88 research outputs found

    Enhanced Dynamic Frequency Hopping Performance in Cognitive Radio IEEE 802.22 Standard

    Get PDF
    IEEE 802.22 is a Cognitive Radio based standard designed for Wireless Regional Area Networks (WRAN) for the purpose of providing wireless broadband access to rural and remote areas. The standard relies on the utilization of the unoccupied spectrum that became available after the TV signal was converted from analog to digital. In this thesis, we present an enhanced scheme for the operation of the Dynamic Frequency Hopping (DFH) technique in the IEEE 802.22 standard for WRANs. The performance of the DFH is analyzed thoroughly for various types of channels and for a Multiple-input Multiple-output (MIMO) systems. The core of this research is based on the coexistence of the incumbent users and the WRANs in the TV white spaces (TVWS). The proposed technique, aims at protecting the licensed users from interfering with the cognitive broadband access in the TV spectrum. In order to achieve that, spectrum sensing is performed in the intended working channel in DFH while spectrum monitoring with the energy-ratio (ER) algorithm is applied during the WRAN data transmission in the currently working channel. Hence, in the DFH-ER algorithm the reappearance of an incumbent user in a band occupied by the WRANs would be detected immediately, providing interference free performance for the licensed user as well as reliable data transmission for the unlicensed one. Simulation results of the proposed DFH-ER technique compared to the conventional DFH scenario exemplify the enhancement of the WRAN data transmission while protecting the incumbent users

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Comparative Analysis between OFDMA and SC-FDMA: Model, Features and Applications

    Get PDF
    This paper represents Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SCFDMA) techniques along with the Orthogonal Frequency Division Multiplexing (OFDM). The concept, model, features, scopes, applications and limitation for both types of multiple access have been discussed in this paper. In present 4G and 5G cellular communication system, both OFDMA and SC-FDMA have a notable applications. Dividing the available spectrum into overlapping orthogonal narrowband sub bands, OFDMA ensures high spectral efficiency. Besides by allocating multiple sub carriers to each user, OFDMA provides high data rate, reduces inter blockage interference, minimizes frequency selective fading and so on. But it suffers from high peak to average power ration (PAPR) which results in high power consumption at the transmitter end. SC-FDMA is one of the most promising techniques to solve the PAPR problems. Besides it also removes the capacity problem of wireless cellular systems and provides higher spectral efficiency, depending on multiplexing signals based on their spatial signature. On the other hand, in OFDM due to fixed subcarrier allocations for each user and its performance can suffer from narrowband fading and interference

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    • …
    corecore