c = 0) and Dc = 1 (if c = 1, 2, ..., C + b). A, B and C are positive parameters used
to control the estimation accuracy.

From (3.9), the key parameter in order to obtain the link success probability at time
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slot Tn for D2D user Xi is LPn
i
(s). By the definition of Laplace transform of a random

variable, we can express LPn
i
(s) in the following theorem.

Theorem 7 Following the system model in Section 3.1, the Laplace transform of the

aggregate received signal power at the D2D user Xi from all the active TXs inside its

sensitivity region is

LPn
i
(s)=


exp
(
−πλn

i R2
D

(
1− 2R

αT
D

s(αT+2) 2F1

(
1, 1+ 2

αT
; 2+ 2

αT
;−R

αT
D
s

)))
, Xi 6 RC − RD

exp
(
−πλn

i (RC − Xi)
2
(
1− 2(RC−Xi)

αT

s(αT+2) 2F1

(
1, 1+ 2

αT
; 2+ 2

αT
;− (RC−Xi)

αT

s

)))
× exp

(
−
∫ RD

RC−Xi

2sλn
i `

`αT+sarcsec
(

2`Xi
`2+X2

i −R2
C

)
d`
)

, RC − RD < Xi 6 RC

,

(3.10)

where 2F1(·, ·; ·; ·) is the Gaussian (or ordinary) hypergeometric function.

Proof: See Appendix B.1.

Although the Laplace transform of the aggregate received signal power at the D2D user
Xi for RC − RD < Xi 6 RC cannot be expressed in close-form due to complexity of
the inverse trigonometric functions which is inside the integration. However, it can be
easily evaluated numerically using Mathematica.

Recall that the link coverage probability after time slot Tn, Pn
cov(Xi) is defined as

the probability that the D2D user Xi has successfully received the message after n + 1
time slots, which is shown as follows:

Proposition 1 Based on the system model in Section 3.1 and the definition of the link

coverage probability after time slot Tn, we have

Pn
cov(Xi)=

P0
s (Xi), n=0

P0
s (Xi)+∑n

k=1 Pk
s(Xi)(1−Pout)∏k−1

l=0 (1−Pl
s(Xi)), n=1, 2, 3...

,

(3.11)

where P0
s (Xi) is given in Theorem 5 and Pk

s(Xi) for k 6= 0 is given in (3.9). Pout is

shown in Theorem 6.

We now turn to the delay metric. For the considered drone-assisted multihop mul-
ticast network, the local delay at the D2D user Xi is a discrete random variable with a
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probability mass function (PMF) as follows:

Pr(D(Xi)=d)=

P0
s (Xi), d=1

Pd−1
s (Xi)(1−Pout)∏d−2

l=0 (1−Pl
s(Xi)), d=2, 3, 4...

. (3.12)

Hence the mean local delay is given by D(Xi)=E[D(Xi)]=∑∞
d=1 d Pr(D(Xi)= d)

and the specific expression of the mean local delay is shown in the following proposi-
tion.

Proposition 2 Based on the system model in Section 3.1, the mean local delay at the

D2D user Xi is given as

D(Xi) = P0
s (Xi) +

∞

∑
d=2

dPd−1
s (Xi)(1−Pout)

d−2

∏
l=0

(1−Pl
s(Xi)), (3.13)

where P0
s (Xi) is given in Theorem 5 and Pn

s (Xi) for n 6= 0 is given in (3.9). Pout is

shown in Theorem 6.

3.3 Network Performance

In the previous section, we have focused on the link performance where the distance
between the D2D user and the ground projection of the drone is known. Now we turn
to study the network performance charaterized by the network coverage probability
after time slot Tn. Pn

cov measures the average probability that a randomly chosen D2D
user in the network has successfully received the message after time slot Tn, in other
words, it presents the fraction of active D2D TXs in the network after the given time
slot.

Before looking into the network coverage probability, we first investigate the net-
work success probability at time slot Tn. To evaluate the network success probability,
we need to calculate the expectancy of the link success probability over the spatial dis-
tribution of the distance between a D2D user and the ground projection of the drone.
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The expression of the network success probability is shown below:

Pn
s =



∫√R2
C+h2

h
2z
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C
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i!

(
mLγσ2zαL

PAηL

)i
exp

(
−mLγσ2zαL

PAηL

)
dz

+
∫√R2

C+h2

h
2z
R2

C
∑mN−1

j=0
pN
j!

(
mNγσ2zαN

PAηN

)j
exp

(
−mNγσ2zαN

PAηN

)
dz, n=0

1− 2−BPDexp( A
2 )

γσ2 ∑B
b=0(
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, n=1, 2, 3...

,

(3.14)

where s = (A+j2πc)PD
2γσ2 , the Laplace transform of the aggregate received signal power

LPn
i
(s) is given in Theorem 7, Dc = 2 (if c = 0) and Dc = 1 (if c = 1, 2, ..., C + b).

Remark 3 To the best of our knowledge, it is not easy to evaluate the integration∫√R2
C+h2

h
2z
R2

C
LPn

i
(s)dz due to the non-closed-form Laplace transform. We propose to

make a simplification assumption that, from the second time slot onwards, a D2D user

will become active if there is one or more active TXs multicasting the message within

its sensitivity region. We show that this approximation allows tractable computation

of the network success probability at time slot Tn for n 6= 0. Our results in Section 3.4

show that a good level of accuracy is obtained with this approximation.

Lemma 8 Following the system model in Section 3.1, the approximated link success

probability for D2D user Xi at time slot Tn for n = 1, 2, 3... is given as

P̃n
s (Xi)=


1− exp(−λn

i R2
Dπ), Xi 6 RC − RD

1−exp
(

λn
i R2

D

(
arccos

(
R2
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i −R2

D
2XiRD

)
−π

)
−λn

i R2
C arccos
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R2
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D
2XiRC

)
+

λn
i

2

√
−R4

C−R4
D−X4

i +2R2
CX2

i +2R2
DX2

i +2R2
CR2

D

)
, RC−RD <Xi6RC

,

(3.15)

where λn
i = (P0

s (Xi) + ∑n−1
k=1 P̃k

s(Xi)(1−Pout)∏k−1
l=0 (1− P̃l

s(Xi)))λ.

Proof: See Appendix B.2.

Using the approximated link success probability above, we can express the approx-
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Table 3.1: Summary of the Analytical Model for Drone-assisted Multihop Multicast
D2D Networks.

Performance metrics General form Key factor(s)

Link coverage probability Proposition 1
P0

s (Xi) in (3.5)
Pout in (3.7)

Pn
s (Xi) for n 6= 0 in (3.9)

Mean local delay Proposition 2
P0

s (Xi) in (3.5)
Pout in (3.7)

Pn
s (Xi) for n 6= 0 in (3.9)

Network coverage probability Proposition 3
Pout in (3.7)
P0

s in (3.14)
P̃n

s in (3.16)

imated network success probability at time slot Tn for n = 1, 2, 3... as below:

P̃n
s =

∫ RC−RD

0

2x
R2

C
− 2x

R2
C

exp(−λn
i R2

Dπ)dx

+
∫ RC

RC−RD

2x
R2

C

(
1− exp

(
λn

i R2
D

(
arccos

(
R2

C − x2 − R2
D

2xRD

)
−π

)

−λn
i R2

C arccos

(
R2

C+x2−R2
D

2xRC

)
+

λn
i

2

√
−R4

C−R4
D−x4+2R2

Cx2+2R2
Dx2+2R2

CR2
D

))
dx,

(3.16)

where λn
i = (P0

s (Xi) + ∑n−1
k=1 P̃k

s(Xi)(1−Pout)∏k−1
l=0 (1− P̃l

s(Xi)))λ.

Proposition 3 Based on the system model in Section 3.1, the network coverage prob-

ability after time slot Tn is given as

Pn
cov=


P0

s , n = 0

P0
s + P̃1

s (1−Pout)(1−P0
s ), n = 1

P0
s+P̃1

s (1−Pout)(1−P0
s )+∑n

k=2P̃k
s(1−Pout)(1−P0

s )∏k−1
l=1(1−P̃l

s), n=2, 3...

,

(3.17)

where P0
s is given in (3.14) and P̃k

s is given in (3.16). Pout is shown in Theorem 6.

The key performance metrics are summarized in Table 3.1.
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Table 3.2: Parameter Values.
Parameter Value Parameter Value Parameter Value

RD 75 m αT 4 λ 50 /km2

RC 2000 m αL 2.5 γ 0 dBm
h 200 m αN 4 PA 25 dBm

mL 5 ηL 0 dB PD 10 dBm
mN 1 ηN -20 dB σ2 -100 dBm

3.4 Results

In this section, we first validate the analytical results of both the link performance
and the network performance and then discuss the design insights of a drone-assisted
multihop multicast D2D network. The simulation results are generated using Matlab
by averaging over 106 Monte Carlo simulation runs. We set A = 24, B = 20 and
C = 30 in order to achieve an estimation error of 10−10. Unless stated otherwise, the
values of the other parameters summarized in Table 3.2 are used.

To generate the results in this section, we adopt a widely used aerial channel
model [2, 22, 87]. The LOS probability is given as pL = 1

1+Ca exp(−Ba[ 180
π sin−1( h

z )−Ca])
and the NLOS probability is pN = 1− pL. Ca = 9.6117 and Ba = 0.1581 for signal
transmission in an urban environment. Note that the analytical framework proposed
in this chapter is able to accommodate any aerial channel model for which the proba-
bilistic functions of LOS and NLOS are provided.

3.4.1 Link Coverage Probability

Figure 3.2(a) and Figure 3.2(b) plot the link coverage probability of a D2D user after
the first time slot T0, P0

cov(Xi), and after time slot T5, P5
cov(Xi), against its distance

from the ground projection of the drone with different transmit power of the drone
respectively. The analytical results are obtained using Proposition 1. For both link
coverage probabilities, the simulation results match very well with the analytical re-
sults. This validates the accuracy of our analytical framework.

From Figure 3.2(b), we can see that the link coverage probability at the D2D user
close to the ground projection of the drone is very closed to 1 after time slot T5. There-
fore, we focus on the link coverage probability at the cell edge D2D user, i.e., user
located at 2 km from the ground projection of the drone. In the results presented later
in this chapter, we investigate the effect of some important system parameters, the
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(a) Link coverage probability after the first time
slot T0 with different transmit power of the drone
and simulations.
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(b) Link coverage probability after time slot T5
with different transmit power of the drone and
simulations.

Figure 3.2: Link coverage probabilities versus the distance of D2D user from the
ground projection of the drone with simulations.

transmit power and the height of the drone and the density and the sensitivity radius of
the D2D users, on the link coverage probability of the cell edge user.

3.4.2 Impact of Drone Transmit Power

Figure 3.3(a) plots the link coverage probability after time slot Tn at the cell edge user
located at 2 km from the ground projection of the drone for different drone transmit
power with simulations. Figure 3.3(b) shows the mean local delay of a D2D user
against its distance from the ground projection of the drone with different transmit
power of the drone and simulations. Figure 3.3(c) illustrates the network coverage
probability after time slot Tn for different transmit power of the drone with simulations.

From Figures 3.3(a) and 3.3(b), we can see that our analytical results for link per-
formance provide a good approximation to the simulation. The small gap between
them comes from two reasons: (i) ignorance of the inhomogeneity of the active TXs
inside the D2D user’s sensitivity region, and (ii) ignorance of the correlation between
the locations of active D2D TXs across different time slots, as discussed in Remark 2.
From the figures, we can see that the gap between the simulation and the analytical
results is small which validates the independent homogeneous PPP assumption. Fig-
ure 3.3(c) also shows that the approximation we made in Remark 3 in the analysis of
the network performance provides good accuracy. We only show the numerical results
in the later subsections, since the numerical results are verified by comparison with the
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(a) Link coverage probability after time slot Tn at
the cell edge user located at 2 km from the ground
projection of the drone.
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(b) Mean local delay of a D2D user versus its dis-
tance from the ground projection of the drone.

0 2 4 6 8 10
After time slot T

n
 (n=0, 1, 2...)

0.8

0.85

0.9

0.95

1

N
et

w
or

k 
co

ve
ra

ge
 p

ro
ba

bi
lit

y

P
A
=25 dBm

P
A
=27 dBm

P
A
=30 dBm

Simulation

(c) Network coverage probability after time slot Tn.

Figure 3.3: Link performance and network performance with different transmit power
of the drone and simulations.

simulation.

Insights: Figure 3.3(a) shows that the increase in the drone transmit power im-
proves the link coverage probability of the cell edge user. With a higher transmit
power of the drone, the link coverage probability of the cell edge user approaches 1
faster. From Figure 3.3(b), we can see that the benefit of increasing transmit power
of the drone is more significant for the D2D users further away from the ground pro-
jection of the drone than for the ones closer to the ground projection of the drone.
Figure 3.3(c) illustrates that a higher drone transmit power provides a higher network
coverage probability. With a higher transmit power of the drone, the network coverage
probability approaches 1 using less time slots. This is because that more D2D users
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successfully receive the message after the first time slot T0 if the drone broadcasts with
a higher transmit power. Therefore, there are more active D2D users which multicast
the message from the second time slot T1 onwards and the message spreads over the
network region more quickly.

3.4.3 Impact of Drone Height

In Figure 3.4(a), Figure 3.4(b) and Figure 3.4(c), we investigate the effect of deploy-
ment height of the drone on the link coverage probability at the cell edge user, the
mean local delay of a D2D user and the network coverage probability after time slot
Tn respectively.

The aerial channel model we adopted in this section is for low altitude aerial plat-
form with an altitude between 200 m and 3000 m. In the figures shown, we consider
drone altitude between 200 m and 1000 m. However, it must be noted that current
drone regulations generally limit drone height to below 150 m. This is expected to
change in the future.

Insights: Figure 3.4(a) shows the link coverage probability after time slot Tn at the
cell edge user located at 2 km from the ground projection of the drone for different
drone height. From this figure, we can see that the link coverage probability of the
cell edge user after certain time slots is higher if the drone is deployed at a higher
altitude at the first time slot T0. With a higher altitude of the drone, the link coverage
probability of the cell edge user approaches 1 after less time slots. Figure 3.4(b) plots
the mean local delay of a D2D user against its distance from the ground projection
of the drone with different height of the drone. The figure shows that the increase of
the deployment height of the drone decreases the mean local delay more significantly
for the D2D users further away from the ground projection of the drone than for the
ones closer to the ground projection of the drone. Although the signal propagates a
longer distance as the height of the drone rises, there is higher probability that the link
between the drone and the user around the cell edge is in LOS and experiences a lower
path-loss.

Figure 3.4(c) illustrates the network coverage probability after time slot Tn for
different deployment height of the drone. From the figure, we can find that a higher
drone altitude provides a higher network coverage probability. The network coverage
probability approaches 1 using less time slots when the drone is initially positioned at
a higher height. This is because, if the drone is at a higher altitude, more D2D users
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(a) Link coverage probability after time slot Tn at
the cell edge user located at 2 km from the ground
projection of the drone.
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(b) Mean local delay of a D2D user versus its dis-
tance from the ground projection of the drone.
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(c) Network coverage probability after time slot Tn.

Figure 3.4: Link performance and network performance with different height of the
drone.

around the cell edge receive the message and become active TX after the first time slot
T0 and the message spreads over the network region faster.

3.4.4 Impact of D2D User Density

We study the impact of the density of D2D users on the link coverage probability at
the cell edge user, the mean local delay of a D2D user and the network coverage prob-
ability after time slot Tn in Figure 3.5(a), Figure 3.5(b) and Figure 3.5(c) respectively.

Insights: Figure 3.5(a) illustrates the link coverage probability after time slot Tn at
the cell edge user located at 2 km from the ground projection of the drone for different
D2D user density. Figure 3.5(b) plots the mean local delay of a D2D user against
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the cell edge user located at 2 km from the ground
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(b) Mean local delay of a D2D user versus its dis-
tance from the ground projection of the drone.
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(c) Network coverage probability after time slot Tn.

Figure 3.5: Link performance and network performance with different D2D user den-
sity.

its distance from the ground projection of the drone with various D2D user density.
Figure 3.5(c) shows the network coverage probability after time slot Tn for different
density of D2D users.

From Figure 3.5(a) and Figure 3.5(c), we can see that after a given number of time
slots, the link coverage probability of the cell edge user and the network coverage
probability are higher if the D2D user density is higher. Figure 3.5(b) demonstrates
that the mean local delay of a D2D user at 2 km from the ground projection of the
drone decreases from 4.736 time slots to 1.806 time slots, when the density of the
D2D users increases from 10 per km2 to 100 per km2. With a higher density of D2D
users, there are more D2D users in the cell that have received the message successfully
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(a) Link coverage probability after time slot Tn at
the cell edge user located at 2 km from the ground
projection of the drone.
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tance from the ground projection of the drone.
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(c) Network coverage probability after time slot Tn.

Figure 3.6: Link performance and network performance with different D2D sensitivity
radius.

and more active TXs located inside the D2D user’s sensitivity region. So the message
is delivered to the cell edge user within fewer time slots.

3.4.5 Impact of D2D Sensitivity Radius

In Figure 3.6(a), Figure 3.6(b) and Figure 3.6(c), we evaluate the effect of the radius
of D2D sensitivity region on the link coverage probability at the cell edge user after
time slot Tn, the mean local delay of a D2D user and the network coverage probability
after time slot Tn respectively.

Insights: Figures 3.6(a) and 3.6(c) show the link coverage probability at the cell
edge user located at 2 km from the ground projection of the drone and the network
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coverage probability after time slot Tn for different radius of D2D sensitivity region.
From these two figures, we can find that the link coverage probability of the cell edge
user and the network coverage probability after a given number of time slots are higher
if the D2D sensitivity region has a larger radius. This is because, there are more active
TXs located inside the D2D user’s sensitivity region if the radius is higher.

Figure 3.6(b) plots the mean local delay of a D2D user versus its distance from the
ground projection of the drone with different radius of D2D sensitivity region. The
figure shows that the increase of D2D sensitivity radius drops the mean local delay
more significantly for the D2D users further away from the ground projection of the
drone than for the ones closer to the ground projection of the drone. This is because,
with a larger D2D sensitivity radius, the message multicasted by the active TXs located
closer to the ground projection of the drone reaches the cell edge user within fewer
hops.

3.5 Summary

In this chapter, we considered a drone-assisted multihop multicast D2D network in
public safety scenarios, where an emergency alert message is broadcasted by the drone
and then multicasted by the D2D users which have successfully received the message
through multihop. A general analytical framework for link coverage probability and
mean local delay for a D2D user was presented in terms of the link success probability,
the network outage probability and the Laplace transform of the aggregate received
signal power. An approximate and yet accurate analytical model was proposed for link
success probability, network success probability and network coverage probability.
Our frameworks are valid for any aerial channel model. The accuracy of the analytical
results was verified by simulations. The results showed that the link performance and
the network performance improve by raising the deployment altitude and the transmit
power of the drone and increasing the density and the sensitivity radius of the D2D
users.
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Chapter 4

Characterization of Aggregate
Received Power from Power Beacons
in Millimeter Wave Ad Hoc Networks

WPT has emerged as an attractive solution to power future wireless communication
networks. Deployment of low cost PBs is a promising technique for dedicated WPT
in beyond 5G networks. In this chapter, we consider WPT using PBs for a mmWave
wireless ad hoc network. Using stochastic geometry, we derive the MGF and the nth
cumulant of the aggregate received power from PBs at a reference RX in closed-form.
The MGF allows the CCDF of the aggregate received power from PBs to be numer-
ically evaluated. We also compare different closed-form distributions which can be
used to approximate the CCDF of the aggregate received power. Our results show that
the lognormal distribution provides the best CCDF approximation compared to other
distributions considered in the literature. The results also show that under practical
setups, it is feasible to power users in a mmWave ad hoc network using PBs.

This chapter is organized as follows: Section 4.1 describes the system model in
detail. The MGF and the nth cumulant of the aggregate received power are derived in
Section 4.2. The distributions used to approximate the CCDF of the aggregate received
power are presented in Section 4.2.3. The analytical and simulation results are shown
in Section 4.3. Finally, the chapter is summarized in Section 4.4.

63
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4.1 System Model

We consider a two-dimensional mmWave wireless ad hoc network, where PBs are
deployed to charge users. The PBs are located outdoors and their locations form a
homogeneous PPP φ with density λ. Throughout the chapter, we use Xi to denote both
the random location as well as the ith PB itself. The PBs have access to a dedicated
power supply (e.g., a battery or power grid) and transmit with constant power P using
beamforming. The PB transmissions set up an energy field over the wireless ad hoc
network region and users harvest power from the aggregate PB received signal [88].
We assume that the PBs randomly and independently choose a direction to point their
main beams. Given a sufficient density of the PBs, this simple strategy ensures that
the aggregate received power from PBs at different locations in the network is roughly
on the same order. Similarly, the users point their main beam in a randomly chosen
direction. This avoids the need for channel estimation and accurate beam alignment.
In this chapter, without loss of generality, we focus on the characterization of the
aggregate received power from PBs at an outdoor reference RX, Y0, located at the
origin.

4.1.1 MmWave Blockage Model

For outdoor mmWave transmissions, each link between the ith PB and the reference
RX is susceptible to building blockages due to their high diffraction and penetration
characteristics [68]. We adopt the state-of-the-art three-state blockage model [69],
where each link can be in one of the following three states: (i) the link is in LOS state
if no blockage exists, (ii) the link is in NLOS state if blockage exists and (iii) the link
is in outage (OUT) state if the link is too weak to be established.

Assuming that the link between the ith PB and the RX has a Euclidean length of
ri = ‖Xi −Y0‖, the probabilities pLOS(·), pNLOS(·) and pOUT(·) of it being in LOS,
NLOS and OUT states, respectively, are

pOUT(ri) = u(ri − Rmax);

pNLOS(ri) = u(ri − Rmin)− u(ri − Rmax); (4.1)

pLOS(ri) = 1− u(ri − Rmin),

where u(·) denotes the unit step function, Rmin is the radius of the LOS region and
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Figure 4.1: Illustration of mmWave blockage model.

Rmax is the exclusion radius of the OUT region, as illustrated in Figure 4.1. The
values of Rmin and Rmax depend on the propagation scenario and the carrier frequency.
Typical values used in this chapter are summarized in Table 4.2.

4.1.2 MmWave Channel Model

Measurements have shown that mmWave links experience different channel conditions
under LOS, NLOS and OUT states [89]. Hence, we adopt a path-loss plus fading
channel model as follows.

We assume that a link in LOS state experiences Nakagami-m fading, while a link
in NLOS state experiences Rayleigh fading. For the path-loss, we modify and adapt
a multi-slope path-loss model and define the path-loss between the ith PB and the
reference RX with a distance of ri as follows:

PL(ri) =



1, 0 6 ri < 1

r−αL
i , 1 6 ri < Rmin

βr−αN
i , Rmin 6 ri < Rmax

∞, Rmax 6 ri

, (4.2)

where the first condition is added to ensure a bounded path-loss model, αL denotes the
path-loss exponent for the link in LOS state and subscript L denotes LOS, αN denotes
the path-loss exponent for the link in NLOS state (2 6 αL 6 αN) and subscript N
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Table 4.1: PMF of Gi

k Gain Gk Probability pk

1 Gmax
p Gmax

r
θpθr
4π2

2 Gmax
p Gmin

r
θp(2π−θr)

4π2

3 Gmin
p Gmax

r
(2π−θp)θr

4π2

4 Gmin
p Gmin

r
(2π−θp)(2π−θr)

4π2

denotes NLOS, the path-loss of the link in OUT state is assumed to be infinite [69]
and the continuity in the multi-slope path-loss model is maintained by introducing the
constant β , RαN−αL

min [90]. We also define δL = 2
αL

and δN = 2
αN

for convenience in
presenting the analytical results in Section 4.2.

4.1.3 Beamforming Model

We assume that antenna arrays are used for beamforming at both the PBs and the
reference RX. Following [68, 69], we approximate the actual antenna array pattern by
a sectorized gain pattern which can be expressed as

Ga(θ) =

Gmax
a , |θ| ≤ θa

2

Gmin
a , otherwise

, (4.3)

where subscript a = p for PB and a = r for reference RX, Gmax
a is the main lobe

antenna gain, Gmin
a is the side lobe antenna gain, θ ∈ [−π, π) is the angle off the

boresight direction and θa is the main lobe beam-width. Note this model can be easily
related to specific array geometries, such as an N element uniform planar or linear or
circular array [70].

As stated earlier, the main beam at the PBs and RX are assumed to be randomly
oriented with respect to each other and uniformly distributed in [−π, π). Let Gi be the
effective antenna gain on the link from the ith PB to the reference RX. As a result of
sectorization, Gi is a discrete random variable with probability distribution as Gi = Gk

with probability pk, k ∈ {1, 2, 3, 4}. The values of Gk and pk are summarized in
Table 4.1.
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4.1.4 Power Transfer Model

We assume that the reference RX is equipped with a typical rectifier-based power
RX to harvest power from the aggregate PB received signal [88]. Practical rectifier-
based power RXs have a power RX activation threshold ε, i.e., the power RX is only
activated when the aggregate received power from all the PBs is greater than ε [54].
We assume that once the power RX is properly activated, then the harvested power is
linearly proportional to the aggregate received power from the PBs and the constant of
proportionality ζ is the power conversion efficiency.

4.2 Aggregate Received Power from PBs

In this section, we provide the mathematical formulation to characterize the aggregate
received power at the reference RX from all PBs.

Since the power harvested from the noise is negligible, the instantaneous aggregate
received power at the reference RX from all the PBs can be expressed as

Pagg = P ∑
Xi∈φ

GihiPL(ri), (4.4)

where P is the PB transmit power, Gi is the effective antenna gain between Xi and Y0,
hi is the fading power gain between Xi and Y0, which follows the Gamma distribution
(under the Nakagami-m fading assumption) if the link is in LOS state and exponential
distribution (under the Rayleigh fading distribution) if the link is in NLOS state and
PL(ri) is the path-loss function in (4.2).

Note that Pagg in (4.4) is a random variable because of the randomness in the an-
tenna gain, mmWave channels and locations of PBs. We use stochastic geometry to
find its CCDF and also its nth cumulant.

4.2.1 CCDF and MGF of the Aggregate Received Power from

PBs

The CCDF of the aggregate received power at the reference RX from all the PBs can
be obtained by using the Gil-Pelaez inversion theorem [91]
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Pr(Pagg> z)=
1
2
+

1
π

∫ ∞

0
Im[MPagg(−jω) exp(−jωz)]

dω

ω
, (4.5)

where Pr(·) denotes the probability, Im[·] denotes the imaginary part of a complex
number, j =

√
−1 is the imaginary unit,MPagg(s) = E[exp(−sPagg)] is the MGF of

Pagg and E[·] is the expectation operator.
The following proposition characterizes the exact MGF of Pagg in closed-form.

Proposition 4 The MGF of the aggregate received power at the reference RX from all

the PBs in a mmWave ad hoc network, following the system model in Section 4.1, is

MPagg(s)=
4

∏
k=1

exp
(
πλR2

minpk

(
mm(m+sR−αL

min PGk)
−m−1

)
+ πλpk (sPGk)

δL (Ξ1 (1)− Ξ1 (Rmin)) + πλpksPGkβ (Ξ2(Rmin)− Ξ2(Rmax))

+
πλ

2 + αN
pk(sPGkβ)δN (Ξ3(Rmin)− Ξ3(Rmax))

)
, (4.6)

where

Ξ1(r) =
mm+1αL(r−αLsPGk)

−δL−m

(2 + mαL)
2F1

(
1+m,m+δL;1+m+δL;−mrαL

sPGk

)
, (4.7)

Ξ2(r) =
r2

rαN + sPGkβ
, (4.8)

Ξ3(r) =
(r−αNsPGkβ)−δN−1

rαN + sPGkβ

(
sPGkβ(2 + αN)

−2(rαN+sPGkβ)2F1

(
1, δN+1; 2+δN;−rαN β−1

sPGk

))
, (4.9)

and 2F1(·, ·; ·; ·) is the Gaussian (or ordinary) hypergeometric function.

Proof: See Appendix C.1.

Remark 4 To the best of our knowledge, Proposition 4 presents the result for the MGF

of Pagg in closed-form for the first time in the literature In addition, (4.6) substituted

in (4.5) allows the CCDF to be numerically computed. Note that although the MGF

in (4.6) is in closed-form, the CCDF in (4.5) cannot be expressed in closed-form due

to complexity of the MGF which is inside the integration. However, it can be easily

evaluated numerically using Mathematica.
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4.2.2 nth Cumulant of the Aggregate Received Power from

PBs

The nth cumulant of the aggregate received power at the reference RX from all the
PBs, κPagg(n), can also be expressed in terms of the MGF of Pagg as [92]

κPagg(n) = (−1)n dn lnMPagg(s)
dsn

∣∣∣
s=0

, (4.10)

where ln is the natural logarithm. The following proposition characterizes the nth
cumulant of Pagg in closed-form.

Proposition 5 The nth cumulant of the aggregate received power at the reference RX

from all the PBs in a mmWave ad hoc network, following the system model in Sec-

tion 4.1, is given by

κPagg(n) =
4

∑
k=1

(
Ψ1

k(n)−Ψ2
k(n)−Ψ3

k(n)
)

, (4.11)

where

Ψ1
k(n) = πλpkPnGn

k m−nm(n), (4.12)

Ψ2
k(n) =


2πλpkPGk ln Rmin, αL=2 & n=1
2πλ

(
1−R

−nαL+2
min

)
2−nαL

(m)n pk

(
PGk
m

)n
, otherwise

, (4.13)

Ψ3
k(n) =

2πλ
(

R−nαN+2
min −R−nαN+2

max

)
2− nαN

pkPnGn
k βnΓ(1+n), (4.14)

m(n) =
(m+n−1)!
(m−1)! is the rising factorial and Γ(·) is the complete Gamma function.

Proof: See Appendix C.2.

4.2.3 Closed-form Approximation of the CCDF of the Aggre-

gate Received Power

Since the exact CCDF of the aggregate received power cannot be expressed in closed-
form, we test various distributions which can be used to approximate the CCDF in
this section. The distribution of Pagg is approximated by the well known closed-form
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distributions by second-order moment matching, i.e., by matching the mean and the
variance of the two distributions, where the mean and the variance of Pagg can be found
from Proposition 5. First, we present the skewness and the kurtosis of Pagg, which are
two important measures of a real-valued random variable.

Skewness and Kurtosis of Pagg: The skewness and the kurtosis describe the shape
of the probability distribution of Pagg [93], and are given by

Skew [Pagg] =
κPagg(3)

κPagg(2)1.5 , (4.15)

Kurt [Pagg] =
κPagg(4)
κPagg(2)2 . (4.16)

The skewness shows whether a distribution is left or right tailed and the kurtosis
measures the heaviness of the tail.

Gaussian Distribution: The CCDF of the Gaussian distribution is

Pr (Pagg > z)Gaussian = Q

z− κPagg(1)√
κPagg(2)

 , (4.17)

where Q(·) is the Q-function, κPagg(1) and κPagg(2) are the first and the second cumu-
lant of Pagg, respectively, which can be calculated by (4.11).

Lognormal Distribution: The CCDF of the lognormal distribution is

Pr (Pagg > z)lognormal = Q
(

ln z− µlognormal

σlognormal

)
, (4.18)

where µlognormal and σlognormal are the location parameter and the scale parameter given
by

µlognormal = ln

 κPagg(1)√
1 +

κPagg (2)
κPagg (1)2

 , (4.19)

σlognormal =

√√√√ln

(
1 +

κPagg(2)
κPagg(1)2

)
. (4.20)
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Table 4.2: Parameter Values.
Parameter Value Parameter Value

αL {2, 2.5} Rmin {50 m, 100 m}
αN 4 Rmax 200 m

P 10 dB Gmax
p , Gmin

p , θp

{[0 dB, 0 dB, 360o],
[20 dB,−10 dB, 30o],
[30 dB,−10 dB, 6o]}

λ 105 ∼ 1 per km2 Gmax
r , Gmin

r , θr
{[0 dB, 0 dB, 360o],

[10 dB,−10 dB, 45o]}
ζ 0.5 m {5, 10}

Gamma Distribution: The CCDF of the Gamma distribution is

Pr (Pagg > z)gamma = 1−
γ
(
kgamma, z

θgamma

)
Γ (kgamma)

, (4.21)

where γ(·, ·) is the lower incomplete Gamma function, kgamma =
κPagg (1)

2

κPagg (2)
and θgamma =

κPagg (2)
κPagg (1)

are the shape parameter and scale parameter of Gamma distribution, respec-
tively.

4.3 Results

In this section, we present the analytical or numerical results and compare with the
simulation results. The simulation results are generated by averaging over 108 Monte
carlo simulation runs. The values of the main parameters are summarized in Table 4.2,
which are chosen to be consistent with the literature in mmWave and WPT [13, 68].
Note that if the distance between the PB and the RX is more than Rmax = 200 m, the
mmWave link is in OUT state.

4.3.1 Distribution Approximation of the Aggregate Received

Power

The skewness and the kurtosis of Pagg versus the density of PB λ are plotted in
Figure 4.2(a) and 4.2(b) respectively for different path-loss exponents of LOS link
αL = 2, 2.5 and different Nakagami-m fading parameters m = 5, 10. We can see that
the curves are monotonic for the considered range of λ. Smaller αL and larger m lead
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Figure 4.2: Skewness, kurtosis and CCDF approximation of the aggregate received
power with the radius of the LOS region being 100 m and the PB and RX beamforming

parameter being [20 dB, −10 dB, 30o] and [10 dB, −10 dB, 45o] respectively.

to smaller skewness and kurtosis. As the density of PB increases, the gap between the
different curves becomes smaller. The distribution of the aggregate received power is
skewed to the right with a heavy tail, because both the skewness and the kurtosis of
Pagg are much greater than 0. Moreover, the skewness and the kurtosis of a Gaussian
distributed random variable are 0. Hence, we can conclude that the aggregate received
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power under the considered system model does not converge to a Gaussian distribution
(even for the very extreme case with a PB density of 0.1 per m2).

Figure 4.2(c) plots the exact and approximated CCDF of Pagg for αL = 2 and
m = 5. The simulation results assume the LOS links undergo Rician fading with
K = 10 dB. The exact CCDF is plotted numerically using (4.5) and (4.6), while the
approximated CCDFs are obtained using (4.17) for Gaussian distribution, (4.18) for
lognormal distribution and (4.21) for Gamma distribution. From the figure, we can see
that the CCDF of Pagg under Rician fading LOS links can be closely approximated by
Nakagami-m fading by adjusting the m values. Gaussian distribution does not provide
a good approximation, which agrees with our discussion above. Gamma distribution
is found to provide a close approximation to the power distribution of homogeneous
PPP network [94] and heterogeneous PPP network [95] with non-singular path-loss
model, but it clearly does not provide a good fit under the mmWave system model.
We have tested the CCDF approximations using inverse Gaussian distribution, expo-
nential distribution, Suzuki distribution and inverse Gamma distribution against the
exact CCDF and Rician LOS fading simulation under different channel parameters as
well. However, they perform poorly and the results are omitted here for the sake of
brevity. Overall, our results show that lognormal distribution provides the best CCDF
approximation of Pagg.

4.3.2 Mean Aggregate Received Power

Next, we investigate the impact of the channel parameters and the beamforming pa-
rameters on the the mean aggregate received power Pagg = κPagg(1).

Figure 4.3 plots Pagg against the density of PB for different path-loss exponents of
LOS link αL = 2, 2.5 and different radius of the LOS region Rmin = 50 m, 100 m.
We can see that the simulation results match perfectly with the analytical results. The
figure also shows that Pagg increases with λ. With smaller αL and larger Rmin, Pagg

grows at a faster rate. When αL = 2.5, the traces of two different Rmin overlap. We
can see that the benefit of increasing the radius of the LOS region is insignificant, when
αL is large.

Figure 4.4 plots Pagg against the density of PB for different beamforming param-
eter for PB [0 dB, 0 dB, 360o], [20 dB,−10 dB, 30o], [30 dB,−10 dB, 6o] and TX
[0 dB, 0 dB, 360o], [10 dB,−10 dB, 45o]. Again the simulation results match perfectly
with the analytical results. We can see that a narrower main lobe beam-width gives a
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larger main lobe gain which results in a faster rate of growth of Pagg with respect to λ.

4.3.3 Feasibility of Wireless Power Transfer via PBs

In this section, we examine the feasibility of WPT via PBs in a mmWave ad hoc
network. In this regard, it is important to note that the electronic circuitry of a power
RX has an activation threshold which has a value typically between−30 dBm and−20
dBm [13]. In addition, the typical maintenance power for a smart phone is between 20
mW and 30 mW [96].

Figure 4.5 plots the required transmit power of PB to achieve an average harvested
power of 15 dBm (= 31.62 mW), which is the typical maintenance power for a smart
phone and is much higher than the power sensitivity level, versus the density of PB by
assuming a constant power conversion efficiency of ζ = 0.5 [13]. From the figure, we
can see that for a fixed PB density the decrease in the LOS path-loss exponents brings
a higher saving in the transmit power needed than the increase in the radius of LOS
region. From Figure 4.5, the maximum transmit power required at a PB density of 10
per km2 is 39.12 W. If PB transmits with this maximum value, the power density at
a distant of 1 m from the PB is 3.113 W/m2. This power density is smaller than 10
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W/m2, which is the permissible safety level of human exposure to RF electromagnetic
fields based on IEEE Standard [88].

4.4 Summary

In this chapter, the mmWave wireless ad hoc network where RX harvests energy from
all PBs was considered. We first derived the MGF and the nth cumulant of the ag-
gregate received power at the RX to study the CCDF of the aggregate received power.
Furthermore, we compared the different closed-form distributions which can be used
to approximate the characteristics of the aggregate received power. Our results showed
that the lognormal distribution provided the best CCDF approximation compared to
other distributions considered in the literature for microwave network. The results
have also shown that application of mmWave PB is feasible under practical network
setup.
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Chapter 5

Power Beacon-Assisted Millimeter
Wave Ad Hoc Networks

In Chapter 4, we have studied the characteristic of the aggregate received power from
PBs in mmWave ad hoc networks. In this chapter, we present a tractable model for
PB-assisted mmWave wireless ad hoc networks, where each TX harvests energy from
all PBs and then uses the harvested energy to transmit information to its desired RX.
Our model accounts for realistic aspects of WPT and mmWave transmissions, such
as power circuit activation threshold, allowed maximum harvested power, maximum
transmit power, beamforming and blockage. Using stochastic geometry, we obtain the
Laplace transform of the aggregate received power at the TX to calculate the power
coverage probability. We approximate and discretize the transmit power of each TX
into a finite number of discrete power levels in log scale to compute the channel and
total coverage probability. We compare our analytical predictions to simulations and
observe good accuracy. The proposed model allows insights into effect of system
parameters, such as transmit power of PBs, PB density, main lobe beam-width and
power circuit activation threshold on the overall coverage probability. The results
confirm that it is feasible and safe to power TXs in a mmWave wireless ad hoc network
using PBs.

This chapter is organized as follows: Section 5.1 describes the system model and
assumptions. Section 5.2 focuses on the power transfer phase of the system and derives
the power coverage probability. Section 5.3 details the information transmission phase,
which covers the analysis of transmit power statistics and channel coverage probabil-
ity. Section 5.4 investigates the total coverage probability. Section 5.5 presents the
results and the effect of the system parameters on the network performance. Finally,
Section 5.6 summarizes the chapter.

77
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5.1 System Model

We consider a two-dimensional mmWave wireless ad hoc network, where TXs are first
wirelessly charged by PBs and then they transmit information to RXs. The locations of
PBs are modeled as a homogeneous PPP φp in R2 with constant node density λp. TXs
are assumed to be randomly independently deployed and their locations are modeled as
a homogeneous PPP φt with node density λt. For each TX, it has a desired RX located
at a distance d0 in a random direction. We use Xi to denote both the random location
as well as the ith TX itself, Yi to denote both the location and the corresponding ith RX
and Zi to denote both the location and the ith PB, respectively. Note that we assume
the indoor-to-outdoor penetration loss is high. Therefore, all the PBs, TXs and RXs
can be regarded as outdoor devices.

5.1.1 Power Transfer and Information Transmission Model

We assume that each PB has access to a dedicated power supply (e.g., a battery or
power grid) and transmits with a constant power Pp. Time is divided into slots and T
denotes one time slot. TXs adopt the harvest-then-transmit protocol to perform power
transfer and information transmission. Specifically, each time slot T is divided into two
parts with ratio τ ∈ (0, 1): in the first τT seconds each TX harvests energy from the
RF signal transmitted by PBs and stores the energy in an ideal (infinite capacity) bat-
tery1. In the remaining (1− τ)T seconds, TXs use all the harvested energy to transmit
information to their desired RXs. Hence, there is no interference between the power
transfer and information transmission stages. We make the following assumptions for
realistic modeling of power transfer:

• Different from previous works [53, 60, 98], where energy harvesting activation
threshold is not considered and the devices can harvest power from any amount
of incident power, we assume that the TX can scavenge energy if and only if
the instantaneous aggregate received power from all PBs is greater than a power
circuit activation threshold γPT. If this condition is met, then the TX is called an
active TX. Otherwise, the TX will be inactive and will not scavenge any energy
from the PBs.

• Once the energy harvesting circuit is activated, the harvested power at the active

1In this chapter, we do not consider the impact of battery imperfections [97].
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TX is assumed to be linearly proportional to the aggregate received power with
power conversion efficiency ζ. Due to the saturation of the energy harvesting
circuit, the harvested power at the active TX cannot exceed a maximum level
denoted as Pmax

1 [99]. In addition, the active TX cannot transmit information
with a power greater than Pmax

2 because of the safety regulation and the electrical
rating of the antenna circuit [88].

5.1.2 MmWave Blockage Model

Under outdoor mmWave transmissions, each link between the PB and the TX (i.e., PB-
TX link) or between the TX and the RX (i.e., TX-RX link) is susceptible to building
blockages due to their high diffraction and penetration characteristics [68]. We adopt
the state-of-the-art three-state blockage model as in [69, 100], where each PB-TX or
TX-RX link can be in one of the following three states: (i) the link is in LOS state if
no blockage exists, (ii) the link is in NLOS state if blockage exists and (iii) the link is
in OUT state if the link is too weak to be established.

Given that the PB-TX or TX-RX link has a length of r, the probabilities pLOS(·),
pNLOS(·) and pOUT(·) of it being in LOS, NLOS and OUT states, respectively, are

pOUT(r) = u(r− Rmax);

pNLOS(r) = u(r− Rmin)− u(r− Rmax); (5.1)

pLOS(r) = 1− u(r− Rmin),

where u(·) denotes the unit step function, Rmin is the radius of the LOS region and
Rmax is the exclusion radius of the OUT region2. The values of Rmin and Rmax depend
on the propagation scenario and the mmWave carrier frequency [69]. Moreover, the
communication link between TX and its desired RX is assumed to be always in LOS
state.

5.1.3 MmWave Channel Model

It has been shown by the measurements that mmWave links experience different chan-
nel conditions under LOS, NLOS and OUT states [89]. Thus, we consider the follow-
ing path-loss plus block fading channel model.

2Note that the two-state blockage model in [101, 102], which does not consider the OUT region, can
be considered as a special case of the three-state blockage model with Rmax = ∞.
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For the path-loss, we adopt and modify a multi-slope path-loss model [90] and
define the path-loss of PB-TX or TX-RX link with a propagation distance of r as
follows:

PL(r) =



1, 0 6 r < 1

r−αL , 1 6 r < Rmin

βr−αN , Rmin 6 r < Rmax

∞, Rmax 6 r

, (5.2)

where the first condition is added to avoid the singularity as r → 0, αL denotes the
path-loss exponent for the link in LOS state, αN denotes the path-loss exponent for the
link in NLOS state (2 6 αL 6 αN), the path-loss of the link in OUT state is assumed
to be infinite [69] and the continuity in the multi-slope path-loss model is maintained
by introducing the constant β , RαN−αL

min [90].

As for the fading, the link under LOS state is assumed to experience Nakagami-m
fading, while the link under NLOS state is assumed to experience Rayleigh fading3.
Furthermore, both the LOS and the NLOS links experience AWGN with variance σ2.
However, under the power transfer phase, the AWGN power is too small to be har-
vested by TXs. Hence, we ignore it in the power transfer phase.

5.1.4 Beamforming Model

To compensate the large path-loss in mmWave band, directional beamforming is nec-
essary for devices [104]. In this chapter, we consider that mmWave antenna arrays
perform directional beamforming at all PBs, TXs and RXs. Similar to [68, 69], the
actual antenna array pattern can be approximated by a sectorized gain pattern which is
given by

Ga(θ) =

Gmax
a , |θ| ≤ θa

2

Gmin
a , otherwise

, (5.3)

where subscript a = p for PB, a = t for TX and a = r for RX, Gmax
a is the main

lobe antenna gain, Gmin
a is the side lobe antenna gain, θ ∈ [−π, π) is the angle off

the boresight direction and θa is the main lobe beam-width. Note that, as shown in

3We do not consider shadowing but it can be included using the composite fading model in [103].
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Table 5.1: PMF of Gij and Dij.

PB-TX gain Gij TX-RX gain Dij
k Gain Gk Probability pk Gain Dk Probability qk

1 Gmax
p Gmax

t
θpθt
4π2 Gmax

t Gmax
r

θtθr
4π2

2 Gmax
p Gmin

t
θp(2π−θt)

4π2 Gmax
t Gmin

r
θt(2π−θr)

4π2

3 Gmin
p Gmax

t
(2π−θp)θt

4π2 Gmin
t Gmax

r
(2π−θt)θr

4π2

4 Gmin
p Gmin

t
(2π−θp)(2π−θt)

4π2 Gmin
t Gmin

r
(2π−θt)(2π−θr)

4π2

Section 5.5.3, this model can be easily related to specific array geometries, such as an
N element uniform planar or linear or circular array [70].

The main beam at the PBs are assumed to be randomly and independently oriented
with respect to each other and uniformly distributed in [−π, π). Given a sufficient
density of the PBs, this simple strategy ensures that the aggregate received power
from PBs at different locations in the network is roughly on the same order and avoids
the need for channel estimation and accurate beam alignment. In addition, it has been
shown in [104] that the random directional beamforming can perform reasonably well
given that more than one users need to be served.

Let Gij be the effective antenna gain on the link from the ith PB to the jth TX.
Under sectorization, Gij is a discrete random variable with probability pk = Pr(Gij =

Gk) and k ∈ {1, 2, 3, 4}, where its distribution is summarized in Table 5.1.

With regards to TX and RX, we assume that each TX points its main lobe towards
its desired RX directly. Therefore, the effective antenna gain of the desired TX-RX
link is D0 = Gmax

t Gmax
r and the orientation of the beam of the interfering TX is

uniformly distributed in [−π, π). Let Dij(i 6= j) be the effective antenna gain on the
link from the ith TX to the jth RX. Similar to Gij, Dij is a discrete random variable
with probability qk = Pr(Dij = Dk), where its distribution is given in Table 5.1.

5.1.5 Metrics

In this chapter, we are interested in the PB-assisted mmWave wireless ad hoc network
in terms of the total coverage probability for RXs (i.e., the probability that a RX can
successfully receive the information from its TX after the TX successfully harvests
energy from PBs). Based on the system model described above, the success of this
event has to satisfy two requirements, which are:
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• The corresponding TX is in power coverage. Due to the random network topol-
ogy and the fading channels, the aggregate received power from all PBs is a
random variable. If the aggregate received power at a TX is greater than the
power circuit activation threshold, the energy harvesting circuit is active and
this TX can successfully harvest energy from PBs. As a result, the TX is under
power coverage and information transmission then takes place.

• The RX is in channel coverage. The instantaneous transmit power for each active
TX depends on its random received power. RX can receive the information from
its desired TX (i.e., in channel coverage) if the SINR at the RX is above a certain
threshold.

By leveraging the Laplace transform of the aggregate received power at a typical
TX and the interference at a typical RX, we compute the power coverage probability
and channel coverage probability in the following sections. In the subsequent analysis,
we condition on having a reference RX Y0 at the origin (0, 0) and its associated TX
X0 located at a distance d0 away at (d0, 0). According to Slivnyak’s theorem, the
conditional distribution is the same as the original one for the rest of the network [105].

5.2 Power Transfer

In this section, we focus on the power transfer phase of the system. We analyze the
aggregate received power at a reference TX from all PBs and find the power coverage
probability at the corresponding RX.

Since the power harvested from the noise is negligible, the instantaneous aggregate
received power at the typical TX X0 from all the PBs can be expressed as

PPT = Pp ∑
Zi∈φp

Gi0gi0PL(ri), (5.4)

where Pp is the PB transmit power, Gi0 is the effective antenna gain between Zi and
X0, gi0 is the fading power gain between the ith PB Zi and the typical TX X0, which
follows the Gamma distribution (under Nakagami-m fading assumption) if the PB-TX
link is in LOS state and exponential distribution (under Rayleigh fading distribution)
if the PB-TX link is in NLOS state. PL(ri) is the path-loss function given in (5.2) and
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ri = ‖Zi − X0‖ is the Euclidean length of the PB-TX link between Zi and X0. Using
(5.4), the power coverage probability is defined as follows:

Definition 2 The power coverage probability is the probability that the aggregate re-

ceived power at the typical TX is higher than the power circuit activation threshold

γPT. It can be expressed as

PP
cov(γPT) =Pr(PPT > γPT). (5.5)

Remark 5 Analytically characterizing the power coverage probability in (5.5) is a

challenging open problem in the literature. Generally, it is not possible to obtain a

closed-form power coverage probability because of the randomness in the antenna

gain, mmWave channels and locations of PBs. The closed-form expression only ex-

ists under the unbounded path-loss model with α = 4 and Rayleigh fading for all

links, which is shown to be Lévy distribution [105]. To overcome this problem, some

works [59, 101, 106] employed the Gamma scaling method. This approach involves

introducing a dummy Gamma random variable with parameter N′ to reformulate the

original problem. However, the approach can sometimes lead to large errors with

finite N′ value. Other works adopted the Gil-Pelaez inversion theorem [91]. This ap-

proach involves one fold integration and is only suitable for the random variable with

a simple Laplace transform. If the Laplace transform is even moderately complicated,

this method is not very efficient even if the Laplace transform is in closed-form.

In this chapter, we adopt a numerical inversion method, which is easy to compute,
if the Laplace transform of a random variable is in closed-form, and provides control-
lable error estimation. Following [85, 86], the cumulative distribution function (CDF)
of the aggregate received power PPT is given as

FPPT(x) =
1

2π j

∫ a+j∞

a−j∞
LFPPT

(s) exp(sx)ds (5.6a)

=
1

2π j

∫ a+j∞

a−j∞

LPPT(s)
s

exp(sx)ds. (5.6b)

where (5.6a) is obtained according to the Bromwich integral [107] and (5.6b) follows
from probability theory that LPPT(s) = sLFPPT

(s). Using the trapezoidal rule and the
Euler summation, the above integral can be transformed into a finite sum. Therefore,
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we can express the power coverage probability as

PP
cov(γPT)=1−

2−Bexp(A
2 )

γPT

B

∑
b=0

(
B
b

)C+b

∑
c=0

(−1)c

Dc
Re
[LPPT(s)

s

]
, (5.7)

where Re[·] is the real part operator, s = A+j2πc
2γPT

, LPPT(s) is the Laplace transform of
PPT, Dc = 2 (if c = 0) and Dc = 1 (if c = 1, 2, ..., C + b). A, B and C are positive
parameters used to control the estimation accuracy.

From (5.7), the key parameter in order to obtain the power coverage probability
is LPPT(s). By the definition of Laplace transform of a random variable, we express
LPPT(s) in closed-form in the following theorem.

Theorem 8 Following the system model in Section 5.1, the Laplace transform of the

aggregate received power at the typical TX from all the PBs in a mmWave ad hoc

network is

LPPT(s) =
4

∏
k=1

exp
(
πλpR2

minpk

(
mm(m+sR−αL

min PpGk)
−m−1

)
+ πλp pk

(
sPpGk

)δL (Ξ1 (1)− Ξ1 (Rmin)) + πλp pksPpGkβ (Ξ2(Rmin)− Ξ2(Rmax))

+
πλp

2+αN
pk(sPpGkβ)δN(Ξ3(Rmin)−Ξ3(Rmax))

)
, (5.8)

where

Ξ1(r)=
mm+1αL(r−αLsPpGk)

−δL−m

(2 + mαL)
2F1

(
1+m,m+δL;1+m+δL;− mrαL

sPpGk

)
, (5.9)

Ξ2(r)=
r2

rαN + sPpGkβ
, (5.10)

Ξ3(r)=
(r−αNsPpGkβ)−δN−1

rαN + sPpGkβ

(
sPpGkβ(2 + αN)

−2(rαN+sPpGkβ)2F1

(
1, δN+1; 2+δN;−rαN β−1

sPpGk

))
, (5.11)

2F1(·, ·; ·; ·) is the Gaussian (or ordinary) hypergeometric function, δL , 2
αL

and

δN , 2
αN

.

Proof: The proof follows the same lines as Proposition 4 and is skipped for the
sake of brevity.
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Figure 5.1: Power coverage probability versus power circuit activation threshold γPT
for different PB densities. Other system parameters follow Table 5.3.

By substituting (5.8) into (5.7), we can compute the power coverage probabil-
ity. As shown in Theorem 8, the Laplace transform of PPT is in closed-form; hence,
PP

cov(γPT) is just a summation over a finite number of terms. Following the selection
guideline of parameters A, B and C in [86], we can achieve a stable numerical result
by carefully choosing them.

Finally, we validate the analysis for the power coverage probability. Figure 5.1
plots the power coverage probability versus power circuit activation threshold. The
simulation results are generated by averaging over 108 Monte Carlo simulation runs.
We set A = 24, B = 20 and C = 30 in order to achieve an estimation error of 10−10.
The other system parameters follow Table 5.3. From the figure, we can see that the
analytical results match perfectly with the simulation results, which demonstrates the
accuracy of the proposed approach. Figure 5.1 also shows that the power coverage
probability increases with the density of PBs, because the aggregate received power at
TX increases as the PB density increases.

5.3 Information Transmission

In this section we focus on the information transmission phase between the TX and
RX. We assume that the TX uses all the harvested energy in the information trans-
mission phase. As indicated in Section 5.1.1, the transmit power of an active TX is
a random variable which depends on its harvested power. Hence, we first evaluate
the transmit power for an active TX. Then, we calculate the channel coverage prob-
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ability at the reference RX. Note that the derived channel coverage probability is in
fact a conditional probability, which is conditioned on the reference TX-RX link being
active.

5.3.1 Transmit Power and Locations of Active TX

Using the power transfer assumptions in Section 5.1.1, the instantaneous transmit
power for each active TX is

Pt=


ζτ

1−τ PPT, min(Pmax
1
ζ ,1−τ

ζτ Pmax
2 )>PPT>γPT

min( τPmax
1

1−τ , Pmax
2 ), PPT>min(Pmax

1
ζ , 1−τ

ζτ Pmax
2 )

, (5.12)

where 0 6 ζ 6 1 is the power conversion efficiency. Note that the first condition in
(5.12) comes from the fact that the received power at an active TX must be greater
than γPT. For the second condition in (5.12), Pmax

1 is the maximum harvested power at
an active TX when the energy harvesting circuit is saturated and Pmax

2 is the maximum
transmit power for an active TX. Thus, the second condition caps the transmit power
by the allowed maximum harvested power constraint or the maximum transmit power
constraint.

The following remarks discuss the modeling challenges and proposed solution for
characterizing Pt.

Remark 6 To the best of our knowledge, the closed-form expression for the PDF of

Pt is very difficult to obtain. This is because Pt and PPT are correlated and the closed-

form CDF of PPT is not available according to Section 5.2. In the literature, some

papers [52, 60] have proposed to use the average harvested power as the transmit

power for each TX. However, this does not always lead to accurate results. Hence,

inspired from the approach in [58], we propose to discretize Pt in (5.12) into a finite

number of levels. We show that this approximation allows tractable computation of

the channel coverage probability. The accuracy of this approximation depends on the

number of levels. Our results in Section 5.5.1 show that if we discretize the power level

in the log scale, a reasonable level of accuracy is reached with as little as 10 levels.

Remark 7 From (5.12), we can see that Pt depends on PPT. Hence, the motivation for

discretizing Pt in the log scale comes from looking into two important measures of PPT,

the skewness and the kurtosis. The skewness and the kurtosis describe the shape of the
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probability distribution of PPT. As presented in [74], the distribution of the aggregate

received power is skewed to the right with a heavy tail, because both the skewness and

the kurtosis of PPT are much greater than 0 for most cases. Therefore, most of the TXs

will be at the lowest power level if we discretize Pt in linear scale. Hence, we discretize

the power level in the log scale. This improves the accuracy of the approximation.

Let N + 1 and w denote the total number of levels and the step size of each level,

respectively. They are related by w =

(
min

(
ζ−1Pmax

1 , 1−τ
ζτ Pmax

2

)
−γPT

N

)
dBm. We further

define kn as the portion of TXs whose Pt is at the nth level, i.e.,

kn=

Pr ((nw+γPT)dBm6PPT< ((n+1)w+γPT)dBm) , n=0, 1, 2, ..., N−1

Pr(PPT > min(ζ−1Pmax
1 , 1−τ

ζτ Pmax
2 )), n=N

.

Combining with the power coverage probability derived in Section 5.2, we can express
kn as

kn=

PP
cov((nw+γPT)dBm)−PP

cov(((n+1)w+γPT)dBm) , n=0, 1, 2, ..., N−1

PP
cov

(
min

(
Pmax

1
ζ , 1−τ

ζτ Pmax
2

))
, n=N

.

(5.13)

The above expression allows us to determine the portion of TXs whose Pt is at the
nth level. The transmit power for the active TX at the nth level is

Pn
t =

(
ζ

τ

1− τ
10

nw+γPT−30
10

)
W. (5.14)

The next step is to decide how to model the locations of the TXs whose Pt is at the
nth level. This is discussed in the remark below.

Remark 8 In general, the location and the transmit power of an active TX are corre-

lated, i.e., a TX has higher chance to be activated and transmits with a larger power,

if its location is closer to a PB. However, it is not easy to identify and fit a spatial

point process with local clustering to model the location of active TXs [54, 57]. For

analytical tractability, we assume that the location and the transmit power of an active

TX are independent, i.e., a TX in φt can have a transmit power of Pn
t with probability

kn independently of other TXs. Therefore, using the thinning theorem, we interpret
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the active TX at the nth level as an independent homogeneous PPP with node density

λn
t = knλt, denoted as φn

t . The accuracy of this approximation will be validated in

Section 5.5.1.

5.3.2 Channel Coverage Probability

Given that the desired TX is active, the instantaneous SINR at the reference RX, Y0, is
given as

SINR =
PX0 D0h0PL(d0)

∑Xi∈φactive
PXi Di0hi0PL(Xi) + σ2 , (5.15)

where h0 and hi0 denote the fading power gains on the reference link and the ith in-
terference link respectively, D0 and Di0 denote the beamforming antenna gain at the
RX from its reference TX and the ith interfering TX respectively and σ2 is the AWGN
power. PX0 and PXi are the transmit power for the reference TX and the active TX Xi,
respectively. Using (5.15), the channel coverage probability is defined as follows:

Definition 3 The channel coverage probability is the probability that the SINR at the

reference RX is above a threshold γTR and can be expressed as

PC
cov(γTR) =Pr(SINR > γTR). (5.16)

Remark 9 It is possible to employ the numerical inversion method in Section 5.2 to

find the channel coverage probability. In doing so, the Laplace transform of the term
IX+σ2

PX0 D0h0PL(d0)
is required. This Laplace tranform cannot be expressed in closed-form

because of the random variables PX0 and h0 in the denominator. Although it is still

computable, it leads to greater computation complexity. Consequently, we employ the

reference link power gain based method in [86] to efficiently find the channel coverage

probability. The basic principle of this approach is to first find the conditional outage

probability in terms of the CDF of the reference link’s fading power gain and then

remove the conditioning on the fading power gains and locations of the interferers,

respectively. In order to apply this method, the reference TX-RX link is assumed to

undergo Nakagami-m fading with integer m. The result for the conditional channel

coverage probability is presented in the following proposition.
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Proposition 6 Following the system model in Section 5.1, the conditional channel

coverage probability at the reference RX in a mmWave ad hoc network is

PC
cov(γTR) =

N

∑
n=0

m−1

∑
l=0

(−s)l

l!
dl
dslLIX+σ2(s)

kn

PP
cov(γPT)

, (5.17)

where IX = ∑N
n=0 ∑Xi∈φn

t
Pn

t Di0hi0PL(Xi) and s = mγTR
Pn

t D0l(d0)
.

Proof: See Appendix D.1.
(5.17) needs the Laplace transform of the interference plus noise. Using stochastic

geometry, we can derive it and the result is shown in the following corollary.

Corollary 1 Following the system model in Section 5.1 and the discretization assump-

tion in Section 5.3.1, the Laplace transform of the aggregate interference plus noise at

the reference RX in a mmWave ad hoc network is

LIX+σ2(s)=
N

∏
n=0

4

∏
k=1

exp
(
πλn

t R2
minqk

(
mm(m+sR−αL

min Pn
t Dk)

−m−1
)

+ πλn
t qk (sPn

t Dk)
δL
(
Ξ′1 (1)−Ξ′1 (Rmin)

)
+πλn

t qksPn
t Dkβ

(
Ξ′2(Rmin)−Ξ′2(Rmax)

)
+

πλn
t

2+αN
qk(sPn

t Dkβ)δN
(
Ξ′3(Rmin)−Ξ′3(Rmax)

))
exp(−sσ2), (5.18)

where

Ξ′1(r)=
mm+1(r−αLsPn

t Dk)
−δL−m

(δL + m) 2F1

(
1+m,m+δL;1+m+δL;− mrαL

sPn
t Dk

)
, (5.19)

Ξ′2(r)=
r2

rαN + sPn
t Dkβ

, (5.20)

Ξ′3(r)=
(r−αNsPn

t Dkβ)−δN−1

rαN + sPn
t Dkβ

(
sPn

t Dkβ(2 + αN)

−2(rαN+sPn
t Dkβ)2F1

(
1, δN+1; 2+δN;−rαN β−1

sPn
t Dk

))
. (5.21)

Proof: Following the definition of Laplace transform, we have

LIX+σ2(s) =EIX [exp(−s(IX + σ2))]

=EIX [exp(−sIX)] exp(−sσ2)

=LIX(s) exp(−sσ2), (5.22)
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where the Laplace transform of the aggregate interference can be expressed as

LIX(s) =EIX [exp(−sIX)] = EDi0,hi0,φn
t

exp

−s
N

∑
n=0

∑
Xi∈φn

t

Pn
t Di0hi0PL(Xi)


=

N

∏
n=0

EDi0,hi0,φn
t

exp

−s ∑
Xi∈φn

t

Pn
t Di0hi0PL(Xi)

 . (5.23)

Then, following the same steps as the proof of the Laplace transform of the aggregate
received power, we can find the expectation in (5.23) and arrive at the result in (5.18).

The Laplace transform shown in Corollary 1 is in closed-form. Substituting (5.18)
into (5.17), we can easily compute the conditional channel coverage probability. Note
that (5.17) requires higher order derivatives of the Laplace transform of the interfer-
ence plus noise dl

dslLIX+σ2(s), which can be yielded in closed-form using chain rules
and changing variables. For brevity, the details are omitted here.

5.4 Total Coverage Probability

As discussed in Section 5.1.5, the event that the information can be successfully deliv-
ered to RX has two requirements, i.e., satisfying power coverage and channel coverage.
Based on our definition, the total coverage probability is

Pcov(γPT, γTR) = Pr(TX is in power coverage & RX is in channel coverage)

= Pr(TX is in power coverage)

× Pr(RX is in channel coverage | TX is in power coverage)

Combining our analysis presented in Section 5.2 and 5.3, we have

Pcov(γPT, γTR) =PP
cov(γPT)P

C
cov(γTR)

=
N

∑
n=0

m−1

∑
l=0

(−s)l

l!
dl
dslLIX+σ2(s)kn, (5.24)

where s = mγTR
Pn

t D0l(d0)
, LIX+σ2(s) is given in Corollary 1, kn is presented in (5.13),

which is determined by the power coverage probability. The key metrics are summa-
rized in Table 5.2.
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Table 5.2: Summary of the Analytical Model for PB-assisted mmWave Ad Hoc Net-
works.

Performance metrics General form Key factor(s)
Power coverage probability (5.7) LPPT(s) in (5.8)

Channel coverage probability (5.17)
PP

cov(γPT) in (5.7)
LIX+σ2(s) in (5.18)

Total coverage probability (5.24)
PP

cov(γPT) in (5.7)
LIX+σ2(s) in (5.18)

Table 5.3: Parameter Values.
Parameter Value Parameter Value

λp 50 /km2 m 5
λt 100 /km2 Gmax

p , Gmin
p , θp [20 dB, −10 dB, 30o]

d0 20 m Gmax
t , Gmin

t , θt [10 dB, −10 dB, 45o]
Rmin 100 m Gmax

r , Gmin
r , θr [10 dB, −10 dB, 45o]

Rmax 200 m σ2 -30 dBm
αL 2 τ 0.5
αN 4 ζ 0.5
Pp 40 dBm γPT -20 dBm

Pmax
1 20 dBm γTR 30 dBm

Pmax
2 30 dBm N 10

5.5 Results

In this section, we first validate the proposed model and then discuss the design in-
sights provided by the model. Unless stated otherwise, the values of the parameters
summarized in Table 5.3 are used. The chosen values are consistent with the literature
in mmWave and WPT [13, 68, 69]. Note that the values of Rmin and Rmax corre-
spond to 28 GHz mmWave carrier frequency [68]. Larger transmission bandwidths in
mmWave networks increase the impact of thermal noise [69, 108]. We mainly focus on
illustrating the results for total coverage probability and channel coverage probability.
As for the power coverage probability, it will be explained within the text.

Table 5.4 summarizes the impact of varying the important system parameters4,
i.e., SINR threshold γTR, PB density λp, TX density λt, PB transmit power Pp, radius
of the LOS region Rmin, power circuit activation threshold γPT, the beam-width of
the main lobe of TX θt, RX’s main lobe beam-width θr, allowed maximum harvested
power at active TX Pmax

1 , time switching parameter τ and TX maximum transmit

4Note that the trends reported in Table 5.4 remain the same for a two-state blockage model.
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Table 5.4: Effect of Important System Parameters.

Parameter
Power

coverage
Channel
coverage

Total
coverage

Increasing γTR - ↓ ↓
Increasing λp ↑ ↓↑ ↑
Increasing λt - ↓ ↓
Increasing Pp ↑ ↑ ↑

Increasing Rmin ↑ ↑ ↑
Increasing γPT ↓ ↑ ↓

Increasing θt and θr ↑ ↓ ↓
Increasing Pmax

1 - ↑↓ ↑↓
Increasing τ - ↑ ↑

Increasing Pmax
2 - ↓ ↓

power Pmax
2 on the three network performance metrics. In Table 5.4, ↑, ↓ and - denote

increase, decrease and unrelated, respectively. ↑↓ represents that the performance met-
ric first increases then decreases with the system parameter. Please note that the trends
in Table 5.4 originate from the analysis of the numerical results, which is presented in
detail in the following subsections.

5.5.1 Model Validation

In this section, we validate the proposed model for the channel coverage probability
and the total coverage probability. Figure 5.2 plots the channel coverage probability
and the total coverage probability for a reference RX against SINR threshold for differ-
ent densities of PBs and TXs. The analytical results are obtained using Proposition 6
and (5.24) with 10 discrete levels for Pt. The simulation results are generated by aver-
aging over 108 Monte Carlo simulation runs and do not assume any discretization of
power levels.

From the figure, we can see that our analytical results provide a good approxi-
mation to the simulation. The small gap between them comes from two reasons: (i)
discretization of the power levels, as discussed in Remark 7, and (ii) ignorance of the
correlation between the location and the transmit power of active TX, as discussed in
Remark 8. From Figure 5.2, we can see that the gap between the simulation and the
analytical results is smaller, when γTR is higher. At γTR = 30 dBm, which is a typical
SINR threshold, the relative errors between the proposed model and the simulation re-
sults for both channel coverage probability and total coverage probability are between
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(a) λp = 50 /km2, λt = 500 /km2.
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(b) λp = 10 /km2, λt = 100 /km2.
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(c) λp = 50 /km2, λt = 250 /km2.
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(d) λp = 10 /km2, λt = 50 /km2.

Figure 5.2: Channel coverage probability and total coverage probability versus SINR
threshold γTR. The PB density is 50 and 10 per km2 and the TX density is 500, 100,

250 and 50 per km2.

5% to 10%. This validates the use of 10 discrete levels for Pt, which provides good
accuracy. With more levels of discretization, i.e., larger N, better accuracy can be
achieved.

Insights: Comparing the four cases for the different PB and TX densities, Fig-
ure 5.2 shows that: (i) The channel coverage probability decreases while the total
coverage probability increases as PB density increases. As the PB density increases,
the aggregate received power at TX increases as well as the number of active TXs.
Therefore, interfering power received by the RX is higher and the channel coverage
probability decreases. However, the total coverage probability increases because the
power coverage probability increases with the PB density. (ii) When the PB density is
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low, the TXs are very likely to be inactive and the total coverage probability is dom-
inated by the power coverage probability. When the PB density is high, the TXs are
very likely to be active. Hence, the interference is strong and the channel coverage
probability dominates the total coverage probability. (iii) For the same PB density,
both the total coverage probability and the channel coverage probability are higher,
when the TX density is lower. This is because more interfering TXs exist if TX den-
sity increases.

5.5.2 Effect of PB Transmit Power

Figure 5.3(a) illustrates the effect of PB transmit power Pp on the total coverage
probability and channel coverage probability, with different radius of the LOS region
Rmin = 50m, 100m. The simulation results are also plotted in the figure, which are
averaged over 108 Monte Carlo simulation runs. The accuracy is between 3% to 8%,
which again validates the proposed model. Hence, in the subsequent figures in the
chapter we only show the analytical results and discuss the insights.

Figure 5.3(b) plots the total coverage probability against the transmit power of
PB. We also plot an asymptotic result when Pp approaches infinity. This result is
obtained as follows. As Pp approaches infinity, if one or more PBs fall into the LOS
or NLOS region of a TX, this TX will be active and transmit with a power of Pt =

min( τ
1−τ Pmax

1 , Pmax
2 ). Hence, the asymptotic power coverage probability is equivalent

to the probability that at least one PB falls into the LOS or NLOS region of the TX,
which is given by

lim
Pp→∞

PP
cov = 1−exp

(
−πλpR2

max

)
. (5.25)

The asymptotic conditional channel coverage probability and the asymptotic total cov-
erage probability can be found by (5.17) and (5.24) respectively with the portion of
TXs at the nth level as

lim
Pp→∞

kn =

0, n = 0, 1, 2, ..., N − 1

PP
cov, n = N

. (5.26)

From the figure, we can see that the analytical and asymptotic results converge as Pp

gets large, which validates the derivation of the asymptotic results. In addition, in
Figure 5.3(b), we have marked the safe RF exposure region with a PB transmit power
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Figure 5.3: Coverage probabilities versus PB transmit power Pp.

less than 51 dBm, equivalently power density smaller than 10 W/m2 at 1 m from the
PB [88]. We will discuss in detail later in the feasibility study in Section 5.5.5.

Insights: Figure 5.3(a) shows that: (i) The channel coverage probability first slightly
decreases and then increases with the increase of Pp. This can be explained as follows.
At first, both the transmit power of the desired TX and the number of interfering TX
increase with Pp. The interplay of this two factors results in the slightly decreasing
trend for the channel coverage probability. As Pp further increases, the increase in the
number of interfering TX is negligible, while the transmit power of the desired TX
continues to increase, which leads to the increase of the channel coverage probability.
(ii) The total coverage probability increases as PB transmit power Pp increases. When
Pp is small, the desired TX might not receive enough power to activate the information
transmission process. So the total coverage probability is small and is limited by the
power coverage probability. When Pp is large, the channel coverage probability be-
comes the dominant factor in determining the total coverage probability. Hence, even-
tually the channel coverage probability and total coverage probability curves merge.
(iii) The total coverage probability increase with Rmin, because more PBs falls into
the LOS region and the path-loss is less severe, which improves the power coverage
probability. The benefit of increasing the radius of the LOS region is less significant
for the channel coverage probability.
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Figure 5.5: Total coverage probability
versus the numbers of antenna elements
at TX and RX Nt and Nr with different

numbers of antenna elements at PB.

5.5.3 Effect of Directional Beamforming at PB, TX and RX

Figure 5.4 plots the total coverage probability and channel coverage probability against
the power circuit activation threshold of TX for different beamforming parameters at
TX and RX, i.e., [20 dB, −10 dB, 30o] and [10 dB, −10 dB, 45o].

Insights: Figure 5.4 shows that, for both sets of beamforming parameters, as the
power circuit activation threshold γPT increases, the channel coverage probability is
always increasing, while the total coverage probability stays roughly the same at first
and then decreases. This can be explained as follows. When γPT increases, the power
coverage probability decreases. The reduction in the number of active TXs improves
the channel coverage probability. With regards to the total coverage probability, its
trend is determined by the interplay of channel coverage probability and power cov-
erage probability. At first, the drop in power coverage is relatively small as shown in
Figure 5.1; so the total coverage probability is almost unchanged. After a certain point,
the power coverage probability drops a lot, which mainly governs the total coverage
probability. Hence, the total coverage probability decreases later on.

Comparing the curves for the different beamforming parameters, we can see that
TX and RX with [20 dB, −10 dB, 30o] gives a higher total coverage probability in the
low power circuit activation threshold region. This is because a narrower main lobe
beam-width gives a larger main lobe gain and makes less interfering TXs fall into its
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main lobe which results in higher channel coverage probability. However, the total
coverage probability is limited by the power coverage probability when γPT is large.

Impact of number of antenna elements: The beamforming model adopted in this
chapter can be related to any specific array geometry by substituting the appropriate
values for the three beamforming parameters. For instance, a uniform planar square
array with half-wavelength antenna element spacing can be used at the PBs, TXs and
RXs. The values for the main lobe antenna gain Gmax

a , side lobe antenna gain Gmin
a

and main lobe beamwidth θa depend on the number of the antenna elements Na and
can be calculated by using the equations below [70]:

Gmax
a = Na, Gmin

a =

√
Na −

√
3

2πNa sin(
√

3
2
√
Na

)
√
Na −

√
3

2π sin(
√

3
2
√
Na

)
, θa =

√
3√
Na

, (5.27)

where a = p for PB, a = t for TX and a = r for RX.

Figure 5.5 plots the total coverage probability versus the numbers of antenna ele-
ments at the TX and RX Nt and Nr with different PB antenna element number Np.
The figure shows that the total coverage probability increases with the numbers of an-
tenna elements at the TX and RX, which agrees with our previous findings. However,
under our considered system parameters, the total coverage probability stays roughly
the same after having more than about 15 TX and RX antenna elements, as the side
lobe antenna gain and the main lobe beamwidth stay almost constant with further in-
crease in the number of antenna elements. In addition, the number of antenna elements
at the PB does not significantly impact the total coverage probability.

5.5.4 Effect of Allowed Maximum Harvested Power at TX

Figure 5.6 plots the total coverage probability and channel coverage probability against
the allowed maximum harvested power of TX Pmax

1 for different time switching ratios
0.2, 0.5 and 0.8. Note that both the time switching ratio and the allowed maximum
harvested power do not affect the power coverage probability.

Insights: Figure 5.6 shows that the channel coverage probability and the total cov-
erage probability both first increase with Pmax

1 , then decrease. The rise of the channel
coverage probability is because the possible transmit power of the desired TX increases
with its allowed maximum harvested power. However, as Pmax

1 further increases, the
accumulated harvested energy during the power transfer phase is higher and the trans-
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Figure 5.6: Channel coverage probabil-
ity and total coverage probability versus
allowed maximum harvested power Pmax
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with different time switching ratios.
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Figure 5.7: Channel coverage probabil-
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maximum TX transmit power Pmax
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different PB transmit power with the al-
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being 50 dBm.

mit power of other active TX also goes up. As a result, the interfering power received
at the RX is higher and the channel coverage probability decreases. The channel cov-
erage probability will converge to a constant value as Pmax

1 increases even further,
because the maximum transmit power of active TX has limited the channel perfor-
mance.

Comparing the curves for different τ, we can see that for a given maximum har-
vested power of TX Pmax

1 , increasing τ improves the coverage probabilities. When
τ is higher, more energy is captured during the power transfer phase. Therefore, the
transmit power of active TX is now limited by the maximum transmit power Pmax

2 . As
a result, the channel coverage probability and total coverage probability converge and
do not vary much with the changes in the allowed maximum harvested power.

5.5.5 Feasibility of PB-assisted mmWave Wireless Ad hoc Net-

works

Finally, we investigate the feasibility of PB-assisted mmWave wireless ad hoc network.
Figure 5.7 is a plot of the total coverage probability and channel coverage probability
versus maximum TX transmit power Pmax

2 with varied PB transmit power, 50 dBm
and 30 dBm. To better highlight the impact of the maximum transmit power at TX,
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we have set Pmax
1 equal to 50 dBm which is much higher than Pmax

2 . From the figure,
we can see that the channel coverage probability and total coverage probability do not
change much with the considered maximum TX transmit power, which means that the
PMF of the transmit power for the desired TX remains almost the same. Note that the
power coverage probability is independent of the maximum transmit power of TX.

Insight: From Figure 5.7, the total coverage probability and the channel coverage
probability are around 90% if Pp is 50 dBm. If PB transmits with a constant power
of 50 dBm, the power density at a distant of 1 m from the PB is 7.95 W/m2. This
power density is smaller than 10 W/m2, which is the permissible safety level of hu-
man exposure to RF electromagnetic fields based on IEEE Standard. Under this safety
regulation, the maximum permissible PB transmit power would be 51 dBm. We have
marked this value in Figure 5.3(b). From Figure 5.3(b), we can see that the total cover-
age probability with a PB transmit power less than 51 dBm can be up to 93.4% of the
maximum system performance, as given by the asymptotic analysis in Section 5.5.2,
based on our considered system parameters. The results in Figure 5.3(b) and Figure 5.7
show that PB-assisted mmWave ad hoc networks are feasible under practical network
setup.

5.6 Summary

In this chapter, we have presented an approximate yet accurate model for PB-assisted
mmWave wireless ad hoc networks, where TXs harvest energy from all PBs and then
use the harvested energy to transmit information to their corresponding RXs. We first
obtained the Laplace transform of the aggregate received power at the TX to compute
the power coverage probability. Then, the channel coverage probability and total cov-
erage probability were formulated based on discretizing the transmit power of TXs
into a finite number of levels. The simulation results confirmed the accuracy of the
proposed model. The results have shown that the total coverage probability improves
by increasing the transmit power of PB, narrowing the main lobe beam-width and
decreasing the allowed maximum harvested power at the active TX. Our results also
showed that PB-assisted mmWave ad hoc network is feasible under realistic setup con-
ditions.
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Chapter 6

Conclusions and Future Research
Directions

In this chapter, we summarize the general conclusions drawn from this thesis. We also
outline some future research directions arising from this work.

6.1 Conclusions

This thesis has investigated two critical requirements for beyond 5G wireless commu-
nication networks, which are network flexibility and long battery life. We provided
insights on how these two emerging requirements can be achieved by incorporating
drone communication and WPT into the wireless communication systems.

The first half of this thesis focused on studying two important applications of
drones for enhancing the flexibility of communication networks. In Chapter 2, a cel-
lular network with underlay drone cell to provide coverage to IoT devices inside a
stadium was considered for temporary event scenarios. We developed a general an-
alytical framework to analyze the uplink coverage probability of the TBS and the
ABS and the downlink coverage probability of the TsUE and the AsD in terms of
the Laplace transforms of the interference power distribution at the TBS, the ABS, the
TsUE and the AsD and the three-dimensional distance distribution between the ABS
and an i.u.d. AsD and between the ABS and an i.u.d. TsUE. The proposed framework
is able to accommodate any aerial channel model. Our results revealed the effect of
different aerial channel environments on the network performance and provided de-
sign guidelines for best deployment altitude of the drone. For urban environment and
dense urban environment, the ABS was found to be best deployed at 200 m or lower
regardless of the distance between the center of the stadium and the TBS. However,
for suburban environment and high-rise urban environment, the best ABS deloyment
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altitude depends on the distance between the center of the stadium and the TBS.

In Chapter 3, we explored another use case for drones in wireless networks, which
is emergency information dissemination in public safety scenarios. A drone-assisted
multihop multicast D2D network was considered where a drone is depolyed to broad-
cast an emergency alert message to all terrestrial D2D users at the first time slot. After
that, the drone leaves and the D2D users that have successfully received the message
become the active TX for the next time slot to multicast the emergency alert mes-
sage. We studied the link coverage probability and the mean local delay for a D2D
user. We derived the key factors that determine the link performance, the link success
probability, the network outage probability and the Laplace transform of the aggre-
gate received signal power. An approximate analytical framework for the link success
probability, the network success probability and the network coverage probability was
proposed and its accuracy was verified by the simulation results. Our results illustrated
that raising the deployment height and the transmit power of the drone and increasing
the density and the sensitivity radius of the D2D users lead to higher link coverage
probability and network coverage probability and lower mean local delay.

The second half of this thesis looked into WPT networks. A PB-assisted wireless
ad hoc network under mmWave transmission was considered, where TXs adopt the
harvest-then-transmit protocol, i.e., they harvest energy from all PBs and then use the
harvested energy to transmit the information to their desired RXs. In Chapter 4, we
studied the characteristic of the aggregate received power by deriving the MGF and
the nth cumulant of the aggregate received power at the reference TX. The aggre-
gate received power plays a key role in determining the overall network performance,
which was discussed in Chapter 5. Furthermore, we tested the accuracy of well known
closed-form distributions to model the aggregate received power and found that the
lognormal distribution provides the best CCDF approximation compared to other dis-
tributions commonly considered in the literature.

Finally, in Chapter 5, we proposed a tractable analytical framework to investigate
the power coverage probability, the channel coverage probability and the total cover-
age probability of a PB-assisted mmWave ad hoc network taking the power circuit ac-
tivation threshold, the allowed maximum harvested power and the maximum transmit
power into account. In the proposed framework, the power coverage probability was
efficiently and accurately computed by numerical inversion using the Laplace trans-
form of the aggregate received power at the typical TX. Then, we expressed the chan-
nel coverage probability and the total coverage probability by discretizing the transmit
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power of TXs into a finite number of levels in the log scale. Our results showed that
the total coverage probability improves by (i) increasing the transmit power of PB,
(ii) narrowing the main lobe beam-width and (iii) decreasing the allowed maximum
harvested power at the active TX. Our results also revealed that it is feasible and safe
to power TXs in a mmWave ad hoc network using PBs under realistic setup.

6.2 Future Work

A number of future research directions arise from the work presented in this thesis.
The following major research directions can be the focus of future work:

Multiple drones: In Chapter 2 and Chapter 3 of this thesis, we considered a single
drone acting as a base station or a TX. Due to the maneuverability and the increasing
affordability of commercial drones, multiple drones can be deployed at the same time
to provide lower latency communications. In this case, user association scheme is a
key research problem. Although a drone is closer to the user, it may have a smaller
elevation angle which means the link between the drone and the user has a higher
chance of being NLOS. Therefore, the classic user association scheme, in which the
user is considered to be connected to the base station with the shortest distance, re-
quires a redesign. Resource management is another critical design challenge in the
communication systems with multiple drones. In particular, there is a need for devel-
oping frameworks to dynamically manage various network resources, including trans-
mit power, load balancing, user scheduling, MAC access protocols and bandwidth and
spectrum sharing.

DUEs: Besides the use of drones as ABSs, they can also act as DUEs for differ-
ent applications. For instance, DUEs play key roles in cargo transport tasks. Amazon
is working on providing their customers with a rapid parcel delivery service using
drones [109]. Another important application of DUEs is for search and rescue op-
erations, where drones search for and locate the people in distress and transmit the
emergency information to terrestrial stations. Incorporating DUEs in the current com-
munication systems introduces new research problems. Specifically, the systems need
to be innovated to account for mobility, frequent handovers, strong LOS interference
and low latency requirements of drones. Some important open problems include de-
signing dynamic handover algorithms to manage frequent handovers due to mobility of
the drones, developing robust interference reduction techniques for large scale deploy-
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ment of DUEs and providing effective solutions for meeting the latency requirements
of DUEs in different applications.

Visible light WPT: Light emitting diode (LED) is an emerging standard for light-
ing needs in everyday life. Comparing to compact fluorescent lamps and incandescent
light bulbs, LEDs require lower power for their operation and last much longer. An in-
teresting application of these devices is that they can be utilized for data transmission,
while also providing illumination. Visible light communication refers to communi-
cation in the visible part of the electromagnetic spectrum. In this area, LEDs have a
great potential for applications, due to their relatively simple design, energy efficiency
and cost effective. In addition to their capability for information transmission, LEDs
can be adopted for WPT. A significant feature of LEDs is that the light is directional
which forms natural beamforming. Most importantly, the wireless channels between
LED TXs and RXs are guaranteed to be LOS links for visible light communication,
and hence, the WPT efficiency can be improved. The design consideration and system
performance of visible light WPT using LEDs can be the subject of future work.

Wireless powered drones: In practical systems, drones are power-hungry devices.
The flight time of small commercial drones is usually 20-30 minutes, while some
large drones can spend hours in the air without recharging or refueling. For drone
BSs, the onboard power supply is required to support the operation and the payload
of both the drone and the additional mounted wireless communication hardware, such
as antenna arrays, amplifier and processor. Therefore, the operation duration of drone
BSs is further limited. The short flight time of the existing commercial drones is one
of the major practical factors which limit the massive deployment of drones in the
cellular networks [110]. In order to provide a more reliable communication network
with drones without frequent recharging, a promising way is to power the drones by
harvesting energy from the RF signal transmitted by PBs on the ground or by satellites.
To the best of our knowledge, there are very limited research works considering the
use of drones to power ground mobile terminals, but there is no available research
work analyzing the performance of wireless powered drones.
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Appendix A

This appendix contains the proofs needed in Chapter 2.

A.1 Proof of Lemma 1

Following the definition of the Laplace transform, the Laplace transform of the inter-
ference power distribution at the TBS is expressed as
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A )]

=EP,d

[
1

1 + sPAsDd−αT
A

]
, (A.1)

where the third step comes from the fact that Hu
A follows exponential distribution with

unit mean. Conditioned on the value of h, there are six possible cases for LIu
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where dA is expressed in terms of z, h, d, and θ by cosine rule in (A.2a) and (A.2b) is
obtained by taking the expectation over Θ, which has a conditional PDF as fΘ(θ|z) =
1

2π for h 6 z 6
√

R2
2 + h2.

Following similar steps, we can work out the Laplace transform of the interference
power distribution at the TBS for the other five cases.
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A.2 Proof of Lemma 2

The relation between the length of the AsD to ABS linkZA with its projection distance
on the ground rA is ZA =

√
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A + h2. The distance distribution of the projection

distance on the ground is frA(r) =
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2
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A.3 Proof of Lemma 3

Following the definition of the Laplace transform, the Laplace transform of the inter-
ference power distribution at the ABS is expressed as
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where (A.4a) comes from the fact that Gu
T follows Gamma distribution with parameter

mL and mN for LOS and NLOS aerial link respectively. In (A.4b), dT is expressed in
terms of ZT, h, d, and Ω by cosine rule.
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Figure A.1: Illustration of a disk region of radius R1 with a circular hole with radius
R2. Their centers are d apart.

A.4 Proof of Lemma 4

The relation between the length of the TsUE to ABS link ZT with its projection
distance on the ground rT is ZT =

√
r2

T + h2. In order to find the distance dis-
tribution of ZT, the distance distribution of rT is needed. As shown in Figure A.1,
the total area of the region where the TsUE is located at is πR2
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A.5 Proof of Theorem 2

The uplink coverage probability of the ABS is given by
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where (A.6a) comes from the fact that Gu
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Appendix B

This appendix contains the proofs needed in Chapter 3.

B.1 Proof of Theorem 7

Following the definition of the Laplace transform, the Laplace transform of the aggre-
gate received signal power distribution at the D2D user Xi is expressed as
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Conditioned on the location of the D2D user Xi, there are two possible cases for
LPn
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(s). When Xi 6 RC− RD, the Laplace transform of the aggregate received signal

power distribution at the D2D user equals to
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Figure B.1: Illustration of the bounded sensitivity region (shaded blue) of a D2D user
(red triangle) located more than RC − RD m away from the ground projection of the

drone (blue triangle).

where (B.2a) follows the probability generating functional of PPP and Γ(·) in (B.2b)
denotes the complete Gamma function. Using the fact that H follows an exponential
distribution, (B.2c) can be worked out by taking the expectation over H. 2F1(·, ·; ·; ·)
is the Gaussian (or ordinary) hypergeometric function.

When RC − RD < Xi 6 RC, the Laplace transform of the aggregate received
signal power distribution at the D2D user is given as
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where the first term A1 corresponds to the D2D active TXs falling at the ring with
radius from 0 to RC − Xi and the second term A2 corresponds to the D2D active TXs
falling at the arc with angle 2ω and radius from RC−Xi to RD as shown in Figure B.1.

Using cosine rule, ω = arcsec
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as in (B.2c).
The second term A2 is evaluated as
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𝐵𝑖 𝐵𝑖

Figure B.2: Illustration of the bounded sensitivity regions of D2D user Xi.

where (B.4) comes from the fact that H follows exponential distribution with unit
mean.

Combining (B.2c), (B.3) and (B.4), we can arrive at Theorem 7.

B.2 Proof of Lemma 8

Following the simplification assumption we made in Remark 3, the approximated link
success probability for D2D user Xi at Tn for n = 1, 2, 3... is expressed as

P̃n
s (Xi) = 1− Pr(N(Bi) = 0) = 1− exp(−λn

i |Bi|), (B.5)

where Bi is the bounded sensitivity region of D2D user Xi and N(Bi) is a random
counting measure that counts the number of points falling in Bi. For a homogeneous
PPP, N(Bi) has a special case as shown above. |·| is the Lebesgue measure, which is
the area in a two-dimensional case.

Therefore, the key is to compute the area of the bounded sensitivity region of D2D
user Xi, |Bi|. From Figure B.2, we can see that there are two different cases based on
the location of the D2D user Xi. When Xi 6 RC− RD, the bounded sensitivity region
Bi forms a circle with radius RD. Hence, its area equals to

|Bi| = πR2
D. (B.6)
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When RC−RD <Xi6RC, the bounded sensitivity region Bi becomes an irregular
ellipse. Using trigonometry, we can find that the area of Bi can be evaluated as
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Substituting (B.6) and (B.7) into (B.5), we can arrive at Lemma 8.
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This appendix contains the proofs needed in Chapter 4.

C.1 Proof of Proposition 4

Following the definition of MGF,

MPagg(s) = E [exp(−sPagg)]

= E[exp(−sP ∑
Xi∈φ

GihiPL(ri))]

= E[exp(−sP ∑
06ri<1

GihiPL(ri))]

×E[exp(−sP ∑
16ri<Rmin

GihiPL(ri))]

×E[exp(−sP ∑
Rmin6ri<Rmax

GihiPL(ri))]

= exp
(
−
∫ π

−π

∫ 1

0
Ehi ,Gi [1− exp(−sPGihi)]λrdrdθ

)
︸ ︷︷ ︸

A1

×exp
(
−
∫ π

−π

∫ Rmin

1
Ehi ,Gi [1−exp(−sPGihir−αL)]λrdrdθ

)
︸ ︷︷ ︸

A2

×exp
(
−
∫ π

−π

∫ Rmax

Rmin

Ehi ,Gi [1−exp(−sPGihiβr−αN)]λrdrdθ

)
︸ ︷︷ ︸

A3

, (C.1)

where Ehi,Gi represents the expectation with respect to hi and Gi.
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The first term A1 is evaluated as follows:

A1 = exp
(
−πλ

(
1−Ehi ,Gi [exp(−sPGihi)]

))
= exp

(
−πλ

(
1−EGi

[∫ ∞

0
exp(−sPGih) fhL(h)dh

]))
= exp

(
−πλ + πλmmEGi

[
(m + sPGi)

−m])
= exp

(
−πλ + πλmm

4

∑
k=1

(m + sPGk)
−m pk

)
, (C.2)

where we use the fact that the link in LOS state experiences Nakagami-m fading with
fhL(h) =

mmhm−1 exp(−mh)
Γ(m)

.
The second term A2 is evaluated as follows:

A2 = exp
(

πλEhi ,Gi [1− exp(−sPGihi)]− πλR2
minEhi ,Gi

[
1− exp(−sR−αL

min PGihi)
]

−πλEhi ,Gi

[
(sPGihi)

δL γ(1−δL, sPhiGi)
]
+πλEhi ,Gi

[
(sPGihi)

δL γ

(
1−δL,

sPhiGi

RαL
min

)])
(C.3a)

= exp

(
πλ−πλpkmm

4

∑
k=1

(m + sPGk)
−m−πλR2

min+
4

∑
k=1

πλR2
min pkmm(m+sR−αL

min PGk)
−m

+ πλ
4

∑
k=1

(sPGk)
δL mm+1(sPGk)

−δL−mαL

(2 + mαL)
2F1

(
1 + m,m + δL;1 + m + δL;− m

sPGk

)
pk

−πλ
4

∑
k=1

(sPGk)
δL mm+1αL pk

(R−αL
min sPGk)δL+m(2 + mαL)

2F1

(
1+m,m+δL;1+m+δL;−RαL

minm
sPGk

))
, (C.3b)

where (C.3a) follows from changing variables and integration by parts and (C.3b) is
obtained after taking the expectation over hL then Gi.

Similarly, the third term A3 can be worked out by taking the expectation over hN,
which has a PDF as fhN(h) = exp(−h). The details are omitted for sake of brevity.
Finally, the MGF expression in Proposition 4 is obtained by substituting A1, A2 and
A3 into (C.1).
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C.2 Proof of Proposition 5

We cannot obtain the nth cumulant of Pagg by directly substituting (4.6) into (4.10), as
the cumulant becomes incomputable at s = 0. Instead, we use the integration form of
the MGF in (C.1) and substitute in (4.10) to obtain

κPagg(n)=(−1)n+1
(

dn

dsn

π∫
−π

1∫
0

Ehi ,Gi [1−exp(−sPGihi)]λrdrdθ
∣∣∣
s=0︸ ︷︷ ︸

B1

+
dn

dsn

π∫
−π

Rmin∫
1

Ehi ,Gi [1− exp(−sPGihir−αL)]λrdrdθ
∣∣∣
s=0︸ ︷︷ ︸

B2

+
dn

dsn

π∫
−π

Rmax∫
Rmin

Ehi ,Gi [1−exp(−sPGihiβr−αN)]λrdrdθ
∣∣∣
s=0︸ ︷︷ ︸

B3

)
, (C.4)

where the first term B1 is evaluated as follows:

B1 =
∫ π

−π

∫ 1

0
Ehi ,Gi

[
dn1− exp(−sPGihi)

dsn

∣∣∣
s=0

]
λrdrdθ

=
∫ π

−π

∫ 1

0
Ehi ,Gi

[
(−1)n+1(PGihi)

n
]

λrdrdθ

=(−1)n+1PnπλEhi [h
n
i ]EGi [G

n
i ]

=(−1)n+1Pnπλm−nm(n)

4

∑
k=1

Gn
k pk. (C.5)

Similarly, the terms B2 and B3 can be derived by following similar steps as above.
Substituting B1, B2 and B3 into (C.4) gives the nth cumulant expression in Proposition
5.
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This appendix contains the proof needed in Chapter 5.

D.1 Proof of Proposition 6

By substituting (5.15) into (5.16), we can express the conditional channel coverage
probability as

PC
cov(γTR) =Pr

(
PX0 D0h0PL(d0)

∑Xi∈φactive
PXi Di0hi0PL(Xi) + σ2 > γTR

)

≈Pr

(
PX0 D0h0PL(d0)

∑N
n=0 ∑Xi∈φn

t
Pn

t Di0hi0PL(Xi) + σ2
> γTR

)
(D.1a)

=Pr
(

h0 >
γTR(IX + σ2)

PX0 D0PL(d0)

)
=EPX0 ,IX

[
1− Fh0

(
γTR(IX + σ2)

PX0 D0PL(d0)

)]
, (D.1b)

where approximation in (D.1a) comes from our power level discretization,
IX = ∑N

n=0 ∑Xi∈φn
t

Pn
t Di0hi0PL(Xi) and Fh0(·) is the CDF of the fading power

gain on the reference TX-RX link. Since the desired link is assumed to experience
Nakagami-m fading with integer m, the CDF of h0 has a nice form, which is
Fh0(h) = 1−∑m−1

l=0
1
l! (mh)l exp(−mh).
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Hence, we can re-write (D.1b) as

PC
cov(γTR) = EPX0,IX

[
m−1

∑
l=0

1
l!

(
m

γTR(IX + σ2)

PX0 D0PL(d0)

)l

exp
(
−m

γTR(IX + σ2)

PX0 D0PL(d0)

)]

=
N

∑
n=0

m−1

∑
l=0

1
l!

EIX

[(
m

γTR(IX+σ2)

Pn
t D0PL(d0)

)l

exp
(
−m

γTR(IX+σ2)

Pn
t D0PL(d0)

)]
kn

PP
cov(γPT)

, (D.2)

where the PMF of PX0 is Pr(PX0 = Pn
t ) =

kn
PP

cov(γPT)
in (D.2), as we assume that the

desired TX is active.
The general form of the Laplace transform of IX + σ2 is

LIX+σ2(s) = EIX [exp(−s(IX + σ2))].

Taking lth derivative with respect to s, we achieve

dl
dslLIX+σ2(s) =EIX

[
dl
dsl exp(−s(IX + σ2))

]
=EIX

[
(−IX−σ2)l exp(−s(IX+σ2))

]
. (D.3)

Comparing (D.3) with the expectation term in (D.2), we have

PC
cov(γTR) =

N

∑
n=0

m−1

∑
l=0

(−s)l

l!
dl
dslLIX+σ2(s)

kn

PP
cov(γPT)

, (D.4)

where s = mγTR
Pn

t D0l(d0)
. Hence, we arrive the result in Proposition 6.
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