1,902 research outputs found

    Performance Analysis of Bluetooth Network in the Presence of WI-FI System

    Get PDF
    Many wireless technologies used to build local or personal area network (WLANs or WPANs) operate in the 2.4 GHz ISM band. Due to mutual interference, the coexistence of such devices working at the same time in the same area can be troublesome. This paper reports the result of Bluetooth performance  with 802.11b interference in term of BER of Bluetooth network. This study employed Agilent Advance Design system 2011 (ADS 2011) as methodology. The result revealed how Bluetooth network suffered degradation in terms of BER and the IEEE 802.11b interfering power and frequency offset. This study confirm previous finding. Further, the study recommends that the data rate of IEEE 802.11b should be taken into account in the performance evaluation of the Bluetooth network. Keywords: Bluetooth, Performance, and WI-FI syste

    Interference of 802.11B WLAN and Bluetooth: Analysis and Performance Evaluation

    Get PDF
    IEEE 802.11 and Bluetooth, these two operating in the unlicensed 2.4 GHz frequency band are becoming more and more popular in the mobile computing world. The number of devices equipped with IEEE 802.11 and Bluetooth is growing drastically. Result is the number of co-located devices, say within 10 meters, grown to a limit, so that it may causes interference issues in the 2.4 GHz radio frequency spectrum. Bluetooth supports both voice synchronous connection oriented (SCO) data and asynchronous connection less (ACL) packets. In this paper, we investigate the interference issues of 2.4 GHz frequency band. In addition, this paper presents a new Bluetooth voice packet Synchronous Connection Oriented with Repeated Transmission (SCORT) scheme to optimize the performance of 2.4 GHz frequency band by minimizing the interference between Bluetooth and 802.11 wireless networks. For the sake of experimental verifications, we provide a comprehensive simulation results using Matlab Simulink

    Bluetooth and IEEE 802.11b/g Coexistence Simulation

    Get PDF
    This paper deals with the coexistence simulation of Bluetooth and Wi-Fi physical layers. Bluetooth and Wi-Fi systems share the same ISM 2.4 GHz frequency band and therefore using both systems in the same area may cause interference. A model of Bluetooth and IEEE 802.11b/g physical layers was made in Mathworks Matlab Simulink environment. A new simulation of Bluetooth and Wi-Fi coexistence is presented. The results in graphical form are introduced as a dependence of BER on Eb/N0 and BER on power ratio of Bluetooth and Wi-Fi systems

    Design and evaluation of coexistence mechanisms for Bluetooth and IEEE 802.11b systems

    Get PDF
    Short-range wireless technologies are becoming increasingly important in enabling useful mobile applications. Bluetooth and IEEE 802.11b standards are the most commonly deployed technologies for WPAN and WLAN. However, because both standards share the same unlicensed ISM (Industrial, Scientific, Medical) radio spectrum, severe interference is inevitable and performance can be impaired significantly when heterogeneous devices using the two technologies come into close proximity. The most notable solution to this problem is a frequency domain noncollaborative coexistence mechanism called adaptive frequency hopping (AFH). However, we find that the efficiency of the 'channel classification' sub-process in noncollaborative mechanisms is by and large ignored in the literature. Moreover, we also find that there is no system resources awareness and no interference source genre concerns in IEEE 802.15 Task Group 2 AFH (TG2 AFH) design. Thus, we suggest a new approach called ISOAFH (Interference Source Oriented AFH). With the above considerations, we propose a customized channel classification process, thereby simplifying the time and space complexity of the mechanism. Through our detailed implementation of various coexistence mechanisms in MATLAB Simulink, it is observed that TG2 AFH performance is sensitive to memory and power limitations, while ISOAFH is much less sensitive to these constraints and can keep a much lower channel collision rate. On the other hand, We also study some open issues of a time domain mechanism called MDMS (Master Delay MAC Scheduling). We compare different coexistence mechanisms and find that the performance of each approach very much depends on the efficiency of its sub-processes.published_or_final_versio

    Interference mitigation strategy design and applications for wireless sensor networks

    Get PDF
    The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard presents a very useful technology for implementing low-cost, low-power, wireless sensor networks. Its main focus, which is to applications requiring simple wireless connectivity with relaxed throughout and latency requirements, makes it suitable for connecting devices that have not been networked, such as industrial and control instrumentation equipments, agricultural equipments, vehicular equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency band makes the technique successful for fast and worldwide market deployments. However, concerns about interference have arisen due to the presence of other wireless technologies using the same spectrum. Although the IEEE 802.15.4 standard has provided some mechanisms, to enhance capability to coexist with other wireless devices operating on the same frequency band, including Carrier Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel alignment, and low duty cycle, it is essential to design and implement adjustable mechanisms for an IEEE 802.15.4 based system integrated into a practical application to deal with interference which changes randomly over time. Among the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have attracted most concerns because of their high transmission power and large deployment in both residential and office environments. This thesis aims to propose a methodology for IEEE 802.15.4 wireless systems to adopt proper adjustment in order to mitigate the effect of interference caused by IEEE 802.11 systems through energy detection, channel agility and data recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is proposed to enable IEEE 802.15.4 systems to maintain normal communications using the means of consecutive transmissions, when the system s default mechanism of retransmission is insufficient to ensure successful rate due to the occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and accordingly adjust system parameters for the purpose of achieving optimized communication effectiveness during time of interference without relying on hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data recovery mechanism is proposed for transport control to be applied for recovering lost data by associating with the proposed strategies to ensure the data integrity when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical case is studied to discuss how to design a sustainable system for home automation application constructed on the basis of IEEE 802.15.4 technique. Finally, a comprehensive design is proposed to enable the implementation of an interference mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of building fire safety monitoring system. The proposed strategies and system designs are demonstrated mainly through theoretical analysis and experimental tests. The results obtained from the experimental tests have verified that the interference caused by an IEEE 802.11 system on an IEEE 802.15.4 system can be effectively mitigated through adjusting IEEE 802.15.4 system s parameters cooperating with interference pattern estimation. The proposed methods are suitable to be integrated into a system-level solution for an IEEE 802.15.4 system to deal with interference, which is also applicable to those wireless systems facing similar interference issues to enable the development of efficient mitigation strategies

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions
    corecore