3 research outputs found

    Performance modeling of embedded applications with zero architectural knowledge

    Get PDF
    Performance estimation is a key step in the development of an embedded system. Normally, the performance evaluation is performed using a simulator or a performance mathematical model of the target architecture. However, both these approaches are usually based on the knowledge of the architectural details of the target. In this paper we present a methodology for automatically building an analytical model to estimate the performance of an application on a generic processor without requiring any information about the processor architecture but the one provided by the GNU GCC Intermediate Representation. The proposed methodology exploits the linear regression technique based on an application analysis performed on the Register Transfer Level internal representation of the GNU GCC compiler. The benefits of working with this type of model and with this intermediate representation are three: we take into account most of the compiler optimizations, we implicitly consider some architectural characteristics of the target processor and we can easily estimate the performance of portions of the specification. We validate our approach by evaluating with cross-validation technique the accuracy and the generality of the performance models built for the ARM926EJ-S and the LEON3 processor

    Performance Estimation of Task Graphs Based on Path Profiling

    Get PDF
    Correctly estimating the speed-up of a parallel embedded application is crucial to efficiently compare different parallelization techniques, task graph transformations or mapping and scheduling solutions. Unfortunately, especially in case of control-dominated applications, task correlations may heavily affect the execution time of the solutions and usually this is not properly taken into account during performance analysis. We propose a methodology that combines a single profiling of the initial sequential specification with different decisions in terms of partitioning, mapping, and scheduling in order to better estimate the actual speed-up of these solutions. We validated our approach on a multi-processor simulation platform: experimental results show that our methodology, effectively identifying the correlations among tasks, significantly outperforms existing approaches for speed-up estimation. Indeed, we obtained an absolute error less than 5 % in average, even when compiling the code with different optimization levels

    Handling Information and its Propagation to Engineer Complex Embedded Systems

    Get PDF
    Avec l’intérêt que la technologie d’aujourd’hui a sur les données, il est facile de supposer que l’information est au bout des doigts, prêt à être exploité. Les méthodologies et outils de recherche sont souvent construits sur cette hypothèse. Cependant, cette illusion d’abondance se brise souvent lorsqu’on tente de transférer des techniques existantes à des applications industrielles. Par exemple, la recherche a produit divers méthodologies permettant d’optimiser l’utilisation des ressources de grands systèmes complexes, tels que les avioniques de l’Airbus A380. Ces approches nécessitent la connaissance de certaines mesures telles que les temps d’exécution, la consommation de mémoire, critères de communication, etc. La conception de ces systèmes complexes a toutefois employé une combinaison de compétences de différents domaines (probablement avec des connaissances en génie logiciel) qui font que les données caractéristiques au système sont incomplètes ou manquantes. De plus, l’absence d’informations pertinentes rend difficile de décrire correctement le système, de prédire son comportement, et améliorer ses performances. Nous faisons recours au modèles probabilistes et des techniques d’apprentissage automatique pour remédier à ce manque d’informations pertinentes. La théorie des probabilités, en particulier, a un grand potentiel pour décrire les systèmes partiellement observables. Notre objectif est de fournir des approches et des solutions pour produire des informations pertinentes. Cela permet une description appropriée des systèmes complexes pour faciliter l’intégration, et permet l’utilisation des techniques d’optimisation existantes. Notre première étape consiste à résoudre l’une des difficultés rencontrées lors de l’intégration de système : assurer le bon comportement temporelle des composants critiques des systèmes. En raison de la mise à l’échelle de la technologie et de la dépendance croissante à l’égard des architectures à multi-coeurs, la surcharge de logiciels fonctionnant sur différents coeurs et le partage d’espace mémoire n’est plus négligeable. Pour tel, nous étendons la boîte à outils des système temps réel avec une analyse temporelle probabiliste statique qui estime avec précision l’exécution d’un logiciel avec des considerations pour les conflits de mémoire partagée. Le modèle est ensuite intégré dans un simulateur pour l’ordonnancement de systèmes temps réel multiprocesseurs. ----------ABSTRACT: In today’s data-driven technology, it is easy to assume that information is at the tip of our fingers, ready to be exploited. Research methodologies and tools are often built on top of this assumption. However, this illusion of abundance often breaks when attempting to transfer existing techniques to industrial applications. For instance, research produced various methodologies to optimize the resource usage of large complex systems, such as the avionics of the Airbus A380. These approaches require the knowledge of certain metrics such as the execution time, memory consumption, communication delays, etc. The design of these complex systems, however, employs a mix of expertise from different fields (likely with limited knowledge in software engineering) which might lead to incomplete or missing specifications. Moreover, the unavailability of relevant information makes it difficult to properly describe the system, predict its behavior, and improve its performance. We fall back on probabilistic models and machine learning techniques to address this lack of relevant information. Probability theory, especially, has great potential to describe partiallyobservable systems. Our objective is to provide approaches and solutions to produce relevant information. This enables a proper description of complex systems to ease integration, and allows the use of existing optimization techniques. Our first step is to tackle one of the difficulties encountered during system integration: ensuring the proper timing behavior of critical systems. Due to technology scaling, and with the growing reliance on multi-core architectures, the overhead of software running on different cores and sharing memory space is no longer negligible. For such, we extend the real-time system tool-kit with a static probabilistic timing analysis technique that accurately estimates the execution of software with an awareness of shared memory contention. The model is then incorporated into a simulator for scheduling multi-processor real-time systems
    corecore