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RÉSUMÉ

Avec l’intérêt que la technologie d’aujourd’hui a sur les données, il est facile de supposer
que l’information est au bout des doigts, prêt à être exploité. Les méthodologies et outils de
recherche sont souvent construits sur cette hypothèse. Cependant, cette illusion d’abondance
se brise souvent lorsqu’on tente de transférer des techniques existantes à des applications in-
dustrielles. Par exemple, la recherche a produit divers méthodologies permettant d’optimiser
l’utilisation des ressources de grands systèmes complexes, tels que les avioniques de l’Airbus
A380. Ces approches nécessitent la connaissance de certaines mesures telles que les temps
d’exécution, la consommation de mémoire, criteres de communication, etc. La conception de
ces systèmes complexes a toutefois employé une combinaison de compétences de différents
domaines (probablement avec des connaissances en génie logiciel) qui font que les données car-
actéristiques au système sont incomplètes ou manquantes. De plus, l’absence d’informations
pertinentes rend difficile de décrire correctement le système, de prédire son comportement,
et améliorer ses performances.

Nous faisons recours au modèles probabilistes et des techniques d’apprentissage automatique
pour remédier à ce manque d’informations pertinentes. La théorie des probabilités, en partic-
ulier, a un grand potentiel pour décrire les systèmes partiellement observables. Notre objectif
est de fournir des approches et des solutions pour produire des informations pertinentes. Cela
permet une description appropriée des systèmes complexes pour faciliter l’intégration, et per-
met l’utilisation des techniques d’optimisation existantes.

Notre première étape consiste à résoudre l’une des difficultés rencontrées lors de l’intégration
de système: assurer le bon comportement temporelle des composants critiques des systèmes.
En raison de la mise à l’échelle de la technologie et de la dépendance croissante à l’égard des
architectures à multi-cœurs, la surcharge de logiciels fonctionnant sur différents cœurs et le
partage d’espace mémoire n’est plus négligeable. Pour tel, nous étendons la boîte à outils des
système temps réel avec une analyse temporelle probabiliste statique qui estime avec précision
l’exécution d’un logiciel avec des considerations pour les conflits de mémoire partagée. Le
modèle est ensuite intégré dans un simulateur pour l’ordonnancement de systèmes temps réel
multiprocesseurs.

Pour remédier à l’absence des spécification des modules d’un système, nous proposons une
méthodologie permettant d’estimer les performances logicielles. Notre méthode fonctionne
avec un accès limité à la plate-forme matérielle finale sur laquelle le système doit être déployé.
Nous y parvenons en tirant profit de la précision des simulateurs matériels et de la rapidité
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des techniques de régression, permettant ainsi une exploration plus rapide et plus étendue
de l’espace de conception et une vérification rapide du système intégré.

Comme nous reconnaissons l’importance des informations pertinentes pour amener des con-
naissances fondamentales à la mise au point des systèmes complexes, nous concentrons nos
travaux de recherche sur la propagation de l’information et son influence sur la compréhension
et le développement du comportement des systèmes. Bien que cette propriété de l’information
soit depuis longtemps adoptée dans l’étude des systèmes biologiques, elle n’a pas encore été
exploitée dans le contexte des systèmes artificiels. Les systèmes multi-agents, tels que les
essaims de robots et un grand nombre d’applications Internet des objets (IoT), font partis de
cette catégorie dans laquelle la communication entre les agents conduit à un comportement
observé au niveau du système. Avec l’incertitude qui entoure la transmission d’information
entre agents, nous proposons un modèle probabiliste de propagation d’informations qui se
base sur peu d’hypothèses de la propagation, le système ou son environnement. Avec cela,
nous cherchons à révéler le potentiel de l’étude de la propagation de l’information pour ex-
pliquer les événements observés.

Cela ouvre à son tour un champ de potentiel à explorer afin de concevoir des systèmes
plus sûrs, plus prévisibles et optimisés. En fait, nous développons une approche permettant
d’obtenir une description pertinente de systèmes complexes de grande taille sous la forme
d’un simple graphe à partir d’une connaissance limitée des modules du système, afin de
faciliter davantage l’intégration de système et l’accès libre à un large éventail de techniques
proposées dans la littérature. .

Nous exploitons également le modèle de propagation d’information dans la conception des
systèmes plus efficaces tels que les réseaux de capteurs sans fil avec une approche pour
identifier les éléments faibles de ces réseaux afin de stimuler la propagation de l’information.
Certains de ces systèmes sont et feront l’objet de spécifications plus strictes, notamment en
termes de temps, car leur utilisation s’orientera vers des applications plus critiques, telles
que la conception d’essaims de robots en tant que secouristes. Nous abordons cette question
en proposant une analyse probabiliste du temps qui étend le modèle d’information développé
pour estimer les pires temps de propagation de l’information.

De notre point de vue, le travail dans cette thèse fournit des approches utiles pour construire
des ponts entre le travail académique appliqué et les besoins industriels, ainsi qu’une nouvelle
vision sur l’ingénierie des systèmes modernes d’un point de vue biologique.
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ABSTRACT

In today’s data-driven technology, it is easy to assume that information is at the tip of
our fingers, ready to be exploited. Research methodologies and tools are often built on
top of this assumption. However, this illusion of abundance often breaks when attempting
to transfer existing techniques to industrial applications. For instance, research produced
various methodologies to optimize the resource usage of large complex systems, such as the
avionics of the Airbus A380. These approaches require the knowledge of certain metrics such
as the execution time, memory consumption, communication delays, etc. The design of these
complex systems, however, employs a mix of expertise from different fields (likely with limited
knowledge in software engineering) which might lead to incomplete or missing specifications.
Moreover, the unavailability of relevant information makes it difficult to properly describe
the system, predict its behavior, and improve its performance.

We fall back on probabilistic models and machine learning techniques to address this lack of
relevant information. Probability theory, especially, has great potential to describe partially-
observable systems. Our objective is to provide approaches and solutions to produce relevant
information. This enables a proper description of complex systems to ease integration, and
allows the use of existing optimization techniques.

Our first step is to tackle one of the difficulties encountered during system integration: ensur-
ing the proper timing behavior of critical systems. Due to technology scaling, and with the
growing reliance on multi-core architectures, the overhead of software running on different
cores and sharing memory space is no longer negligible. For such, we extend the real-time
system tool-kit with a static probabilistic timing analysis technique that accurately estimates
the execution of software with an awareness of shared memory contention. The model is then
incorporated into a simulator for scheduling multi-processor real-time systems.

To address the lack of system module specification, we propose a methodology to estimate
software performance. Our method works with limited-access to the final hardware platform
on which the system is to be deployed. We achieve this by leveraging the accuracy of hardware
simulators and speed of regression techniques, thereby enabling a faster and wider exploration
of the design space, and an early verification of the integrated system.

As we recognize the importance of relevant information in bringing fundamental knowledge
to engineering complex systems, we shift the focus of our research towards studying how
information propagates and its influence on understanding and developing the behavior of
systems. Although this property of information has long been adopted in the study of bio-
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logical systems, it has yet to be exploited in the context of artificial systems. Multi-agent
systems, such as robot swarms and a great number of Internet of Things (IoT) applications
fall under this category in which the communication among the agents leads to an observed
behavior at system level. With the uncertainty that surrounds the transmission of the in-
formation between agents, we propose a probabilistic model of information flow that makes
very few assumptions about the propagation, the system and its environment. In doing so,
we seek to reveal the potential of studying information propagation in explaining observed
events.

This in turn opens a field of potential to investigate in order to engineer safer, more pre-
dictable, and optimized systems. As a matter of fact, we develop an approach to obtain
a relevant description of large complex systems in the form of a simple graph from limited
knowledge about the system modules to further ease system integration and open access to a
wide range of techniques proposed in literature. We also exploit the information flow model in
engineering more efficient systems such wireless sensor networks with an approach to identify
the weak elements in these networks in order to boost the information propagation. Some
of these systems are and will experience stricter specifications, timing in particular, as their
use turn towards more critical applications such the design of robot swarms as emergency
responders. We approach this issue by proposing a probabilistic timing analysis that extends
the developed information model to estimate worst times for information propagation.

In our opinion, the work in this thesis provides useful approaches to build bridges between
applied academic work and industrial needs, as well as a fresh look at engineering modern
systems from a biological perspective.
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CHAPTER 1 INTRODUCTION

This dissertation covers the research work pursued to fulfill the requirements of the Philosophiae
Doctorate degree in software and computer engineering within the MIST laboratory fromMay
2014 to December 2018. This document follows the structure of a thesis by articles – covering
4 published and submitted works presented as separate chapters. This chapter introduces
the topics we explored and places our work among the state of the art.

1.1 Context and Motivation

There exists a relationship of duality between living organisms and man-made systems. It
is circular in nature and connects understanding biology and engineering artificial systems.
Biological beings have, throughout history, been the inspiration behind some of the most
ingenious artificial systems. The Shinkansen, also known as the bullet train, encountered
major sound issues due to its high speed; from the connections to the overhead wires and
as a result to speeding into tunnels that generated atmospheric pressure waves at the speed
of sound producing large sound booms. Solutions to both these issues were observed in
nature from the way owl feathers dampen noise during nocturnal flights and the manner
in which kingfishers dive from the air into a denser fluid like water without creating any
ripples. These led to a major reduction of noise and inspired the famous shape of the bullet
train nose [1]. This tendency to search for answers in biology continues to be observed in
today’s technological progress in which a recent study of the Galago (also known as the
Senegal Bushbaby) inspired the design of robots with vertical jumping agility [2] followed by
another study of high-jumping beetles to engineer agile robots [3]. This was motivated by
the observation that jumping, as opposed to crawling, is a more effective way for robots to
avoid obstacles and a better option to have when a robot loses functionality of a leg [4].

The other face of this duality is that engineered systems are being more and more sought out
to explain certain behaviors observed in biology. When it comes to understanding collective
behavior especially, proposed approaches varied from proposing models and simulation of
fish school movements [5, 6] to employing tiny robots to uncover the capabilities behind the
emergence of certain behaviors observed in animals [7]. A study of scaling in computers [8]
developed a model based on energy and time delays. They suggest that the proposed scal-
ing theory could explain evolutionary transitions such as sociality observed in humans and
animals alike and interpret the flow of energy and information through biological systems
such as the scaling of energy consumption and economic growth in human populations [9]
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and that of the flow of river landscapes that minimize the gravitational energy loss [10].

An idea that had been introduced decades ago [11] and is seeing a growth in popularity [12, 13]
is that the unifying concept to build a coherent structure and grasp of the laws behind the
existence and emergence of life and biology is information. It advocates modeling living
organisms as systems that gather information in order to learn and evolve. Information in
all its states, whether being processed, stored or transmitted, has been observed to lead in
one way or another to the emergence of some sort of event [14]. One manifestation is the
visual cues, in the form of a waggle dance, that are found to be at the core of the emergence
of collective behaviors such as foraging in honeybee colonies [? ]. Although the concept
of information is abstract and can be viewed from different angles (information capacity,
algorithmic information, etc.), it is still instantiated in physical degrees of freedom and ought
to be considered in the study of life in the same manner that energy and matter are regarded.

"Information is physical!"
– Rolf Landauer,

Physics Today, 1991. [15]

Similarly, in engineered systems, information is deep-rooted in the emergence of new ap-
proaches and the advancement of the current technology. When artificial systems are con-
cerned, information falls under the principal ’information-as-thing’ introduced by Buckland [?
] to define information. Engineering disciplines tend to embrace this definition by looking at
information as a stored quantity, like data, that can be processed and transmitted. The avail-
ability of this type of information becomes essential to build high-performing systems and
ensure the proper execution of the desired behavior. There is however a general assumption
that information is available when describing systems, predicting their behaviors, and im-
proving their performance. A technique to optimize the allocation of resources, for instance,
will define fitness functions built on performance metrics that are assumed to be known and
ready to be used. Yet, when going from mere theory to actual implementations, especially
industrial applications, designers encounter a gap between what is proposed in research and
the information available. Namely, a complete lack of data or little to no specification that is
inadequate to build relevant information necessary for the deployment of proposed solutions.

A different angle to information, that has long since become prevalent in the study of biologi-
cal systems, is interpreting information as an emergent property. Binder et al. [12] argues that
information should be viewed as a transferable quantity that is characterized by flow, without
necessarily being conserved. Many have embraced this definition [13, 16, 17, 18] to establish
understanding of behaviors and in doing so, developed ways to model the information flow
in all kinds of networks.
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That being said, whereas research in engineering fields recognize the importance of ’information-
as-thing’ in designing better systems, the gains from studying information flow in today’s
growing industry of connected artificial devices, is a topic yet to be tapped into and further
explored.

1.2 Problem Statement

This dissertation presents research work that views information from two different angles
and addresses the challenges that stem from each. It introduces approaches that bridge the
gap between theory and practice when it comes to advancing knowledge and technological
design. In particular, it mitigates and tackles the following issues:

• Lack of relevant data to describe, optimize, and integrate complex large systems;

• Fluctuation of relevance of information from one phase to another during large complex
system design;

• Overlooking the significance of technology advances on traditional approaches, partic-
ularly timing behavior of complex real-time systems;

• Inefficient exploitation of information flow models in analyzing and engineering modern
systems;

• The complexity of existing information propagation models that might not be feasible
under the lack of enough descriptive information.

• Lack of studies exploring time of information propagation in a practical sense.

1.3 Research Objectives

The research work presented in Chapters 3 to 6 aspires to develop approaches and techniques
to provide relevant information and in turn exploit that information in engineering new and
better systems. A set of research objectives are outlined in the following to undertake the
issues identified in the previous section:

1. Provide a methodology to translate raw data into relevant information for the design
space exploration of complex real-time systems (Chapters 3, 5);

2. Develop scheduling simulation tools that consider accurate execution time estimations
with an awareness to memory contention (Chapter 4);
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3. Introduce a technique that exploits the flow of information to construct relevant system
descriptions from scarce data for easing system integration and optimization (Chap-
ter 5);

4. Model information propagation under minimal assumptions for the purpose of studying
its ability to explain events and behaviors and its worth to modern systems (Chapter 6).

5. Extend the developed propagation model with a timing analysis from embedded systems
to networks of interacting agents to probabilistically estimate information propagation
times (Chapter 6);

6. Exploit the model for information spreading to propose a method to strengthen the
performance of connected networks against faults (Chapter 6).

1.4 Contributions and Impact

To the extent of our knowledge, the contributions presented in the body of this dissertation
and outlined here are original in nature and hope to advance both academic and technological
knowledge:

• Frameworks to provide the right information for engineers to integrate large complex
software systems that allows for the translation of available data and techniques into
pertinent information ([19], [20]);

[19] I. Hafnaoui, R. Ayari, G. Nicolescu and G. Beltrame, “A simulation-based
model generator for software performance estimation,” in Proceedings of the Summer
Computer Simulation Conference, ser. SCSC ’16, 2016, pp. 20:1–20:8.

[20] I. Hafnaoui, R. Ayari, G. Nicolescu and G. Beltrame, “Scheduling real-
time systems with cyclic dependence using data criticality,” Design Automation for
Embedded Systems, vol. 21, no. 2, pp. 117–136, 2017.

• An addition to scheduling toolkit of multi-core real-time systems that takes memory
sharing overheads into account ([21]);
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[21] I. Hafnaoui, C. Chen, R. Ayari, G. Nicolescu and G. Beltrame, “An analysis
of random cache effects on real-time multi-core scheduling algorithms,” in Proceed-
ings of the 28th International Symposium on Rapid System Prototyping. ACM,
2017, pp. 64–70.

• Timing analysis techniques built on probabilistic analysis and probabilistic graphi-
cal models to establish valuable timing characteristics of single- and multi-agent sys-
tems ([21],[6]);

• Probabilistic representation of information propagation in biological and artificial sys-
tems with minimal number of assumptions ([6]).

[6] I. Hafnaoui, G. Nicolescu and G. Beltrame, “Time is of the essence: Spread-
ing information among interacting groups, Scientific Reports, 2018. (Submitted)

The scientific significance of the proposed work and its impact on both biology and industry
include:

• Strategies to provide relevant data and information for the purpose of bridging the gap
between advances in academic research and the design of industrial systems;

• More robust connected networks and better propagation of communicated information
among interacting individuals or devices.

• A better understanding of the importance of flow of information in describing events
and behaviors in collective settings and the engineering of better systems.

With the growing realization that the dependence relationship between academic research
and industry is inevitable, more effort is needed to transfer applied research to industry [22]
which places the work presented here at the forefront to fulfill this need. At the same time,
although biological systems had their share of works investigating the role of information in
explaining their intricacies, the study of artificial systems in the same context is fairly young
and the importance of information and how it should be handled is of utmost importance,
especially with the growing interest in connected networks of communicating agents such as
those seen in the Internet of Things (IoT) and robotic swarm fields.
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1.5 Dissertation Organization

The dissertation follows the traditional structure of a thesis by article which dictates that the
body of the contributed articles, published and submitted, be presented in separate chapters.

• Chapter 2 introduces the reader to the topics addressed throughout this dissertation
and situates the work presented among the current literature;

• Chapters 3 to 6 mark the body of the dissertation and presents the published/submitted
research articles:

– Chapter 3 introduces a model generator for estimation of performance, presented
as a conference paper at the 2016 Summer Simulation conference in Montréal,
Canada [19];

– Chapter 4 contributes a scheduling simulator tools that is cache contention-aware
at the 2017 Rapid System Prototyping symposium as part of Embedded Systems
Week held in Seoul, South Korea [21];

– Chapter 5 is a published article at Design and Automation of Embedded System
in 2017 [20] providing a methodology to eliminate cycles in the representation of
complex systems for better integration and optimization;

– Chapter 6 details the study of information spreading through a simple propaga-
tion model and its utility in providing understanding of biological behaviors and
engineering of more robust systems. The work is submitted to Nature’s Scientific
Reports and is under major revision;

• Chapter 7 discusses the contributions of the previous chapters and highlights the rela-
tions among them;

• Chapter 8 wraps the dissertation with concluding remarks, and future endeavors;

• The document concludes with a number of appendices that gives a glimpse at the
works achieved during the NII internship and summarizes a set of articles that have
been co-authors and are strongly related to the work presented here.
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CHAPTER 2 LITERATURE REVIEW

This chapter examines the fundamental understanding and existing research that addresses
information from two different perspectives: as a stored quantity and as a property character-
ized by flow. It particularly extends on the current approaches to handling stored information
and the current state of information flow research in artificial systems.

2.1 Information as Stored Data

Looking at information as a ‘thing’ is common in artificial systems and building approaches
to predict and enhance their behavior expects access to this information, which is not always
the case. An instance of this is the design of large complex systems, such as those found
in the aerospace and automotive industries. A particular example is Full-mission simulators
(FMS) which are large embedded systems that simulate the different parts of aircraft such
as the Airbus A380. The conception cycle of these systems can be abstracted into three
phases: (1) development, (2) integration and (3) deployment. The first phase involves the
initial design of the different parts of the systems, referred here as modules. Subject matter
experts (SMEs) develop their modules on their local workspaces independently of the final
platform. The integration phase ensures that the different modules are put together in a way
that guarantees the well-functioning of the whole system according to a set of specifications.
Since the addressed systems are time-critical, which enforce hard deadlines to the execution
of the modules as well, the integration makes sure the timing behavior of the system respects
certain timing constraints. The last phase deploys the integrated system on a final hardware
platform.

This research focuses on the problems encountered at integration phase due to missing rele-
vant information about the system modules produced in the development phase. The com-
plexity and sheer scale of these systems requires the contribution of knowledge and expertise
from different fields. This asks SMEs to have expertise in their respective fields and be able
to provide information about the software performance of their modules. As a result, the
developed modules are delivered with their own set of data with different degrees of accu-
racy and relevance that need to be processed in a way to make them applicable for system
integration.

The timing behavior is of particular importance, and integration specialists must ensure that
the system is schedulable, i.e. all its modules can be executed in an appropriate time frame.
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Schedulability analysis verifies that the execution of the system modules do not exceed a
specified deadline according to a scheduling policy. Failing to meet these deadlines could
incur damages to the system and result in catastrophic events. Past research produced a
plethora of schedulability tests - that mathematically reveal the potential of a set of tasks
to miss their deadlines in a given scenario [23, 24] and scheduling simulators [25, 26, 27]
capable of simulating schedulers for large systems and expose corner cases. Doing so avoids
failures such as the priority inversion issue encountered in the Mars Pathfinder probe [28]
in which a low priority tasks indirectly preempts the execution of a higher priority task by
locking access to shared resources. That being said, these approaches are typically built on
the availability of certain information such as the execution times of software. Estimating
the timing performance of modules is dependent on the hardware platform on which they
are executed and should be considered when providing these data. This lack of relevant
information closes doors to the use of available techniques and tools that have the potential
to improve the system’s performance such as the optimization of resources and incorporating
different and better existing solutions.

2.1.1 Describing and Integrating Complex Systems

A frequently established assumption in literature is that these complex systems can be mod-
eled through simple graphical models that can clearly distinguish the relationships linking
the different parts, especially their dependencies. In reality, due to the complexity of these
systems, software modules are often made of either reused code or resort to the use of origi-
nal equipment manufacturer (OEM)’s products presented in black box format. This lack of
transparency often conceals relevant information that might help in discerning dependencies,
and hence establish a proper integration of the system. This leaves engineers with minimal
information, enough to build a raw representation of the system in the form of a dataflow
graph (DFG). In large-scale systems, modules are interconnected in a way that naturally
creates cycles within the graph representation, which can represent a problem during inte-
gration. In fact, when timing behavior is concerned, Directed Acyclic Graphs (DAG) are
widely used representation to define precedence requirements between modules. The lack
of cycles eases the assignment of the module execution order in a way that doesn’t affect
the functionality of the whole system. This doesn’t mean that scheduling systems without a
DAG representation is impossible: many have proposed ways to schedule the system under
a graph representation that contains cycles by developing techniques to by-pass the cycles
either by considering the particular functionality of the nodes [29] or by grouping the cycles
as special nodes [30]. Once again, these approaches fall outside the scope of our inquiry since
they require the knowledge of certain parameters that are generally not available. The same
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can be said for synchronous dataflow graphs which assume the delay of information process-
ing is available [31, 32]. Aside from that, techniques based on DAG representations tend
to be less complicated and numerous in comparison which offers more desirable and flexible
options for designers at integration time. Chapter 5, in that regard, assumes that little data
is available to describe the system and tackles the issue of obtaining a DAG representation
from a DFG.

At integration, certain metrics are required to ensure that the system will behave properly
after deployment. These metrics, such as the worst execution time, memory consumption,
memory overheads, are considered critical information that might not be available. As dis-
cussed previously, the fact that multiple expertise is required to build such systems creates
a gap in the type of knowledge and hence data that is provided by SMEs. These metrics
are generally dependent on the hardware architecture on which the software is deployed and
can theoretically be provided by the SMEs thanks to multiple profiling tools. However, more
often than not, the end hardware architecture is not accessible to SMEs or utterly unknown
at design time. In some cases, optimization techniques are employed to decide the final hard-
ware platform, which in fact requires these type of metrics, creating a circular dependency
dilemma. Many have proposed the use of hardware simulators to estimate performance met-
rics with varying degrees of accuracy and speed [33, 34, 25]. However, the use of simulators
becomes prohibitive when the number of configurations to be evaluated grows too large as dis-
cussed in Chapter 3. Especially when exploring the large design space of embedded systems,
simulating potential configurations could takes days, even weeks, to reach a pseudo-optimum
solution. The use of analytical models have been proposed as an alternative. Regression
models, in particular, have been used to predict the performance of code on supercomput-
ers [35], GPU-based systems [36] and heterogeneous MapReduce cluster [37]. This last work
is similar to what is presented in Chapter 3 but takes it a step further by proposing an
approach that merges simulation and regression to estimate performance independently of
the purpose and functionality of the software module in a timely manner.

2.1.2 Timing Analysis of Real-time Systems

The integration of these kind of complex systems devotes particular effort to analyzing the
timing of the system. Working with the right information is then crucial to ensure the system
parts execute properly and respect their timing specifications.

Traditionally, estimates of execution times of software were severely conservative due to the
reliance on deterministic architectures which place the Worst Case Execution Time (WCET)
a great distance away from the actual maximum time reached by the execution of a module.
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This pessimism led designers to investigate probabilistic architectures. The use of these
architectures results in the avoidance of pathological cases and decreasing the pessimism of
the WCET estimation [38]. One approach to estimating a probabilistic WCET is Static
Probabilistic Timing Analysis (SPTA). Altmeyer and Davis’s work [39, 40, 41, 42] provided
progress in this field by exploiting the concept of reuse distance - the number of accesses
between two consecutive calls to the same memory address - to provide running estimates
for programs.

At the same time, multi-core systems have slowly but surely integrated a wide spectrum of
disciplines, including the ones being addressed here. The exploration of multi-core systems,
with real-time constraints especially, is still a fairly young field since predictability and ease
of integration are widely desirable with these systems. Providing the right information and
developing the appropriate tools is key. Research has produced schedulers to specifically
address applications executing on multiple cores and a lot of effort has been put forth to
evaluate these policies either through mathematical models or simulations.

The majority of proposed schedulers however are based on the assumption that sharing mem-
ory space among applications running on different cores (inter-core interference) or within
privately shared caches (intra-core interference) is negligible and doesn’t affect the execu-
tion time estimates. A study by Mars et al. [43] disagrees and shows that a performance
degradation of 35% is observed when sharing the Last Level Cache space among four cores,
a degradation that current scheduling simulators disregard altogether when used to design
highly critical systems.

This is not to say that literature lacks in terms of works that model cache sharing. In fact,
Ding et al. [44] nicely presents the advances in this topic over the past decades and emphasizes
the role of reuse distance as a metric to reach more accurate cache models as opposed to others
such as stack distance. Pan and Jonsson [45] introduced reuse distance to Markov chains
to predict shared cache performance implementing different replacement policies such as
random, Least Recently Used (LRU) and pseudo-LRU. More recently, a common framework
that accurately models probabilistic caches based on absolute reuse distance was proposed
by Beckmann et al. [46].

Since simulators are widely used by large system designers to test their configurations for
schedulability and validating new scheduling policies, shared cache overhead should be ac-
counted for. Yet most current scheduling simulators overlook this effect. A first attempt at
mitigating this shortcoming was introduced by Cheramy et Hladik [47], who extended the
SimSo simulator [27] with an LRU cache model that accounted for the overhead incurred
by sharing cache space among the cores. No effort has been put forth to do the same for
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random caches despite their growing popularity and that partly due to the fact that the
models proposed so far are too complex and computationally heavy to be incorporated into
existing simulators. The work in Chapter 4 extends the work proposed by Eklov et al. [48] to
bridge this gap by proposing a cache model compact enough to be integrable in a scheduling
simulator.

2.2 Information as an Emergent Property

Seeing as information is important in developing artificial systems, and keeping to the trend
of falling back on biology to inspire new technological advances, a different interpretation of
information is found. An emergent property refers to properties that are not particular to
any part of a system, such as a single individual or entity, but emerge at larger scales. In
other words, it is a characteristic that an entity gains as it becomes part of a larger system.
Information can be viewed as a property that is not particular to one individual but one that,
through flow, arises as a characteristic of the group. Information, in that sense, seems to take
on a ‘life of its own’, and has been described as an emergent property [49]. In their endeavor
to establish the origin of life and laws that govern biology, Davies and Walker [13] assert
information as the key to entangle the perceived complexity of biological systems. Equally,
with the growth of connected devices and artificial systems emulating human and animal
behaviors, this concept of information is becoming more relevant to modern systems as well,
which potential is yet to be tapped into properly.

2.2.1 Information Flow

The common approaches to the study of behaviors have often relied on experimental observa-
tions to prove or disprove a hypothesis and finding correlations between certain features and
the emerging behavior. In studying human collective behaviors, for instance, de Vreeze and
Matschke [50] emphasized, through empirical observation, the importance of taking the rela-
tionship of individuals in a group in the information exchange, especially in decision-making
scenarios. The shifting in political adherences was attributed to social information in the
form of popularity of certain information through an experimental study of petition signing
by Hale et al. [51].

Others, however, pursued the idea that there is more to be learned by understanding how
information spreads and relied instead on mathematical models and simulations of informa-
tion propagation to uncover the elements behind emerging behaviors. Strandburg-Peshkin
et al. [52] experimented with the idea that basing the interaction of individuals on spatial
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queues such as a metric range or a fixed number of closest neighbors might not be enough to
model information propagation and explain the emergence of schooling in gold shiner fish.
They establish that the visual field is a better metric to explain the observed behaviors.
Information propagation as visual cues in flocks of birds have been modelled by Brush et
al. [53] to study the responsiveness of the flock to different types of information, such as food
source or predators, and how the content of the information affects the behavior of the flock
in deciding their actions. Models of infection spreading, on the microscopic level, within cells,
and on a larger scale, within communities, where infection can be abstracted as a piece of
information being transmitted between individuals, have also been introduced. The timing
of the propagation especially was given a particular interest [17, 54, 55].

Although these works were proposed to study different systems under various and specific
circumstances, the notable feature that is prevalent is the complexity of the information flow
models. The infection models proposed in [56, 57, 17] are built on the assumption that the
infection rate, the state of the individual, among others, are known. The work proposed in [18]
goes as far as to require a pedestrian model to accurately estimate the infection transmission
in air travel. The complexity introduced in these models might seem in accordance with the
intricate systems under scrutiny, which might be the case, but the question that arises from
the notion that simplicity might be a latent property of these systems is whether certain
behaviors can be studied with simpler models of information.

This has been addressed in part in the context of infection spreading by Ottino et al. [58]
whose purpose was to establish a take-over time through a simple model with the assumption
that infection spreads to one node at a time from any infected node in the system. In an
effort to offer a more practical solution, Chapter 6 introduces a probabilistic timing analysis,
built on the timing framework introduced in Chapter 4, and on a simple but slightly different
propagation model that assumes different affinities for the information propagation from one
individual to its neighbors.

The fact that relevant data to describe the system are more likely to be inaccessible or
difficult to acquire for practical applications gives significance to pursuing simpler models for
the purpose of unraveling the emergence of certain behaviors.

2.2.2 From information flow to Breaking the status-quo

Information models, in the context of collective behaviors at least, have been wielded in a
rather passive manner in which the sole purpose of developing such models was to unearth
the main contributing aspects to emerging behaviors. In hindsight, the study of information
flow has seen little progress to engineering modern systems as opposed to the common trend
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of transferring knowledge acquired from studying biological systems to artificial ones. One
venture saw the authors of [59] establish a framework to identify the root of causal anomalies
in large scale complex systems by modeling the fault propagation in invariant networks. The
idea of obtaining relevant information by following the flow of injected information in the
network has also been exploited in the work presented in Chapter 5 to identify critical data.

Identifying major role players in a given scenario by studying the flow of information has also
received a lot of attention. The work of Sankar et al. [60] developed a technique, inspired
by the way bees spread relevant information during foraging, to identify the most influential
users in a social network. The emergence of leadership was instead examined in [61] through
a study of consensus convergence in heterogeneous groups. For all that, these works were
still conceivably targeted at biological systems, namely human communities, despite the
information propagating through artificial means. Chapter 6 exploits the simple model to
introduce an approach to identify the weakest elements in the network that improve the
overall performance of the system.

When it comes to designing systems such as robot swarms or connected Internet of Things
(IoT) networks, the likes of mobile wireless sensor networks, great work has been done in
proposing robust policies to communicate relevant information among the agents. However, if
the timing performance of the system is not available, it becomes difficult to achieve certain
behaviors. A simple example would be a swarm of robots autonomously agreeing on an
allocation of a task set. In engineering time-critical systems, one essential requirement would
be that the time to agree on an allocation does not exceed a certain deadline in which case
having an estimate of the time for the information to propagate to all the robots becomes
crucial. As presented previously, Ottino et al. [58] addressed this issue in the context of
infection propagation. The proposed model might shed light into the kind of distributions
that shape the takeover times as established by the authors, but it makes it difficult to
transfer that knowledge to practical settings. The same can be said about the approaches
proposed in [62, 55] which relied on Markov chains to model information propagation which
use can become prohibitive as systems grow in size, which is more likely the case with modern
systems. The work detailed in Chapter 6 provides a probabilistic estimate of the worst time
for the information to propagate which has more of a flexible and practical use especially for
designing hard real-time systems.
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CHAPTER 3 ARTICLE 1 – A SIMULATION-BASED MODEL 
GENERATOR FOR SOFTWARE PERFORMANCE ESTIMATION

The first step towards accomplishing the outlined research objectives is
addressing the gap created by the different expertise required to design large
complex software systems such as those encountered in the automotive and
avionics systems. We approach the problem of lack of software specifications
necessary to the integration of these systems by relying on both simulation
and machine learning techniques to provide estimates for software performance
without having knowledge of the software functionality or necessarily access to
the final hardware platform. As a matter of fact, we establish this framework
in order to enable the exploration of design space of more appropriate hardware
architecture in reasonable time frames.

Full Citation I. Hafnaoui, R. Ayari, G. Nicolescu and G. Beltrame, “A
simulation-based model generator for software performance estimation,” in Pro-
ceedings of the Summer Computer Simulation Conference, ser. SCSC ’16, 2016,
pp. 20:1–20:8.
URL: http://dl.acm.org/citation.cfm?id=3015574.3015594

Preface

ABSTRACT

With the rise of software system complexity, developers rely more on a modular approach to
system design to reduce development cost. However, as a result, integrating a real-time sys-
tem becomes a challenge. To be able to properly integrate the system, software developers are
required to provide software characteristics such as the execution times of their components
to ensure the correct timing behaviour of the overall system. Generally, engineers rely on
profilers available on their workstations to collect execution times of software. Yet, the final
target architecture is usually vastly different from that of the workstation. Further, the fact
that the target platform is mostly inaccessible at design time calls for tools that can estimate
the execution time of components on a wide range of architectures with reasonable cost. In
this paper, we propose a methodology that relies on (1) fast simulation techniques and (2)
analytical tools that build predictive models to estimate the execution times of components

http://dl.acm.org/citation.cfm?id=3015574.3015594
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on a target architecture with minimum detail. We show that the approach is able to predict
the execution times of a set of benchmarks when migrated from reference architecture to a
target platform with upto 8% improvement in prediction error when compared to simulation.

3.1 Introduction

The automotive and aviation industries deal with the development of very complex real-time
software systems. Full Mission Simulators (FMS) are an example of such systems. The de-
velopment of FMSs require the expertise of subject matter experts (SMEs) from a multitude
of engineering fields. Yet, these SMEs have varying degrees of knowledge when it comes to
software engineering and embedded systems. The new modular approach to software devel-
opment allows the SMEs to work on their individual system components in their separate
environments which allows them to test the functionality of their code independently from
other components. This also opens the possibility to reuse code from different systems built
for other purposes or that developed for the goal to be reused. Integration of the system
refers to putting the system components together in such a way that they are able to operate
collectively as a whole system in a coordinated manner. At this level, making sure that the
individual components function properly is not enough. An integration expert has the impor-
tant job of defining a software/hardware configuration that will ensure the correct functional
and timing behaviour of the whole system on a particular hardware platform while optimiz-
ing a set of performance objectives. With complex systems such as FMSs, where the number
of components could grow large, integration experts find themselves in a dilemma. They are
faced with a number of configuration choices but a lack in data that describe the different
components makes it hard to reach a decision on the final configuration. SMEs are able to
provide some of these data such as execution times, memory consumption, etc. However,
these data are collected at their working stations. The fact that the final target hardware
architecture that will bear the deployed system has different architectural details makes the
collected data irrelevant. When dealing with real-time systems, one of the data crucial to
ensuring that the timing requirements are met at the integration phase is the execution time
of the system components. Many approaches to estimate the execution time of software has
been proposed. The work in [33, 34, 25] introduced simulators that replicate the behaviour
of code on a predefined architecture with differing degrees of accuracy and at different levels
of abstraction. That being said, relying solely on simulation to estimate execution times
of a large number of applications without losing in accuracy becomes prohibitive even with
the fastest simulators to date. Furthermore, simulators become impractical solutions when
Design Space Exploration (DSE) is concerned since the design space is too large to be effi-
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ciently explored in a sensible time range. In this work, we propose a model generator that
builds analytical models describing the connection between two hardware architectures. The
approach trades off accuracy of estimation with the speed of analysis to predict for execution
time of system components on a given hardware architecture. To do so, our methodology
relies on two key elements:

• A regression model that represents the relationship between a reference and a target
architectures and predicts for the execution time of any software component when run
on the target architecture.

• A fast and accurate hardware simulator that is used to construct a dataset of training
examples from a set of benchmark suites. The suites used to build the database are
known to cover the different types of workloads existing in industry.

Our approach takes advantage of simulation accuracy to build an accurate database. A re-
gression model is trained and fitted using this database. The model provides fast performance
estimates which allows for large design exploration without incurring in simulation overhead.
While the scenario that we consider in this paper is that of predicting the performance of
system components when migrated from a reference to a target architecture, our approach
can be applied to related issues such as providing data to explore the design space for archi-
tectural choices that fit a set of performance objectives defined by a user; like for instance,
optimizing the overall response time of the system or minimizing communication traffic on
a network, etc. The remainder of the paper follows this structure: Section 3.2 provides a
summary of the works related to this issue; our approach is detailed in Section 3.3 where we
describe how the concepts of regression analysis are moulded to fit our problem, as well as
the tools that are used to achieve a good performance estimation. This is followed by a set
of experiments and discussion in Section 6.6.5; finally, we wrap up in Section 3.5.

3.2 Related Work

Throughout the years, designers have taken different roads to estimate the performance of a
particular application on a given hardware platform. Some relied on architecture simulators
to replicate the behaviour of software on a predefined architecture. Simulation techniques
can vary in accuracy and complexity depending on the level of abstraction. Instruction Set
Simulators for example offer high accuracy but are generally very slow since they reproduce
the smallest detail of an architecture. To state a few of these types of simulators, Gem5 [33]
is a full system simulator that supports multiple ISAs. [25] introduced a x86 architecture
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simulator under the name MARSS. TSIM was proposed by [34] to simulate for the open
source LEON processor. Simulators based on native execution were proposed to mitigate
the issue with ISSs. Although they offer lower accuracies when it comes to performance
estimation, they are relatively faster and are based on code instrumentation. The works
in [63, 64, 65] proposed a simulation technique based on instrumentation of source code.
The code at this level is at its highest abstract form and is architecture-independent which
makes these techniques faster. Back annotating code at the intermediate representation level
with timing details is discussed in [66, 67] in which the iSciSim simulator was based on. The
authors of [68] were the first to propose instrumentation of binary code which offers accuracies
closer to that of an ISS with faster timing ranges, followed by many others [69, 70].

While these approaches to performance estimation gave good accuracies, the significant simu-
lation overhead prohibited designers from either estimating for a large number of applications
or exploring the large design choices to decide on a fitting final architecture. For such, some
work has been proposed that was based on analytical models. [71] took advantage of the fact
that different intermediate representations of code can be produced by the GCC compiler.
They used the GIMBLE representation, which is closer to binary code, and RTL code to
build linear regression models to estimate performance of code with zero knowledge of the
target architectural details. Their approach was validated through experiments considering
different levels of compiler optimization. Regression has been employed in [36, 72, 35, 73, 74]
for performance estimation. Regression analysis can accelerate the design space exploration
by building predictive models that estimate for software performance as well as provide an
understanding of the relationship between system parameters and their effect on the final
performance. [35] built a regression model to predict the performance of applications on
superscalar computers. They used a set of 26 of features describing the architecture and a
cycle-by-cycle superscalar simulator to achieve this. Stargazer was proposed by [36], a step-
wise regression-based design to explore design space of GPU-based systems. Similarly, the
work in [37] extended Linear Regression analysis to estimate performance of heterogeneous
MapReduce clusters. They built a regression model that migrates the performance from a
host architecture to a target architecture by having the regression go through a learning step
on a microbenchmark suite. This is similar to our approach in that it also uses regression
models to migrate from one architecture to a newer one, in this case a MapReduce clusters.
However, it differs from ours in that it considers specific information about the application
and divides it into sub-units based on their functionality to estimate performance. Our ap-
proach does not depend on the awareness of the details of the software being studied but
regards it as one block of code. In this work, we want to see how accurately the regres-
sion model can estimate the performance of applications with minimum knowledge of the
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characteristics of the software.

3.3 Proposed Approach

To help in the proper integration of complex systems, we propose a framework that exploits
machine learning concepts such as regression analysis to estimate the performance of system
components on a given hardware architecture. In the context of our work, regression is used
to build a model that will predict performance metrics related to an application given a
particular architecture. Before delving into the specific of our methodology, as described in
Figure 3.1, we give a background overview of what regression is and the ways it is employed.

3.3.1 Linear Regression Models

Regression models are used to estimate the relationship among variables in a certain system.
In better terms, one of the uses of regression techniques is to predict how one variable,
the dependent variable, varies as one or more independent variables, called features, change
values. Our focus is on Linear regression which builds a model that represents a dependent
variable Y as a linear combination of a set of parameters αi, called partial regression weights,
linking the independent variables Xi. Mathematically, the dependency between the variable
that we want to predict, Y , and the independent variables, Xi , using linear regression can
be represented with this formula,

Y = θ0 + θ1X1 + θ2X2 + ...+ θnXn + ε (3.1)

with n Number of features When the model is built using a single independent variable X1,
the model is called a simple linear regression model. This is the simplest type of models
which makes it the easiest to manipulate.

Model Performance Metrics

As for every technique that is based on a training step, there is a need for performance
metrics to judge and tune the trained model. When it comes to regression, to be able to
investigate the generated models, we look into the residuals as defined by:

ei = yi − ŷi (3.2)

where yi represents the true value and ŷi the value predicted by the model.
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The final model of prediction is decided by looking into the model’s goodness-to-fit measures.
Here, we present a few widely used measures:

• Mean-squared error (MSE): Most linear regression techniques try to minimize this
value when building the model. It represents the variance in the residuals and can be
computed as follow:

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3.3)

• Coefficient of Determination R2: represents the estimate of how well the model fits the
observed data. It represents the predictable portion of the dependent variable from the
independent variables. It means that R2 percent of Y is predictable from X. The closer
to 1, the better data are fitted.

R2 = 1− SSR

SST
(3.4)

where:

SSR = ∑n
i=1(yi − ŷi)2

SST = ∑n
i=1(yi − ȳi)2

with:

ŷi: arithmetic mean of Y

 

Figure 3.1: Regression based Performance Estimation Framework.
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SSR: Residual sum of squares

SST : Total sum of squares

3.3.2 Model Generator

Integrating the system components involves ensuring that the timing requirements of the
real-time system are met as well as optimizing the system resources according to a set of
performance objectives. However, the lack of data that describe the system components,
especially their execution times, creates a gap between component development and system
integration. Our approach detailed here is proposed to bridge this gap; which will be key in
decreasing the time-to-market and optimize the system resources. The schema in Figure 3.1
represents the approach. From this, we define some terms that will be used to describe the
methodology:

• Reference Architecture: From the scenario studied in this paper, this represents a
description of the workstation architecture in which the different components of the
system are built. Since the developed code for the components differs in functionality
and purpose, so does the architectural detail of the reference machines. However, this
definition can cover any machine that will be used as a reference in building the model.

• Target Architecture: This describes the final hardware architecture at which the system
components will be integrated to form the complete system. Considering the size and
complexity of the integrated system, the target architecture generally involves more
powerful features, such as the number of cores, clock speed, cache size and latency, etc.

Since the reference machines, on which developers build their components, have different
architectural details to the target architecture, the performances computed at these machine,
such as execution times, are not going to be of help to integrate the system and to efficiently
allocate the components to the final target hardware platform.

Our venture into solving the performance estimation problem is to propose a model generator
based on regression as depicted in Figure 3.1. This model generator builds a regression model
that describes the relationship between a reference and a target architectures. This approach
predicts for the speed-up expected when the individual components are executed on the target
architecture. The proposed model generator has two main sections: a database builder and
a regression-based tool to build a predictive model.
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Database builder

Regression analysis is a branch of machine learning that goes through a learning step to
build a model that fits a set of data points. For this purpose, there is a need for a training
database that reflects the aspects that we want to predict. In our case, the training examples
represent the execution time of a set of applications on a particular reference machine and the
corresponding execution times of the same applications on a target hardware architecture.
Application refers to any piece of software that can be executed on a hardware platform to
which we want to predict the execution time. It could be one single method or, as in our
case, a component that consists of a bundle of interconnected methods and classes. To be
able to build this database, we require two elements:

1. Benchmark Suites: In order to obtain a regression model that will be able to predict
the execution time of any type of application, the benchmark set needs to be diverse
enough to cover most of the software design space. Diversity refers to aspects such as
the application being computationor communication-intensive or if it is databased (e.g.
matrix multiplication) versus instruction-based versus control-based. In addition, the
applications can be developed for different domains. For a well-fitted model, regression
also requires a large set of observations. In order to take these aspects into account,
we build our database using three widely used benchmark suites:

(a) Malardalen [75] A benchmark suite that was proposed for studies that involved
WCET analysis tools and methods. It offers a set of small single-path programs
that cover the most basic computational loads such as compression algorithm,
binary search, Fast Fourier transform, filters like the Finite Impulse Response,
etc.

(b) MiBench [76] This benchmark covers applications from different fields such as
automotive, industrial control, network, security, etc. It offers a range of pro-
grams for embedded systems that fall in the data and control-intensive categories.
The embedded programs have an instruction profile that varies in the number of
branches, memory and integer ALU operations which adds to the diversity of the
suite.

(c) PARSEC [77] Although this suite offers the option to test sequential code, it
focuses hugely on parallelized code where multi-threading is a prominent feature
in the benchmarks. The suite is also diverse as it provides workloads from different
fields. A particular effort was put into making sure that the offered benchmarks
are not skewed towards the High-Performance Computing domain. A subset of
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emerging workloads that are assumed to be typical in the near future is included
as well.

2. Architecture Simulator: To generate a sizeable set that represents the architectural
details of an executing platform, we opt for the use of an architecture simulator based
on instrumentation that can give accuracies close to that of a cycle-accurate simulator.
ZSim [78] is a parallel multicore simulator that breaks the trade-off between speed
and accuracy to simulate detailed architectural aspects. It employs Dynamic Binary
Translation (DBT) to speed up sequential simulation during program instrumentation.
As a result, it can simulate features such as branch prediction, limited fetch and issue
width with less overhead. Since it works at the binary level, the accuracy of the
generated profile is close to that of an ISS. When comparing simulated IPCs, ZSim has
been reported to give absolute performance errors within 26% of the real system for 29
of the tested benchmarks on a Xeon processor. It was also compared in terms of speed
of simulation and was noted that ZSim is 2 − 3 orders if magnitude faster than other
simulators such as Sniper and MARSS. It fits well with our purposes since it can model
heterogeneous systems with arbitrarily configured memory hierarchies, and can run a
wide range of x86 workloads.

Having defined the tools and notions that our approach relies on, we detail here the steps
illustrated in Figure 3.1:

• Step1. The first step is to build the database. The benchmarks from the suite mentioned
here are profiled on a reference machine to collect their execution times. This could
be achieved either by (1) using the local profiler on the reference machine or (2) by
making use of the architecture simulator to simulate the reference architecture.

• Step2. A second performance profile is gathered containing the execution times of the
same set of benchmarks on a target hardware platform. ZSim is given the architectural
details of the target architecture at its input. Details such number of cores, memory
sizes, etc. are described in a file that ZSim will employ to simulate the behaviour of
the benchmarks on that target machine.

• Step3. Concepts of simple linear regression analysis are extended in our model generator
by re-writing equation1 as follows:

Y = θ0 + θ1X1
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X1 is a feature set that represents the execution time of applications computed at
the reference machine (Step1). The model generator builds a model to predict the
execution times at the target machine Y (Step2). The obtained observations by the
database builder are divided into two subsets; a training and validation subsets. The
core feature of the model generator is its ability to build a link between a reference
and target architecture in such a way that any future new application can be given an
estimated performance with zero simulation overhead.

3.4 Performance Evaluation

3.4.1 Experimental Setup

In our approach, the regression model is trained on execution time observations generated
from running varying types of benchmarks on multiple architecture configuration. Following
our motivating scenario, in these experiments, we predict the execution time of code when it
is migrated from two reference machines to the same target architecture. The configurations
of the reference and target architectures are summarized in Table 3.1.

The database generated for the purpose of the following experiments contains execution times
of 80 benchmarks at the reference and target machines. To keep close to the scenario we
are studying, the execution times of applications run on the target architecture are collected

Table 3.1: Reference and Target Characteristics.

Characteristics Architecture 1 Architecture 2 Architecture 3
Processor AMD A6-5350M Intel Quad-Q6700 Intel i7-3770
Frequency 2.9 GHz 2.66 GHz 3.4 GHz
Caches

L1i 64 Kb 32 Kb 32 Kb
4-ways 8-ways 8-ways

Latency 3 cycles Latency 5 cycles Latency 4 cycles
L1d 16 Kb 32 Kb 32 Kb

2-ways 8-ways 8-ways
Latency 3 cycles Latency 5 cycles Latency 4 cycles

L2 1 Mb 6 Mb 256 Kb
16-ways 24-ways 8-ways

Latency 12 cycles Latency 16 cycles Latency 12 cycles
L3 \ \ 8 Mb

Latency 30 cycles
Replacement LRU LRU LRU
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from executing ZSim with the details of the target machine as in described in Table 3.1
and collecting the resulting estimated profiles of the benchmarks. On the other hand, two
different sets of features are collected for the performances of applications on the reference
machines. One set of features is measured using the local profiler of the reference machine
which represent the real performance of code on that architecture. The other set is collected
through the ZSim simulator in the same way the target performances were collected.

To validate the generated model, we need to ensure that the process of model building is
isolated from that of future predictions. Cross-validation is a technique to validate a model
based on statistical analysis which tests how the results of the model predictions generalize
over an independent set of data, as well as the accuracy of the predictions. In other words,
it ensures that the estimation of performance is not dependent on the choice of a particular
training data.

We employ a k-fold cross-validation with a k = 10. This cross-validation technique will divide
the database into k-folds; 1-fold, the testing dataset, will be left to validate the performance
and accuracy of the built model while the rest, the training set, will be used to train the
regression model.

3.4.2 Experimental results

We based our experiments on two scenarios of architecture migration as stated in Table 3.1 in
which the benchmarks are migrated from two different reference architectures (Architecture
1 and Architecture 2) to a target architecture (Architecture 3). We introduce a metric
Prediction Error that expresses how close the prediction are to the real values of the execution
times, where

PredError = ExecutionPred − ExecutionReal
ExecutionReal

Figure 3.2 represents the model generated by the regression to fit a set of execution times
gathered at the reference and target machines. The regression tool used the real execution
times of the benchmarks gathered by a reference profiler to build Model-1 generated in
Figure 3.2a. Whereas Model-2 in Figure 3.2b used the data generated by ZSim when running
the same benchmarks. As can be seen, the linear regression model is better fitted to the data
points with the execution times collected through simulation from the ZSim as compared to
the ones measured through a profiler. This is seconded by the R-Squared values depicted in
Table 3.2 and Table 3.3 where the R-Squared value for Model-1 in Figure 3.2ais closer to 1
than that of Model-2.
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This can be explained by the deterministic nature of the simulator ZSim in which Model-
2 was generated by training the regression tool on the data extracted from running the
benchmark on ZSim with the architectural details of the target architecture. To further
verify the accuracy of the model resulted by our model generator, we plotted the real values
of the execution time against that predicted through simulation and that resulted from the
regression model.

It is good to mention that the accuracy of ZSim, as reported in previous sections, was
validated by the authors against a few processor examples only, such as Intel’s Xeon. As a
matter of fact, the authors advice to not fully trust the results of ZSim with workloads and
architectures different from their case study [79]. This information becomes relevant in the
following section in which the performance of ZSim is observed to give a prediction error
higher than 45%, as can be seen in Figure 3.4.

We observe that the models (H1TM and H2TM) of Figures 3.4a and Figure 3.4c give slightly
better predictions than the models (H1TS and H2TS) shown in Figures 3.4b and Figure 3.4d
. This is due to the fact that models H1TM and H2TM were generated using measured data
at the reference architecture as opposed to models H1TS and H2TS which were generated
using solely simulated data. This is due to the fact that the simulator is injecting an error
since its performance predictions have low accuracies. As a matter of fact, since we employ
the simulator to generate the predictions at the target architecture, the model generator is
generating models that will try and fit to the data generated by ZSim. It can be seen in
Figure 3.4 that the regression predictions are closer to the simulator estimations than the
real measurements.

 

(a) Model-1: Performance Estimation Model from
Measured Data.

 

(b) Model-2: Performance Estimation Model from
Simulated Data.

Figure 3.2: Generated Regression Models.
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Table 3.2: Performance of Regression Model Built on Measured Data.

Configuration R2 Prediction Error (%) Improv.(%)
Ref. Target Mean Std Max

Arch 1 Arch 3 0.768 13.7 21.3 43.8 8.29
Arch 2 Arch 3 0.912 2.99 20.6 37.4 0.22

Table 3.3: Performance of Regression Model Built on Simulated Data.

Configuration R2 Prediction Error (%) Improv.(%)
Ref. Target Mean Std Max

Arch 1 Arch 3 0.961 9.27 5.75 19.2 4.39
Arch 2 Arch 3 0.946 4.59 11.9 11.2 2.04

 

Figure 3.3: Prediction Error Distributions.
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That being said, from the figure, it can be noted that the regression-based approach gives
better estimations in most case. Even so, we refer to Figure 3.3 in which the prediction
error distributions obtained using the simulator (ZSim) and regression (MMG, SMG) with
regards to the real measured execution times are plotted. On average, the model generator
gave upto 8% improvement in terms of prediction accuracy when compared to the ZSim
simulator. Another remark is that the predictions observed from the models H1T and H2T,
either by using the measured data (MMG) or simulated data (SMG), do not differ greatly.
This means that the prediction on a target architecture are not quite affected by the choice of
the reference architecture. As a side note, given the small sample of generated observations
from these experiments, it is difficult to perform a statistical study since any test will give
weak assumptions to support or reject the remarks we made so far. With problems that
involve Design Space Exploration in which a large number of configurations need to be
investigated, the model generator approach surpasses the simulation-based method. Since
the model generator requires the simulation of a small number of benchmarks to predict
the execution times of a very large number of applications (which could grow to thousands)
as compared to simulation, which takes a prohibitive time to simulate the same number of
applications, we can say that the model generator provides estimations closer to that of the
simulator or better within a much reasonable time.

3.5 Conclusions

With complex real-time systems development, a gap is created between system developers
and integration experts due to a limited knowledge in software engineering. The lack of
data needed to integrate the system properly, ensure the timing requirements are met and
optimize a set of performance objectives was motivation to propose the work presented in this
paper. A model generator based on regression analysis is introduced to estimate the speed-
up expected when migrating from a reference architecture, such as a component developer’s
machine, to a final target architecture to which the integrated system is deployed. The
experiments showed that with minimum knowledge of the architectural details and no details
on the specific behaviour of the application, the model generator was able to build models
that could predict the execution times of a set of benchmarks with a 8% improvement in
prediction compared to simulation predictions. The proposed framework is proven to be a
better option for performance prediction of a large number of applications and especially for
Design Space Exploration. We plan in the future to investigate the performance of the model
generator with more accurate simulators and investigate the trade-offs between accuracy and
speed that it could offer.
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(a) H1TM: Model built on Measured data.
 

(b) H1TS: Model built on Simulated data.

 

(c) H2TM: Model built on Measured data.
 

(d) H2TS: Model built on Simulated data.

Figure 3.4: Measured vs Simulation vs Predicted performance.



29

CHAPTER 4 ARTICLE 2 – AN ANALYSIS OF RANDOM CACHE 
EFFECTS ON REAL-TIME MULTI-CORE SCHEDULING ALGORITHMS

As the lack of relevant information necessary to employ existing technolo-
gies, especially those developed for DSE and optimization of resources became
apparent, our inquiry lead us to investigate characteristic such as memory con-
tention that, with today’s technological advances, both in terms of multi-core
systems and scaling of technology, has lead to a non-negligeable trait in the
interference measured when executing software on different cores sharing mem-
ory space. For such, the work presented in here re-evaluates the scheduling
of applications of real-time multi-core systems by adding an awareness of ran-
dom cache sharinf in the estimationg of the probabilistic worst case execution
time (pWCET) and extending the RTS verification toolkit with a multi-core
scheduling simulator.

Full Citation I. Hafnaoui, C. Chen, R. Ayari, G. Nicolescu and G. Beltrame,
“An analysis of random cache effects on real-time multi-core scheduling algo-
rithms,” in Proceedings of the 28th International Symposium on Rapid System
Prototyping: Shortening the Path from Specification to Prototype. ACM, 2017,
pp. 64–70.
DOI: https://doi.org/10.1145/3130265.3130320

Preface

Abstract

The effect of sharing the last-level cache (LLC) among cores in a multi-core system has not
been thoroughly investigated especially in the design of efficient scheduling algorithms. And
with the growing interest in random caches, which allow for an easier estimation of the worst-
case execution time of tasks in critical real-time embedded systems, tools that analyse the
sensitivity of workloads to sharing the LLC become necessary. In this paper, we extend a
real-time multiprocessor scheduling simulator, SimSo, with a framework that incorporates a
random cache model for multi-level caches to evaluate emerging scheduling algorithms under
the influence of shared caches. A set of experiments were performed to study the behavior
of workloads with respect to worst-case response time, average slack time, and maximum

https://doi.org/10.1145/3130265.3130320
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utilization, with varying cache designs under different scheduling algorithms.

4.1 Introduction

Extensive work has been proposed in literature to study caches and their effects on single and
multiple path applications, especially when timing analysis is concerned. The pessimism of
worst-case execution time analysis introduced by the determinism of some architectures led
some researchers to investigate probabilistic architectures, namely those equipped with caches
running with random placement/replacement policies. Since pathological cases are avoided
by random behaviors, the pessimism of worst-case execution time (WCET) can hence be
decreased [38]. These types of architectures opened doors to better timing analysis due to
their predictability and hence offered tighter bounds than their counterparts. A pseudo-
random replacement policy, for instance, has been integrated and applied to some ARM
processor caches, such as the ARM Cortex-R5, which is targeted towards real-time embedded
systems 1. At the same time, due to the power wall, a term used by computer architects to
refer to the roadblock that CPU manufacturers hit due to a higher heat production and power
consumption, architects turned towards multi-processor/core architectures to counter the rise
in demand for a faster processor clock and the ensuing power and temperature issues [80].
As a result, research changed focus from ways to accelerate execution of software on a single
processing element to proposing approaches to concurrently execute software applications on
a multiprocessing platform while optimizing certain objective metrics. Different schedulers
have been proposed for this purpose and a lot of effort has been put to evaluate these
techniques either through theoretical models or simulation techniques.

Simulators, for instance, help designers to choose the best configuration for their systems by
providing metrics such as response time of tasks, processor load, etc., which are attributes
that can change as scheduling algorithms and allocations are altered. Several scheduling
simulators, both commercial and academic, have been proposed for the endeavour of in-
vestigating existing and emerging schedulers with varying characteristics. RTMultiSim was
proposed by Hangan et al. [81] to simulate the behavior of multiprocessor real-time systems
for the purpose of evaluating allocation and scheduling algorithms. It provides an abstract
support of distributed systems in the form of message passing over a network. SPARTS [82]
is a similar simulator in that it simulates scheduling properties of task-sets on a multipro-
cessor platform. However, it extends the classical scheduling simulator to incorporate power
models, such as DVFS, which provide power related metrics such as energy consumption of
tasks. Other simulators such SimSo [27] focused solely on providing a tool that can effort-

1http://www.ti.com/tool/launchxl2-rm46
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lessly evaluate a large number of scheduler algorithms on a multi-core real-time system. The
work proposed by the authors of [19] demonstrates the relevance of simulators in exploring
design choices in which ZSim [83] was employed to obtain statistics to aid in predicting the
performance of a wider range of architectures without incurring in the overhead of simulating
every possible hardware/software configuration.

The common assumption that these simulators take is that overheads caused by the hard-
ware and operating system is either included in the worst-case execution time (WCET) or
considered negligible. Yet, as the number of cores increases, so does the overhead of sharing
memory space among multiple software applications running at the same time. A study by
Mars et al. [43] compared the cross-core interference on Intel’s Core i7 Quad and AMD’s
Phenom X4 which share a large last-level cache (LLC) of 8MB and 6MB respectively, with
their four cores. The performance degradation in these experiments were observed to reach
35%, which accentuates the need to study the effect of sharing the LLC when analyzing the
timing behavior.

To be able to estimate the overhead of shared caches on multicore platform, various models
have been proposed with varying degrees of accuracy and complexity. A simple model based
on frequency of access (FOA) was proposed by Chandra et al. [84] to predict the execution
time of an application when it shares its high level cache with another application. FOA
is employed to estimate the application’s cache occupancy and stack distance profiles are
then used to estimate the execution times. Since relying on stack distance profiles could be
computationally heavy, Sandberg et al. [85] proposed the use of the fetch rate as a function
of cache size as a low-overhead input to estimate the shared cache contention for random
and LRU caches by considering volatile and sticky data. Pan and Jonsson [45] proposed
a framework that predicts shared cache performance that can be applied to configurations
with different replacement policies such as random, LRU, Pseudo-LRU, etc. in which cache
associativity is considered. The approach relied on the use of reuse distance as an input to
a Markov chain for the purpose of predicting the cache miss rates. Reuse distances were
employed as well by Eklov et al. [48] to obtain the interleaving stack distance profiles on a
shared cache and estimate the miss rates of caches. A recent work by Sanchez et al. [46]
proposed a common framework based on absolute reuse distances that accurately models
probabilistic caches among other replacement policies.

Despite the wide-spread presence of research on shared cache performance estimation, their
integration in real-time scheduling simulators stays limited. In a recent work by Cheramy et
Hladik [47], the authors of SimSo have ventured into this field by extending the framework
to integrate cache models; an LRU cache model in particular.
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In this paper, we introduce a framework that incorporates contention consciousness in the
timing analysis as well as scheduling algorithm design and hence a tool to optimize the
hardware/software structures. In particular, our contributions can be summarized as follows:

1. We introduce a compact random cache model for multi-level caches on real-time multi-
core systems based on the work of Eklov et al. [48], to estimate interleaving reuse
distance in shared caches. We then extend the work [40] to calculate the cache hit
probability and the Cycle Per Instruction (CPI) of tasks sharing the last-level cache.
The proposed model offers a less laborious execution of the simulator as opposed to
other models that require the calculation of multiple probabilistic distributions as is the
case with the framework proposed by Beckmann et Sanchez [46]. The reliance of the
model on reuse distances instead of stack distance profiles decreases the computational
cost as well and makes it possible to integrate the random cache model into scheduling
simulators.

2. We integrate the random cache model into SimSo’s Execution Time Model, which
estimates the miss ratio at all cache levels of an architecture and calculates the CPI
of tasks executing under a certain scheduling policy and considers all scheduling cases.
This way, we establish a framework that is able to evaluate scheduling algorithms in
the presence of shared random caches.

The rest of the paper is organized as follows. Section 4.2 defines necessary notions on reuse
distance and Static Probabilistic Timing Analysis (SPTA) technique for single-level random
caches. In addition, we introduce a random cache model for multi-level caches and describe its
integration into SimSo. Experimental evaluations of the proposed framework are presented
and discussed in Section 4.3. Finally, we give our conclusions and future work in Section 4.4.

4.2 Contention-Aware Scheduling with Probabilistic Caches

To be able to design schedulers conscious of the memory contention, we extend a previously
proposed model for private random caches [40] based on reuse distance to offer a framework
that conservatively models a shared random cache.

4.2.1 Interleaved Reuse Distance

The reuse distance represents the number of memory accesses between two consecutive uses
of the same memory address. Figure 4.1 shows a sequence of memory accesses. The reuse
distance is agnostic to the memory addresses accessed between two consecutive accesses to
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Figure 4.1: Reuse distance of memory accesses in a memory trace.

the same memory address. It rather reports the frequency of memory accesses, as can be
seen for the reuse distance of the second access to address a which is equal to the number of
accesses rda = 5.

The static probabilistic timing analysis (SPTA) we propose (defined in Section 4.2.2) relies on
this definition of reuse distance to estimate the WCET. For private caches, the reuse distance
can be obtained by extracting the program’s memory trace. However, employing the same
method to obtain the reuse distances for the LLC when tasks are sharing memory space is
unrealistic. There have been extensive studies on shared cache impact, such as [84, 48, 85].
We were inspired by the technique proposed by Eklov et al. [48] to obtain an interleaved reuse
distance, defined as the reuse distance of a task sharing memory space with tasks running on
other cores. The models employing this definition of the reuse distance reported a mere 2%
error compared to those of simulations. In this paper, the reuse distance of a shared random
cache for a system with 2 cores has been extended to n cores.

Since reuse distance abstracts the address of the memory accesses, interleaved reuse distance
implies that a number of instructions nt of task tj running on core j are fetched in an
interval of time T . This interval of time is defined as the time between two accesses to the
same memory address of task ti co-running alongside tj on core i. From this, we introduce
the formula,

pmii = #memory_accessesi
#instructionsi

(4.1)

where pmii is the proportion of memory instructions for task ti. Then, the time interval T
for reuse distance of rdi is

T = rdi
pmii

cpii (4.2)

where cpii is the CPI of task ti on core i without interference of other tasks. Equation 4.2
builds the relationship between reuse distances rdi and rdj on two cores as follows
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rdi = rdj
pmii
pmij

cpij
cpii

(4.3)

For a shared LLC, the new reuse distance r̂di of the interleaved stream for task ti is,

r̂di =
n∑
k=1

rdk = rdi
n∑
k=1

pmii
pmik

cpik
cpii

(4.4)

4.2.2 Static Probabilistic Timing Analysis of Random Caches

A cache, with evict-on-miss random replacement policy, randomly selects a cache block to
be replaced for every cache miss. As opposed to, for instance an LRU replacement policy,
this random behavior avoids pathological cases with low occurrence probabilities which are
hard to test and predict [38]. Disregarding extremely unlikely events, such as those with
probabilities lower than the physical destruction of the device, helps in upper bounding the
WCET estimation. Several formulae have been proposed for SPTA of single-level random
caches based on program memory traces. In here, we adopt the formula proposed in [40] to
compute the hit probability of each memory access for a single level cache. This formulation
has been proved to offer a safe and optimal bound [39].

P (hit) =

 (N−1
N

)K ifK < N

0 ifK ≥ N
(4.5)

where N represents the cache associativity, and K the reuse distance. We define an Execution
Time Profile (ETP) that represents timing information and their associated probabilities in
the form of two vectors. We use the number of cache misses as a timekeeper (execution time
may be used in other papers) and define ETP = {(m1,m2, ...), (p1, p2, ...)}, in which mi is
the number of cache misses, and pi is its corresponding occurrence probability.

The hit probabilities of each memory access are conservatively obtained and used to build
the ETPs. Since Equation 4.5 yields lower bound probabilities for cache hits, regardless
of previous memory accesses, ETPs can be regarded as independent of each other. The
convolution operator ∗© is then proposed to put all ETPs together and obtain the ETP of a
task. The reader is prompted to go through the work of Bernat et al. [86] for further proof
and explanation of the use of ETPs and the convolution operator.

To combine the profiles ETPx and ETPy, their convolution can be calculated as

ETPx ∗©ETPy = {(m1,m2, ...), (p1, p2, ...)} (4.6)
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where
mk = mi +mj

pk =
x,y∑
i=1
j=1

px,i · py,j

We assume two ETPs: ETP1 = {(1, 2, 3), (0.1, 0.3, 0.6)} and ETP2 = {(1, 3), (0.2, 0.8)}.
Equation 4.6 produces the convoluted ETP

ETP1 ∗©ETP2 = {(2, 3, 4, 5, 6), (0.02, 0.06, 0.2, 0.24, 0.48)}.

In here, we emphasize the fact that the convolution operation used to combine the ETPs
introduces a pessimism in the estimation of the probabilistic WCET. Although this deterio-
rates the accuracy of the cache model proposed in here, it provides estimations that are safe
in nature and upper bounded. Considering that one of the target platforms for the simulator
are critical hard real-time systems with strict deadlines, the introduction of this pessimism
ensures the design of reliable systems.

4.2.3 Random Cache Model

In this section, we introduce a random cache model for multi-level caches, which is based
on reuse distance and single-level SPTA techniques and is easily integrable into real-time
simulators. The architecture we analyze hereforth has a memory system of L levels that
consists of L − 1 cache levels, in which the LLC is shared among the n cores, and a main
memory. In what follows, we detail the operations that we aim to incorporate into the
simulator.

Step 1: A memory trace is collected for every task t. These memory traces are used to ob-
tain the reuse distance rdt. The method described in Section 4.2.1 is invoked to estimate the
interleaved reuse distances when different tasks are executing on an Lx level memory. The hit
probabilities of memory accesses are calculated using interleaved reuse distance from Equa-
tion 4.5. These are in turn used to construct ETP s that are then convolved by Equation 4.6
to obtain the overall ETP.

Step 2: To get the local miss ratio for task t at Lx level memory without considering previous
hit/miss impact, assuming that for an Lx level memory, ETP = {(m1,m2, ...), (p1, p2, ...)},
we have
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Figure 4.2: Integration of the cache model into the SimSo’s ETM.

lmrt,Lx =
∑
imipi

max(mi)
(4.7)

where∑imipi is the expected value for cache miss counts, max(mi) is the number of memory
accesses.

With local miss ratio lmrt,Lx, we add consideration of previous hit/miss impact in calculating
the hit ratio at each level of memory. To have a cache hit at the Lx level memory, all lower
level memory accesses (L1, ..., Lx−1) must be cache misses. Thus, the hit ratio is computed
as

hrt,Lx = (1− lmrt,Lx)
x∏
i=1

αLi
(4.8)

where αLi
=

 1 i = 1
lmrt,Li−1 otherwise

Step 3: The computed CPI for task t is denoted as cpit and can be used to describe system
behavior. To make it contention-conscious, cpit is calculated as

cpit =
L∑
x=1

hrt,LxtLx (4.9)

where hrt,Lx is the hit ratio of Lx level memory access for job t, and tLx is the access time in
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terms of cycles. Note that ∑L
x=1 hrt,Lx = 1. We assume that the access time at each level of

memory is constant.

4.2.4 Execution Time Model Integration

Through the modular design of SimSo, easing the integration of new modules, we aim to
extend the behavior of the Execution Time Model (ETM) with our cache model. Figure. 4.2
shows an abstract representation of the involved modules and their interactions. The cache
model is implemented within ETM, which handles the temporal behavior that is expected of
a job τ of a task t at a particular point in time. We implement the random cache model in the
Execution Time Model (ETM) of the SimSo simulator by incorporating the steps described in
the previous section. As can be seen from Figure 4.2, the ETM is an event-triggered module.
It updates the number of instructions executed every time an event occurs; whether it is an
activation, pre-emption or a termination of job τ . With this, two modes of time modelling
are implemented; the “no contention” mode and the “shared cache” mode.

• The “no contention” mode returns the execution time of jobs that are executed sequen-
tially or on a single core. This covers the instances in which only a single job is running
in one of the cores.

• The “shared cache” mode returns the execution time of jobs sharing then last level
cache. This refers to the instances in which jobs are running in parallel on different
cores and in which the memory contention might increase the miss ratio of tasks.

These concept are implemented for the cache model integration by calculating the number
of instructions nt as

nτ = δτ
cpiτ

(4.10)

where δt is the time interval between two events for a job τ and cpiτ is the CPI expected for
job τ as calculated by Equation 4.9.

Since scheduling policies affect which jobs can run together, the cache model implementation
will adjust its calculations to match the timing activations sent by the Scheduler. When an
on_activate event is generated, the Scheduler sends an event to the ETM with the ID of the
activated job. In here, the ETM uses the reuse distance rdt if the job is running by itself. In
case a second job is activated on a different core, the ETM will switch to the “shared cache”
mode in which the interleaved reuse distances are calculated for the running jobs. In this
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manner, the ETM will switch between the “no contention” and the “shared cache” modes
depending on the current state of the scheduler and the events sent to the ETM that describe
the state of jobs.

4.3 Experimental Evaluation

4.3.1 Experimental Setup

To study random cache effects, we choose Mälardalen benchmarks – a popular suite for
WCET and random cache analysis – for evaluation. We use gem5 [87], an instruction set
simulator, to generate memory access traces for an ARM processor architecture with a Float-
ing Point Unit (FPU) and statically link all libraries. Each benchmark is regarded as a task
with a memory trace obtained separately from other benchmarks. We also only consider
instructions relevant to the benchmarks while we ignore the instructions of system calls.

In the experiments, we adopt the simple architecture of Figure 4.3 that contains two cores
with a 4 Kb L1 private cache each and share a 32 Kb L2 as a LLC and a 2 Mb main memory
in which the access times are defined within the arrows.

In each of these experiments, the memory access trace of a benchmark is used to obtain the
corresponding reuse distance. The reuse distance of the benchmarks to be tested is supplied
as an input to the simulator’s ETM alongside the number of instructions as was previously
stated in Section 4.2.4.

4.3.2 Experimental Results

The purpose of the following experiments is to show the importance of considering memory
contention when scheduling is concerned, as well as, demonstrate the utility of the proposed

L1

Main Memory

CPU 0

L1

L2

CPU 1

1 cycle

100
cycles

4
cycles

Figure 4.3: A two-level cache hierarchy.
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Figure 4.4: Executed cycles obtained from gem5 and SimSo.

tool in optimizing the hardware/software configuration by tuning the parameters of the cache
and both existing and emerging scheduling policies.

Cache Boundedness

To validate the proposed cache model, Gem5 was used to simulate the execution of Malardalen
benchmarks on the architecture of Figure 4.3. Figure 4.4 plots the exceedance probability
which defines the probability to exceed a certain number of executed cycles. Since scheduling
events affect the choice of reuse distance (single or interleaved) used for the timing analysis, it
is difficult to obtain the same exceedance curve for the cache model. For such, we compare the
curves obtained from Gem5 with the bounded values used by SimSo. For space limitations, we
only show the results for two benchmarks, nsichneu and statemate, which are characterized
with a higher sensitivity to changes in cache occupancy, however similar observations were
obtained for the rest of the benchmark suite. This shows that the cache model offers a safe
bound that can only be reached at very small probabilities.

To validate the proposed cache model, gem5 was used to simulate the execution of Malardalen
benchmarks on the architecture of Figure 4.3. Figure 4.4 plots the exceedance probability
which defines the probability to exceed a certain number of executed cycles. Since the
knowledge of scheduling events are required, it is difficult to obtain the same exceedance
curve for the cache model. For such, we compare the curves obtained from gem5 with the
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Table 4.1: Task-set Γ specifications with every task’s release time at Ai = 0 and t =
{Ct, Dt, Tt, cput} defined as the worst case execution time (used for no contention), dead-
line, period and allocation (when applicable) respectively.

Task Ct(ms) Dt(ms) Tt(ms) cput
fdct 0.20 2.0 2.0 CPU 2
fft1 0.09 1.0 1.0 CPU 1
minver 0.19 3.0 2.0 CPU 2
nsichneu 0.54 2.0 2.0 CPU 1
qsort-exam 0.07 1.0 1.0 CPU 2
select 0.07 1.0 1.0 CPU 2
statemate 0.12 2.0 2.0 CPU 2

bounded values obtained from SimSo. The cache model offers a safe bound that can only be
reached at very small probabilities. For space limitations, we only show the results for two
benchmarks, nsichneu and statemate, which are characterized with a higher sensitivity to
changes in cache occupancy.

Cache Contention

The experiment involves executing a set of benchmarks Γ with the specifications of Table 4.1
under five different schedulers, (G_FL: global fair lateness scheduling, EKG: multiprocessor
scheduling with few pre-emptions, EDF: partitioned earliest deadline first scheduling, RM:
partitioned rate monotonic scheduling, LB_P_EDF: a load-balancing partitioned earliest
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Figure 4.6: Worst Case Response Time for a subset of Γ tasks under different schedulers for
a random cache.

deadline first scheduling.). The objective is to observe the system’s worst response time
SWRT defined as the worst response time at which all tasks in the task-set have finished
executing at least once.

SWRT = max
t∈Γ

(WCRT
(1)
t )

where
WCRTt = max

τ∈t
(cτ − aτ ) (4.11)

with aτ and cτ as the activation and completion times of job τ respectively.

Figure 4.5 plots the SWRT observed when the set is scheduled without considering the cache
contention (no contention) and when cache contention is considered (with contention). We
can clearly see that the response time of the system is higher when the scheduling is conscious
of the cache contention regardless of the scheduling policy applied at the time. This is due to
the fact that the execution time of tasks increases since they incorporate the effect of sharing
the cache among other tasks in different cores.
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These observations might not have a huge impact when soft real-time task-sets are studies
since, by definition, these types of tasks can withstand a certain level of degradation in
performance if they miss their deadlines. The same can not be said when studying hard
real-time systems in which the timing specifications are very strict and a missed deadline can
lead to unforeseen damage.

Impact on Cache Design
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Figure 4.7: System’s Minimum Slack reached under different scheduling policies while varying
the L1 cache size of core 1.

Cache design plays an important role in system performance and for such, we investigate
its effect on the temporal behavior of the system. We apply different cache configurations
and demonstrate its effect on the performance of scheduling algorithms and the system as a
whole. In this experiment, the L1 cache size is fixed to a relatively small size (4 Kb), and
the L2 cache size is varied from 16 Kb to 512 Kb. The access time is changed as well to
match the change in cache size and follows the configuration Φ =[(16 Kb, 2 cycles), (32 Kb,
4 cycles), (64 Kb, 10 cycles), (128 Kb, 12 cycles), (256 Kb, 13 cycles), (512 Kb, 15 cycles)].

Since the worst case response time (WCRT) of a task is one of the characteristics often
studied when designing and optimizing real-time systems and scheduling considerations are
taken, we adopt this metric in evaluating our cache integration. The WCRT of task t is as
was defined previously with Equation 4.11.

Figure 4.6 shows the worst case response time of a subset of tasks as L2 cache size increases
under different schedulers. Comparing the response time of tasks in terms of scheduling
policy, we notice that although (RM, EDF, LB_P_EDF and G_FL) seem to result in lower
response times, EKG performs poorly with most tasks in term of WCRT. This is due to
the nature of the scheduling policy which allocates tasks from a global point of view. In



43

this case, the whole set was allocated to core 1 which increased the WCRT of most tasks,
especially those with lower priorities (more pre-emptions). In most cases, the WCRT of tasks
is observed to decrease as we expend the size of the LLC as can be seen for (qsort-exam,
fdct, minver). This is a result of a faster execution time due to a lower miss rate at the
L2 level. We note however that nsichneu displays an increase in WCRT with a cache size of
256 Kb and 512 Kb. Investigating this case revealed that, as opposed to the schedule with
smaller cache sizes in which nsichneu was mostly co-running with a single task that had
a higher execution time, with bigger cache size and due to the lower time execution of the
other tasks on core 2, nsichneu was co-running alongside multiple tasks that had different
bahviors. This affected the allocation of cache space to nsichneu and hence increased its
execution time. We are able to observe this kind of behavior thanks to the inclusion of
contention awareness into the simulator that was otherwise not detectable.

Heterogeneous Multi-core Systems

Real-time simulators that are able to model heterogeneous platforms are widely desirable.
Being able to incorporate the same sense of heterogeneity in cache models is more advanta-
geous. In here, we study the effect of having different private cache designs, namely cache
memory size, on the choice of scheduling policy. The same task-set Γ of Table 4.1 is sched-
uled under the policies [RM, G_FL, EKG, LB_P_EDF] while fixing the size of the last-level
cache to 128 Kb. We fix the size of the private cache for core 2 as well to 4 Kb and vary the
size of the L1 of core 1 with Φ̂ = [(4 Kb, 1 cycles), (8 Kb, 1 cycles),(16 Kb, 2 cycles), (32
Kb, 4 cycles), (64 Kb, 10 cycles)].

To study the effect of heterogeneity by varying the size of one core’s L1 cache, we adopt a
metric that is sought extensively when optimizing real-time systems; System slack time. The
slack time is defined as the time in which the CPU is idle after the execution of the task-set.
With critical hard real-time systems that tend to enforce predictability in system scheduling,
such as those encountered in automotive and avionic domains, having a large slack time is
desirable since it gives a safe margin in case an unexpected event occurs that largely increases
the execution time of the task-set.

Having this in mind, we formally define an upper bound as a metric System Minimum Slack
(SMS) defined as the minimum slack time reached when the execution of a task is completed
and after which no task is running.

SMS = min
t∈Γ

(min
τ∈t

(Tτ − Cτ ))
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Figure 4.7 reports the system’s minimum slack time observed for core 1 and core 2 under
different schedulers. As expected, we observe that, as the size of the private cache for core 1
is increased, the execution time of tasks decreases which results in more slack time as can be
seen for [RM, EKG, LB_P_EDF]. This is due to the lowered miss ratio at the L1 level which
decreases the time to fetch instructions from the L2 cache. We can see that EKG exhibits
smaller slack times and that is for the same reasons mentioned in the previous section in
which EKG allocates all tasks on core 1 (which is the reason we see a ‘zero’ slack time on
core 2). We notice however that G_FL, as opposed to its counterparts, shows a decrease in
SMS as the cache size is increased and a reverse bahavior on core 2. This is due to the fact
that the G_FL scheduling policy is a similar implementation of partitioned EDF that allows
migration of tasks to other cores. For the purpose of balancing the load on both cores, some
tasks were allowed to migrate from core 2 to core 1 which had the effect shown in Figure 4.7.

Due to the small size of the benchmarks studied here, some behaviors were not able to be
investigated in these experiments. A larger benchmark might show additional behaviors such
as an increased slack time for core 2 as well since increasing the size of L1 in core 1 results
in less shared space in L2 between the two cores which we expect would decrease the miss
ratio at the LLC level for tasks in core 2.

4.4 Conclusions

We proposed a random cache model for multi-level caches, compact enough to be easily
integrable into modern simulators. For that endeavor, we integrated our random cache
model into a real-time scheduling simulator, SimSo. We presented a framework which allows
for the optimization of architecture and software alike and helps system engineers make
better design choices when it comes to the desired temporal characteristics of the system.
The proposed model offers safe bounds to the estimated cache contention which allows for
the implementation of more reliable systems especially when hard real-time systems are of
concern. In the future, we plan to study cache coherence effects on scheduling algorithms
and investigate other timing analysis techniques such as Measurement Based Probabilistic
Analysis (MBPTA).
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CHAPTER 5 ARTICLE 3 – SCHEDULING REAL-TIME SYSTEMS 
WITH CYCLIC DEPENDENCE USING DATA CRITICALITY

When it comes to scheduling and integrating large software systems, a clear
description of the system and the inter-dependencies among its different parts,
such as a DAG, must be established in the very early stages of development.
Many approaches proposed through literature are also based on this type of
graph representation. The enability to achieve this description, which alas
is more common in industrial application than not, aggravates the smooth
opertation of system integration and limits accessibility to powerful techniques.
In this work, we borrow the interpretation of information as a property that
is characterized with flow and present an approache to attribute criticality
levels to the data shared among the modules of the system to identify which
relationships can be discarded in order to achieve a DAG representation. The
approach becomes valuable when the modules are viewed as black-boxes and
offer starting configurations to accelerate the integration phase.

Full Citation I. Hafnaoui, R. Ayari, G. Nicolescu and G. Beltrame, “Schedul-
ing real-time systems with cyclic dependence using data criticality,” Design
Automation for Embedded Systems, vol. 21, no. 2, pp. 117–136, 2017.
DOI: https://doi.org/10.1007/s10617-017-9185-9

Preface

ABSTRACT

The increase of interdependent components in avionic and automotive software rises new
challenges for real-time system integration. For instance, most scheduling and mapping tech-
niques proposed in the literature rely on the availability of the system’s DAG representation.
However, at the initial stage of system design, a dataflow graph (DFG) is generally used to
represent the dependence between software components. Due to limited software knowledge,
legacy components might not have fully-specified dependencies, leading to cycles in the DFG
and making it difficult to determine the overall scheduling of the system as well as restrict
access to DAG-based techniques. In this paper, we propose an approach that breaks cycles
based on the assignment of a degree of importance and that with no inherent knowledge of

https://doi.org/10.1007/s10617-017-9185-9
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the functional or temporal behaviour of the components. We define a “criticality” metric that
quantifies the effect of removing edges on the system by tracking the propagation of error
in the graph. The approach was reported to produce systems (56 ± 14)% less critical than
other methods. It was also validated on two case studies; a data modem and an industrial
full-mission simulator, while maintaining the correctness of the system.

5.1 Introduction

When scheduling complex real-time systems, such as those encountered in the avionic and
automotive industries, engineers widely rely on a representation of the system in the form
of a directed acyclic graph (DAG). This is usually referred to as a task graph in which
nodes represent system components and edges, the communication between them. A system
component is an encapsulated entity treated as a simple task and mapped and scheduled
in the same manner. A DAG representation of a system is the basic input for various
methodologies proposed in literature. The motivation of these works vary from the analysis
of system performance and feasibility [88] to the optimization of the mapping and scheduling
of real-time systems [89, 90], to involving artificial intelligence to solve the issue of real-time
scheduling [91]. Some tools such as YARTISS [92] and STORM [26] use a DAG as an input
model to simulate the real-time behaviour of the system. In large-scale system development,
it is generally assumed that the DAG representation is available at integration time. However,
the reality on the industrial level says otherwise. Legacy components and architectures are
oftentimes not fully specified which limits the availability of a DAG. Instead, the system
representation is limited to a generic model such as the example in Figure 5.1a.

A generic avionic subsystem is shown in Figure 5.1a with the edges representing the flow
of data between the components and the bubble stating the id. and rate at which they
are executed. These are among other characteristics specific to every component that we
formally define in Section 5.3. Scheduling this system becomes tedious even under a simple
application of Rate Monotonic scheduling (RMS) with dependent tasks. However, with the
DAG representation of Figure 5.1b, in which the cycles are removed, one possible schedule for
the system under a pre-emptive RMS can be achieved as in Figure 5.1c and further methods
to optimize certain objective metrics such as the throughput or the energy of the system
become possible; an option that was very limited with the graph of Figure 5.1a.

The inability to identify the execution order of the system components at integration time is
a consequence of many scenarios, one of which is expecting engineers from different domains,
such as mechanics, electrical engineering, etc., to be experts in their fields as well as software
engineering. Moreover, due to the complexity of these systems, code is repeatedly reused
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Figure 5.1: Analysis and scheduling of a simple avionic system.
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to decrease time-to-market and cost of software testing. On top of this, the system design
sometimes requires the use of an Original Equipment Manufacturer (OEM)’s product which
generally comes in the form of a binary component accompanied with a file to describe
the component’s inputs and outputs, often without specifying the inter-dependence nor the
latency of a component. In all of these cases, the system components are viewed as black
boxes which makes it difficult to gather concrete information about the components, unless
specified by the designer. This limits the integration experts’ accessibility to the system’s
task graph.

To model such systems, a dataflow graph (DFG) is employed to represent the dependence
between components as well as the amount of data exchanged. However, different components
are interconnected in such a way that their computations depend on the data generated by
other components. This naturally creates cycles within the graph which complicates the
scheduling process, as well as precedence assignments that schedulers will have to take into
consideration. Furthermore, the existence of cycles in the system puts a hindrance to the
application of many analysis tools and optimization techniques that are available for acyclic
directed graphs.

Generally, integration engineers rely on the feedback of legacy component developers and their
own expertise and knowledge of the components individual functionality acquired through
the years to split the cycles. Alongside integration problems, this creates issues in other
disciplines such as co-simulation. For the purpose of system verification and validation,
different components are simulated using varied technologies. If we look at a simulation of
an avionic system as an example, the tools used to simulate the electrical system are different
from those that simulate the aerodynamics. In some cases, parts of the system are physically
available, however presented as black boxes and engineers are required to co-simulate the
rest of the system with limited knowledge about the components. The presence of cycles in
the overall mapping of the system drives engineers to rely on recursive techniques to reach
sound simulation results. Having a good initial configuration to the recursive process could
reduce the design time extensively.

One popular approach to model systems that involve cyclic dependences is Synchronous
dataflow graphs (SDFs). The authors of [93] presented a modular approach to analyze sys-
tem performance that was applied directly to a cyclic SDF. The scheduling of an SDF was
optimized in [94] using evolutionary techniques by considering the limitation of the size of the
scratchpad memory. Although these approaches yielded good results, this model decreases
the scope of approaches that study real-time systems since it excludes approaches based on
DAGs. To this endeavor, other works [95, 31, 32] have been proposed to unfold an SDF
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into a DAG by simply discarding the edges that contained delays. This makes DAG-based
approaches to analyze and optimize the system accessible. For all that, these methodolo-
gies cannot be adapted to the problem that we presented so far for the sole reason that the
edge property, delay, encountered in SDFs is among the metadata that are not available at
integration time as discussed in the previous scenarios.

In this paper, we put forth an approach to transform a DFG with cyclic data dependencies
into a DAG, with no inherent knowledge of the function and behaviour of system components
for the purpose of opening access to DAG-based techniques. In here, we focus on simulations
of real-time systems and systems such the informatics in automotive systems which are
comprised of components with soft deadlines and scheduled under static schedulers. This
is the case since certain standards are enforced when scheduling these types of real-time
systems. Especially with the prevalence of the Integrated Modular Avionics (IMA) [96] to
design avionic systems, static scheduling policies are preferred and sometimes imposed to
enforce predictability in the system.

The approach we propose here is based on the idea of error propagation to eliminate cycles.
We introduce a concept that describes the importance of data, which we label criticality,
in which the effect of removing a certain edge is quantified as a characteristic of the data
being carried by the edge. This is a key component in deciding which edges to discard and
transform the DFG into a DAG.

The rest of the paper is structured as follows: Section 5.2 summarizes the work that has been
proposed in literature to solve this issue; Section 5.3 gives a description of the system model.
The approach to eliminate cycles based on criticality is detailed in Section 5.4 followed by a
motivational example; The results obtained from a set of experiments and two case studies
are reported in Section 5.5; Finally, conclusions are given in Section 5.7.

5.2 Related work

One of the important parameters that characterizes tasks in real-time system scheduling
is their priority assignment. This, alongside task precedence constraints, could decide the
schedule that drives the execution of the system. The assignment is generally attributed with
a performance objective in mind decided by the designer when building the system such as
schedule length, schedulability, etc.

Different approaches have been proposed to schedule the system and assign priorities with
task dependences in mind. The authors in [97] and [98] tackled the issue from a mapping point
of view in which a Genetic Algorithm (GA) was employed to allocate dependent tasks and
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assign priorities on a multiprocessor system. The Distributed by Optimal Priority Assignment
(DOPA) heuristic was proposed in [99] to address both the problem of finding a partitioning
configuration and a priority assignment for tasks on a core that ensures the tasks don’t miss
their deadlines. The problem is extended to Network-On-Chip (NoC) systems in the work
of Liu et al. [100] who proposed a dependency-graph based priority assignment algorithm
(eGHSA) targeting NoCs with shared virtual-channels. On the other hand, the works in [101,
102, 103] relied on the system topology and focused on the basic idea that priorities should
be chosen by the node’s relative importance. In [104, 105], the concept of Global Critical
Path is introduced which extends the top-level and bottom-level strategies by considering the
critical path in the graph (the longest path from the source to the exiting node) and its branch
paths. Sinnen et al. [106] proposed multiple extensions of the previous schemes to include
communication contention and the number of successors. Be that as it may, the constant
assumption seems to be that a graph representation of the system as a directed acyclic
graph (DAG) is available. Other models that include cyclic dependences were proposed to
bypass the issue of DAG inaccessibility. The work in [107] extended TTIG (Temporal Task
Interaction Graph) [108]; a different model from a DAG that models cycles and bypasses
some of the drawbacks of using a DAG. However, the cycles within this model were viewed
as special nodes referred to as Composite Nodes to facilitate computation of path execution
times and the presence of cycles was not dealt with head-on. A similar approach was proposed
by Sardinha et al. [30] in which cycles were included in a special group called Strongly
Connected Components (SCC) to facilitate mapping of tasks onto a number of processing
elements. The authors in [109] proposed a modified Depth First Search (DFS) algorithm
that splits the cycles. Yet, once again, the assumption was that all edges are of the same
importance and the focus of the paper was on shortening the critical path of the resulting
DAG to reach a better makespan for scheduling the DAG. The presence of cycles in attack
graphs in the field of cyber security was addressed by Huang et al. [29] in which the authors
identify two types of cycles; the ones that cannot be executed irrespectively of which edge was
removed and hence discarded the cycle, and those that cannot be removed. The approach
relies on the functionality of the nodes and characteristics specific to security modules to
remove the cycles and hence cannot be generalized to other scenarios from different domains.

In this work, we set forth a methodology to break the cycles in a dataflow graph with no
inherent knowledge of the components behaviour or execution times that relies on a definition
of data criticality.



51

5.3 System Model

In this paper, we deal with systems similar to full-mission simulators (FMS) in which system
components are viewed as tasks with execution times, deadlines and execution rates, and
thereby mapped and scheduled as a generic taskset. To be able to visualize the system,
better understand the dependencies and build our approaches on mathematical grounds, we
define two types of graphs; the dependence graph and task graph.

Due to the partially specified components, the dependence graph represents the system at its
raw state. The exchange of data between components is used to track the intra-component
communication and build the dependence graph. Note that the components that depend on
the data produced by other components do not wait for said data to be generated to start
executing. Rather the data is accessed through a shared memory. This, in turn, implies
that, depending on the schedule, the data read by a component at a point in time could
be possibly out-dated. This is another reason synchronous dataflow graph (SDF) are not
suitable to model our system since the nodes or actors in a SDF wait on certain tokens to
start executing. For such, we choose to rely on a generic DFG to model the dependence
graph.

On these grounds, we model our system’s dependence graph with a dataflow graphG = (V,E)
where the nodes V = {t1, t2, ..., tn} represent the components that make up the system and
E = {e11, e12, ..., ekp}, the set of edges eij that link components ti and tj. It is worth noting
that self-loops, defined as data generated by a component and read by the same component,
are ignored since they have no effect on the execution order of the components.

The common representation of systems found in literature is that of a task graph, onto
which we aim to transform the above defined DFG. A task graph is a directed acyclic graph,
G̃ = (Ṽ , Ẽ), in which the nodes Ṽ = {τ1, τ2, ..., τn} represent a job instance of the component
V . A job τi is characterized as a tuple {Idi, Ci, di, Ti} defined as the identifier, execution time,
absolute deadline, and period respectively. The edges Ẽ represent the precedence between
the jobs and describes the constraint on the execution order of the jobs.

As can be seen from Figure 5.1a, component communication does not imply identical period-
icity. In other words, two components communicating with each other does not necessarily
translate to them executing at the same rate. This characteristic is important to identify
especially when certain schedulers are considered. With scheduler policies that rely on task
deadlines and periods to assign priorities, multiple components are assigned the same priority
in execution and the number of tasks with the same priority becomes large as the system
grows in size. If we take as an example a taskset with three tasks (t1, t2, t3) with periods
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{16, 32, 16} respectively, and we schedule them under a Rate Monotonic scheduler, the RMS
algorithm will assign priorities P = 2 for task t2 and P = 1 for both tasks t1 and t3. The need
to assign execution orders for tasks with similar priorities becomes necessary when scheduling
a dependent set of tasks in which precedence is a constraint.

Furthermore, we argue that analyzing the overall system to break all cycles is unnecessarily
time-consuming since data produced by components with shorter periods can be consumed
at a later time by the components with larger periods. Component Spoilers in Figure 5.1a
for example might produce data every 10 (ms). However, Hydraulic only consumes the data
once every 40 (ms) making it irrelevant whether Hydraulic is consuming the data generated
in the first period of Spoilers or the last.

5.4 Graph Transformation Through Data Criticality

The graph transformation refers to breaking the cycles present within the dependence graph
to be able to schedule the resulting task graph. In the context of scheduling soft real-time
systems, cycle breaking involves the decision of which components can tolerate delay. Our
approach relies on the definition of a new parameter that characterizes the data exchanged
between the components that we label data criticality.

5.4.1 Error Propagation Approach (EPA)

Data criticality comes from the understanding that some data generated by some components
are more important than other data. In here, the importance of data expresses how affected
the system would be if the data were erroneously computed. Since our problem is a scheduling
issue, in which the system components are scheduled in a certain order within one time period,
breaking cycles by removing edges in the graph does not involve loss of data but rather results
in one of the data generated to be “out-dated”. This is to say that when edge eij is removed,
the kth job τ (k)

j of the component at the tail tj will use data generated by component ti in
the previous time period, τ (k−1)

i , to complete its inner computations. This can be observed
in the example shown in Figure 5.2.

Since the system components are viewed as black boxes and the knowledge of the interactions
of input and output variables within a component is unavailable, it is difficult to determine
which components can tolerate out-of-date data. For such, we label the data generated
by a component that is using outdated information as “faulty data”. By modelling this
behaviour as an error injection mechanism, we propose a method that computes the criticality
of the data based on the propagation of the error within the system graph and that with no
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Figure 5.2: The effect of splitting a cycle in a real-time system.

knowledge of the components’ functionality. This involves four steps:

1. Extraction of all graph cycles;

2. Calculation of the rate of error propagation within the system graph from every com-
ponent in the cycles;

3. Assignment of criticality weights to the data flowing inside the cycles;

4. Removal of appropriate edges to break the cycles.

In the following, we detail every step and provide insight into their implementations.

Cycle Extraction

A simple cycle is defined as a path Γc = {t1, t2, ..., tk} in which the head node is the same
as the tail node with no repetitive nodes or edges, except for the head and tail nodes. We
implemented an algorithm based on the work presented in [110] to extract the cycles present
in the graph G. The time complexity of this algorithm is reported as O((n+ e)(c+ 1)) for a
graph with n nodes, e number of edges and c number of simple cycles.

Error Propagation

By adopting the definition that removing an edge translates to a component using old data
and hence generating faulty data, the algorithm follows the propagation of this erroneous
data within the graph. Although we can easily follow the dependence between components
given a dependence graph, there is no definitive way to track the dependence of a component’s
outputs to its input variables unless provided by the designer.

To avoid making assumptions about the components, an element of stochasticity is intro-
duced. The behaviour of the erroneous data when consumed by a component can have two
behaviours within a component.
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– State A in which the error disappears if the faulty data gets overwritten by the com-
ponent’s inner calculations. A simple example of this is the case in which the faulty
variable x is initialized if certain conditions are fulfilled.

[..]
if ( Conditions == True) do:

x = x_0
end if
z = x - 10
[..]

– State B in which the error propagates to other output variables that include the faulty
variable x in their computations as a function f(x), which allows the error to propagate
from the component to the components of the system that directly depend on it.

[..]
y = x^2 + z
if ( Conditions == True) do:

x = x_0
end if
[..]

We define Ai as the event of component ti producing an error in which:

Ai =

1, if the error is propagated.

0, if the error is masked.
(5.1)

The problem can be viewed as a set of Bernoulli trials in which every component has the
probability of internally propagating an error defined as:

Pr(Ai) =

pi, if Ai = 1.

qi, if Ai = 0.
(5.2)

where pi represents the probability of a component propagating an error from its inputs to its
outputs, and qi = 1−pi, the probability of masking the error. This is not to be confused with
the probability of a component generating or containing a software bug since the components
are assumed to be bug-free at integration time.
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We define Pred(ti) and Succ(ti) as the list of predecessor and successor components of ti
respectively. Assuming that Pred(ti) = {tj}, the observation of an error at the output of ti
depends on tj

Pr(Ai = 1|Aj = 1) = pi,

P r(Ai = 1|Aj = 0) = 0

We want to find the probability of a component propagating an error to its successor depen-
dants with the probability of the error having propagated from its predecessor components.
In other words, it is the probability of events Ai and Aj having occurred, where tj ∈ Pred(ti)
and tj /∈ Succ(ti).

The unconditional probability of ti propagating an error is

Pr(Ai = 1) = Pr(Ai = 1, Aj = 1) + Pr(Ai = 1, Aj = 0)

= Pr(Ai = 1|Aj = 1)Pr(Aj = 1) + Pr(Ai = 1|Aj = 0)Pr(Aj = 0)

= Pr(Ai = 1|Aj = 1)Pr(Aj = 1)

= piPr(Aj = 1)

(5.3)

Events Aj are independent, however, they are not mutually exclusive since components tj can
contain and propagate an error at the same time. For more than one predecessor component,
Equation 5.3 can be generalized as

Pr(Ai = 1) = Pr(Ai = 1, (∪tj∈Pred(ti)Aj = 1)) (5.4)

In the case that ti has no predecessors, we are dealing with the faulty component at which
we are injecting the error and the probability of propagation is Pr(Ai = 1) = 1. A weighted
graph Ω(ti) = (V, ω(ti)) is built by calculating the probability of error propagation from the
faulty component to all its directly and indirectly connected components by assigning weights
ωij(ti) to the edges carrying the data. The algorithm is summed up in these steps:

Step 1. Given a cycle Γ, an edge eij is selected to study the effect of its removal on the
system. The component at the tail of the edge is assumed to be the faulty component
and the data it generates as erroneous. We calculate the direct error propagation by
looking for the component directly connected to the faulty component and assign a
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weight ωij(ti) = 1 to the edges connecting the faulty component ti to its successor
components tj | tj ∈ Succ(ti).

Step 2. Once the direct error propagation is assigned, we calculate the indirect error
propagation by employing Equation 5.4 considering the components tk that depend
on the faulty component through other intermediate components and assign weights
ωjk(ti) = Pr(Aj = 1) to the edges connecting these components to the intermediate
components.

Step 3. We rely on a Breadth First Search (BFS) to look for lower level compo-
nents that indirectly connect to the faulty component and repeat Step 2 until the last
dependent component is reached and appropriate weights are assigned to the connect-
ing edges. The result is a weighted graph Ω(ti) with the probabilities of the error
propagating from the designated faulty component ti.

Figure 5.3 represents part of the system of Figure 5.1a and gives a visual example of how
Equation 5.4 is used when we track the propagation of error from component t9 to the rest of
the subgraph. We can see that the directly dependent component t3 will have a probability of
p̂9 = 1 to receive faulty data at its input. To calculate the probability of indirect propagation
of error from component t3 to [t2, t5, t10], we use Equation 5.3 as

Pr(At3 = 1) = Pr(At3 = 1|At9 = 1)Pr(At9 = 1)

= pt3Pr(At9 = 1)

= pt3

 

t5 

t2 
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Figure 5.3: Direct and Indirect Error Propagation results in weighted graph Ω(t9).
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The same is done for the probability of the error propagating from component t2. Considering
that t2 depends on both t3 and t5, the probability of the error propagation Pr(At2 = 1) is
the probability of event At2 occurring with the probabilities of events At3 and At5 having
occurred respectively in which case Equation 5.4 will be employed.

Cumulated Error Propagation

Once the error propagation probabilities of a faulty component are calculated, the result is
a weighted graph Ω(ti) for every edge that belongs to a cycle as in the example graph of
Figure 5.3.

The amount of propagation of an error in the system determines the global effect of removing
an edge on the system. To quantify this effect, a cumulated error propagation (CEP ), that
expresses the criticality of data, is calculated as

CEP (tx) =
∑

i,j∈Ω(tx)
ωij(tx) (5.5)

The example shown in Figure 5.4 illustrates how the error accumulates as it spreads in the
system DFG when it transfers from one level to another for different faulty nodes of the same
graph. A level is defined as a subset of components which have an equal number of hops
(i.e. longest distance) to the root component; ti. For the example given in figure 5.3, both
components t5 and t10 are at level 2 whereas component t2 is at level 3.

Figure 5.4 shows that the CEP is not affected by how deeply the error spreads through the
graph, but rather by the outdegree centrality of the studied component. This is the case
since the probability of an error propagating is higher at the first levels and becomes lower
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as we go deeper and further from the root faulty component since the faulty data have more
chances to be overwritten. That is to say that the denser the levels directly connected to the
faulty component, the higher the CEP is going to be.

Given this definition, the component within the cycle with the minimum CEP has the
smallest effect on the system, which will decide the edge to be remove to break the cycle.

Minimum Feedback Arc Set with Criticality

Our proposed approach described so far is only concerned with breaking the cycles by re-
moving the edges that carry the least critical data within a cycle. However, in most cases,
an edge belongs to more than one cycle. Hence, removing an edge from a cycle might also
break other cycles. This means that the number of edges that are to be removed is:

∑
eij∈Υ

eij ≤ c (5.6)

where c is the number of simple cycles in the graph.

To optimize our approach, we address the problem as a Minimum Feedback Arc (MFA) set
problem. This refers to a set of NP-Hard problems that take a non-polynomial time to find
the minimum number of edges to remove in order to break all cycles.

Since our main concern is removing edges based on the criticality of data they carry, solving
the MFA problem is out of the scope of this paper. Nonetheless, we want to base the decision
of removing edges on data criticality while reducing the number of edges that could break all
cycles. For this purpose, we introduce the concept of “popularity” among edges. We define
the “popularity” of an edge eij as the frequency of appearance f(eij) of an edge in the cycles
Γc. Formally,

f(eij) =
∑

eij∈Γf
c

eij (5.7)

Accordingly, we extend the criticality based solution to lower the number of removed edges
by first sorting the set of edges that EPA suggested to discard and then remove the most
popular edge one by one until all cycles are broken (12− 17).

Algorithm 1 summarizes the methodology to break cycles within a dependence graph that
relies on data criticality and consequently transforms the DFG into a DAG. The algorithm
has a time complexity of O((n + e) · ce) for a graph with n components, e number of edges
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Algorithm 1: Error Propagation Approach (EPA): Cycle breaking algorithm based on data
criticality.
Input: A dependence graph G = (V,E).
Output: A transformation of G to a task graph G̃.

1 Load the dependence graph G;
2 Cycles = simple cycles in G;
3 for cycle in Cycles do
4 for edge in cycle do
5 Calculate probability of error propagation Pr(Ai = 1) from component tx;
6 Assign probability to edge weights ωij(tx) ;
7 Build weighted graph Ω(tx) with error propagation probabilities;
8 Attribute the Cumulated Error Propagation CEP (tx) to edge;
9 end

10 Add edge with minimum(CEP) to Temporary Edges list;
11 end
12 Calculate “popularity” of edges in Temporary Edges;
13 Sort Temporary Edges according to popularity;
14 while Cycles do
15 Add Popular edge to the Removed Edges list Υ;
16 Update Temporary Edges and Cycles lists ;
17 end
18 Remove edges ẽij ∈ Υ from G̃.

and ce number of total edges in c number of simple cycles.

5.4.2 Motivational Example

In order to demonstrate the EPA approach to break cycles and how the concept of data
criticality is employed, we apply EPA to the example of a simple avionic system presented in
Section 5.1. Keeping to the same example, we schedule the system under a Rate Monotonic
scheduler and hence only consider the subgraph with components executing at a rate T =
10(ms) to reduce the complexity (as explained in Section 5.3).

The dependence dataflow graph in Figure 5.5a represents this subgraph and consists of 6
interconnected components. We can see that the graph has three cycle; Γ1 = {t3, t9, t10},
Γ2 = {t3, t2, t1}, Γ3 = {t3, t5, t2, t1}; that needs to be broken in order to transform the DFG
into a DAG. Table 5.1 summarizes the probability Pr(Ai) of every component to propagate
an error from its inputs to its outputs.

Applying the (EPA) approach, Figure 5.5b illustrates the spread of the error through the
graph when edge e10,9 is removed. Considering the problem definition presented in Sec-
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Figure 5.5: Dataflow graph transformation of an avionic subsystem with components exe-
cuting at a rate of T = 10ms.

Table 5.1: Probability of a component propagating an error from its inputs to its outputs.

Component t1 t2 t3 t5 t9 t10
Pr(Ai) 0.69 0.92 0.13 0.27 0.32 0.52

tion 5.4.1, removing edge e10,9 translates to injecting a fault at component t9. The weight
of the edges represent the probability of the error propagating from a component to its de-
pendent components. Thus, the probability of the error spreading from component t9 to
its directly dependent component {t3} is Pr(A9 = 1) = 1. For the sake of illustration, we
calculate here the probability of error propagation from component t5:

Pr(A5 = 1) = Pr(A5 = 1|A3 = 1)Pr(A3 = 1)

= Pr(A5 = 1|A3 = 1)Pr(A3 = 1|A9 = 1)Pr(A9 = 1)

= p5 × p3 × 1

= 0.035

The general formula of Equation 5.4 can be illustrated by calculating the error propagation
from component t2 as follows:
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Pr(A2 = 1) = Pr(A2 = 1, (A3 = 1) + (A5 = 1))

= Pr(A2 = 1|(A3 = 1) + (A5 = 1))Pr((A3 = 1) + (A5 = 1))

= p2 × (Pr(A3 = 1) + Pr(A5 = 1)− Pr(A3 = 1)Pr(A5 = 1))

= 0.148

As can be seen in the weighted graph of Figure 5.5b, the probability of the error transferring
to components in the lower levels decreases gradually as the error has more chances of being
nullified. This, however, highly depends on the topology of the graph since the probability
of a heavily connected component to propagate an error will be relatively greater than its
less connected neighbours as is the case with t2.

Table 5.2: CEP for edges in the overlapping cycles Γ2 and Γ3 and non-overlapping cycle Γ1.

Γ1 Γ2 Γ3
Edge e9,3 e3,10 e10,9 e2,1 e3,2 e1,3 e3,5 e5,2
CEP 5.344 1.495 1.674 1.514 1.955 4.876 2.776 2.021

Given the resulting weighted graph of Figure 5.5b, Equation 5.5 is employed to calculate the
CEP, which represents the criticality of the data carried by the removed edge. In the same
manner, the algorithm will calculate the CEP of the edges constituting the cycles [Γ1,Γ2,Γ3]
as summarized in Table 5.2. Considering this, edges e3,10 and e2,1 produce the smallest CEP
which means that removing these edges will have the smallest effect on the overall system.
This results in the Directed Acyclic Graph of Figure 5.5c and by extension, the graph of
Figure 5.1b.

5.5 Error Propagation Approach: Experimental Evaluation

For the purpose of assessing the efficiency of the EPA methodology, we conducted a set of
experiments to compare the approach with two other cycle breaking solutions in terms of
system criticality. System criticality refers to the effect of removing a set of edges on the
overall system. This is defined as the maximum cumulated error propagation throughout the
system as a result of removing a set of edges Υ and is formally defined as,

SysCrit = max
eix∈Υ

CEP (tx) (5.8)
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An industrial avionic system was taken as a reference in the choice of parameters of these
experiments. The average number of components that constitute the system as well as the
graph structure of this case study were inspiration to generate the set of graphs and scenarios
described below.

To ascertain that EPA does not operate haphazardly, the first approach is a random algorithm
that removes a random edge from a cycle one step at a time until a DAG is obtained. The
other approach is a minimum feedback arc set approximate solution. We mentioned before
that finding the minimum number of edges to break all cycles in a graph is a NP-Hard
problem. We implemented the approach proposed in [111], henceforth labelled MFA, that
approximates the number of removed edges to break all simple cycles to the optimal minimum
number.

For the purpose of these experiments, the graphs were generated using the Networkx 1.11
package [112], by taking two characteristics into account: Density and connectivity degree.
Density refers to the total number of the nodes making up the graph. Connectivity degree
is the ratio between the number of nodes and the total number of edges. The graphs were
generated by adding nodes one at a time with an edge in either directions to one previously
added node, chosen with a uniform probability.

In here, 12 scenarios were considered in which 30 random graphs were generated for every
scenario with densities ranging from 10, 50, 100 to 150 nodes and 3 different degrees of
connectivity with ratios [0.10, 0.25, 0.50]. The generated graphs had c number of cycles in
the range c ∈ [1, 6000]. These numbers were inspired by a real case study of a full-mission
simulator (FMS) in which the average number of system components ranges from 50 to 120.

Figure 5.6a shows the system maximum CEP for graphs with different densities and connec-
tivity ratio of 0.10. Although the performance of the algorithms are comparable when the
density of the graphs are at 10 nodes, we notice that EPA outperforms the other methods
in terms of system criticality as the density of the graphs grows. It can be seen that the
Minimum Feedback Arc set solution decreases in performance and produces the most criti-
cal systems with an average SysCritMFA ∈ [2.5, 3.5] as compared to the random and EPA
approach with SysCritEPA ∈ [1.8, 2.3] .

The same set of observations are noted when the connectivity between nodes is increased as
shown in Figure 5.6b. We notice that the criticality of the system is much higher than the
previous scenario, with an average SysCritEPA ∈ [2.2, 3.8], which is expected since increasing
connectivity results in a more connected network and the components being more dependent
on each other, which increases the chances of an error propagating to a higher number of
components.
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Figure 5.6: System CEP for different node connectivity degrees
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Increasing the connectivity of the nodes to a connectivity ratio of 0.50 in Figure 5.6c results
in the MFA performing slightly better than the random algorithm with SysCritMFA ∈
[4.3, 13.8]. However, the same scenario results in a much superior performance from the EPA
as compared to the previous scenarios with SysCritEPA ∈ [2.3, 8.4].

We employed the Wilcoxon statistical test to confirm whether the results obtained for EPA
and MFA had identical distributions. The test yielded a maximum p-value = 2.9 ·10−3 which
allows us to reject the null hypothesis H0 of identical means.

The observations reported so far could be attributed to the fact that the main objective of
the MFA solution is to minimize the number of removed edges. It would make sense that the
most connected edge will be chosen by MFA to be removed. Yet, EPA will avoid these type of
edges since the criticality of central edges will increase because of component dependencies.

Table 5.3 summarizes the number of removed edges for EPA and MFA as the connectivity
degree increases. We can see that for a connectivity ratio of 0.50 and high density graphs,
EPA discarded double to triple the number of edges removed by MFA. However, the system
criticality was still observed to be lower for EPA than MFA as shown in Figure 5.6c, which
supports our previous explanation. MFA removes the least number of edges but the most
critical as opposed to EPA, which removes a larger number of least critical edges. That being
said, for less connected graphs, the number of edges removed for EPA and MFA does not
differ significantly with less critical systems in the case of EPA as seen from 5.6b. This could
be explained by the lower degree of connectivity as well as the fact that EPA includes a step
to minimize the number of removed edges.

5.6 Case studies

5.6.1 Voice-band Data Modem

The first case study represents a voice-band data modem [113] as shown in Figure ??. This
application was selected since it contains cyclic dependencies and is often employed as a
benchmark to validate emerging research scheduling techniques for soft real-time systems.
The graph of the modem consists of 15 components and has 5 cycles in total. Although the
potential schedule start and finish points (IN, OUT) are obvious, regardless of whether their
functionality is known or not, the schedule encounters a cyclic execution once it reaches the
component (Eq). For such, we employ EPA to decide which edge(s) to disregard and thus,
define the order in which the components will be executed. For the sake of brevity, we only
show the results obtained by running the EPA algorithm on one of the cycles. Table 5.4
summarizes the date criticalities (CEP) when studying the edges in the cycle Γ = {Eq,
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Table 5.3: Number of removed edges as connectivity grows.

G50 G100 G150
Connectivity Alg. Min Mean Max Min Mean Max Min Mean Max

1st degree EPA 1 1 3 1 1 2 1 1 1
MFA 1 1 1 1 1 2 1 1 1

2nd degree EPA 1 2 4 1 2 4 1 2 7
MFA 1 1 3 1 1 3 1 2 5

3rd degree EPA 1 5 14 1 8 21 3 14 27
MFA 1 3 6 1 4 6 2 5 9

Fork

Biq1

Biq2
AddSC

Fork2

ConjMult2

Mult DecEqHilFiltIN Deco OUT

Figure 5.7: The directed graph of a voice-band data modem.

Mult2, Dec, Mult}.

From Table 5.4, we can see that in order to have the least critical system, EPA suggests
the removal of edge e(Dec,Mult) to break the cycle Γ. Running EPA on the rest of the cycles
yielded the set of edges {e(Mult,Eq), e(Dec,Fork)} as the candidate edges to remove to transform
the graph in Figure ?? into a DAG. From a functional point of view, the choices made
by EPA do not jeopardize the correctness of the system since the component (Dec) is the
decision module and is supposed to execute last in the loop. This solution agrees with many
scheduling solutions found in literature for this benchmark [113, 114].

5.6.2 Full-Mission Simulator

Full Mission simulators are mixed-critical systems comprised of components with hard and
soft deadlines. Although our approach focuses on soft real-time systems, in this section, we
want to validate the accuracy of the scheduling assignment when EPA is applied.

Our case study involves an industrial FMS scheduled under a modified version of RMS that
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Table 5.4: CEP for edges in cycle Γ

Component Edge CEP
tEq e(Mult,Eq) 3.00
tMult e(Dec,Mult) 2.44
tDec e(Mult2,Dec) 6.34
tMult2 e(Eq,Mult2) 4.12

consists of two subsystems: Sub1 and Sub2 consisting of 9 and 13 components respectively.
The two subsystems are interconnected but the components within each subsystem execute
with different rates from the components of the other subsystem. This means that the EPA
algorithm operates on the two subsystems separately. It is worth noting here that the current
schedule with which the industrial FMS is executed was implemented by integration engineers
whom take advantage of their prior expertise in the different fields and the knowledge of the
components functionality, as well as, trial and error to achieve the current working state of
the simulator.

In order to compare the accuracy of the system generated by EPA, we observe the accuracy
of the scheduling obtained from the DAG after the transformation of EPA and the current
schedule of the FMS that we label the real schedule. We define Accusched(ti) as the degree
to which the EPA scheduling matches the real schedule for every component ti as follows:

Accusched(ti) = PredEPA(ti)
PredReal(ti)

(5.9)

Where:

PredReal(ti) represents the number of components that are scheduled before component
ti and;

PredEPA(ti) represents the number of predecessor components that EPA scheduled be-
fore component ti and were scheduled as predecessors in the real schedule as well.

Due to confidentiality agreements, we are unable to include the full details of the experiments
conducted in this case study. However, we provide the outcome of the experiments henceforth.

The results obtained are summarized in Figure 5.8 in which the schedule accuracy obtained
for both Sub1 and Sub2 following the definition in Equation 5.9 are plotted. We can see that
although the two schedules are not identical, the accuracy of the scheduled DAG obtained
after EPA is relatively close to the real schedule for both subsystems. In this case study, we
blindly trusted the schedule provided with the full-mission simulator (the real schedule) to
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be the ideal schedule. However, the real schedule sometimes gives higher execution orders to
certain components even when there is no precedence requirements to be met. This can occur
if other objectives are in play such as load balancing. We argue that the values provided
in Figure 5.8 are lower bounds and that the average accuracy of the EPA schedule would
increase if these cases were overlooked.

It is a good place to remind the reader that the current schedule is obtained manually
after a rigorous trial and error process that involves expertise from different fields. The
fact that EPA could result in an average accuracy of 79% without requiring the knowledge
of the functionalities of the components is very promising, especially when dealing with
such complex systems. The solution becomes more appealing to co-simulation design and
early stage integration of components coming from different sources and that is by providing
starting configurations that could help accelerate the process and reduce time-to-market.

5.7 Conclusions

Our work was driven by the current state of complex software development in avionic and
automotive industries. The lack of software and architecture specifications prompted us to
propose an approach that offers access to the system’s task graph with no inherent knowledge
of the components functionality. In this paper, we presented a methodology that makes it
possible to schedule soft real-time tasks after transforming the system’s dataflow graph onto
a task graph by assigning criticality levels to the data exchanged based on the idea of error
propagation. This in turns opens access to DAG-based tools and techniques with limited
knowledge about the target system. We demonstrated the efficiency of the algorithm to
break cycles based on data criticality which produced the least effect on the system. As a
matter of fact, the approach was able to deliver systems with criticality levels (56 ± 14)%
lower than other cycle breaking algorithms. Since adding new components affects the view
of the system and thus increases integration cost, the approach proposed here offers the
potential to test a set of configurations which will substantially reduce integration cost and
offers automatic solutions to current integration issues.
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CHAPTER 6 ARTICLE 4 – TIME IS OF THE ESSENCE: SPREADING 
INFORMATION AMONG INTERACTING GROUPS

In this last contribution, we moved our focus towards studying the flow of
information as its potential in engineering better systems was becoming more
evident. Following the same trend of having a narrow view of the system, we
chose to limit the number of assumptions when modeling the propagation of
information. The purpose was to explore the efficiency of the model in reveal-
ing the interesting patterns and explain emergence of behaviors. We did so
through an empirical study of the spreading of a rumour case which revealed
the main contributors to the propagation and the reason behind the occurrence
of certain events. These observations lead to the development of a framework
to strengthen data transfer in wireless sensor networks. The work here transfers
the acquired knowledge to developing a probabilistic timing analysis technique
based on the developed model to estimate a probabilistic worst time for the
information to propagate in a network. This is great import with the surge
of multi-agent systems such as IoT connected devices and robot swarms which
are starting to be employed in critical situation calling for stricter timing re-
quirements.

Authors I. Hafnaoui, G. Nicolescu and G. Beltrame
Submitted to: Nature Scientific Reports.

Preface

ABSTRACT

Animal behavior is greatly influenced by interaction between peers as well as with the envi-
ronment. Understanding the flow of information between individuals can help decipher their
behavior. This applies to both the microscopic and macroscopic levels, from cellular com-
munication to coordinated actions by humans. The aim of this work is to provide a simple
but sufficient model of information propagation to learn from natural coordinated behavior,
and apply this knowledge to engineered systems. We develop a probabilistic model to infer
the information propagation in a network of communicating agents with different degrees
of interaction affinity. Another focus of the work is estimating the time needed to reach
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an agreement between all agents. We experiment using swarms of robots to emulate the
communication of biological and social media groups for which we are able to provide upper
bounds for the time needed to reach a global consensus, as well as to identify individuals
that are responsible for slow convergence.

6.1 Introduction

Behaviors in a large group of individuals that change the state of a system are referred
to as collective behaviors. Although the term was first used by sociologists [115, 14] to
refer to the emergence of new social structures as a reaction to certain events, it was later
extended to cover behaviors observed in the animal kingdom such as in schools of fish [116],
flocks of birds [117], and ant colonies [118]. There is a general agreement among sociologists
and biologists as to the conditions that encourage the emergence of collective behavior.
The most prominent ones are conflict, ambiguous policies [119], or change in the normative
order [120, 121]. The detection of a new food source, for instance, is observed to trigger
behaviors ranging from establishing optimal routes by ants [118] to nest migrations of bee
swarms [122]. When an intruder is sensed, hyenas use unique whoops, specific to every
individual, to reach a consensus on who belongs to the clan and then use the whoops to
coordinate the hunt against the intruder [123].

Studying these intricate systems has taken one of two main directions: a macroscopic view,
which focuses on the group-level behavior, like the study of the group morphology [124, 125];
or a microscopic view that aims at studying the interactions between individuals which give
rise to the behaviors observed in aggregations [126]. Generally, a collective behavior does not
emerge from the state of the individual entities in a group, whether that be emotions of uncer-
tainty, imagery or strain in the natural order. It is rather the result of the information shared
between the individuals in a communication network. A good example of this behavior is the
spreading of rumors in social networks. A previous study [127] showed that social network
platforms are increasingly becoming the go-to media to share information among directly and
indirectly affected individuals in case of a crisis. Even officials, such as emergency respon-
ders, are becoming reliant on these media to gather and communicate information [128]. As
such, the study of how information spreads, rumors in this case, becomes necessary to stave
off potential emergence of chaotic social behaviors. At a microscopic level, the brain can be
likened to the systems mentioned so far in that neurons are equipped with neurotransmitters
that propagate signals through a neural network to give rise to a given function. Similarly,
scientists have recorded collective behaviors in cancer cells similar to those observed in animal
groups in which patterns of collective alignment is observed to generate collective cell migra-
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tions, recognized to be at the crux of tumor invasions [129, 130, 131]. All of these systems
can be abstracted and represented as networks of interacting agents (animals, users, cells,
robots) propagating some kind of information (visual queues, pheromones, tweets, chemical
signals, messages) for the purpose of changing the global behavior of the group.

Luckily, information can be quantified, its flow measured and its representation bounded. The
limits as to the way information is described, processed or delivered is dictated by the physics
of the system. One model to represent the communication in a network is the simple-to-define
proximity network [132]. Here, the assumption is that individuals in close proximity interact
with each other. However, in reality, the reception of information is hindered by various
conditions such as a noisy environment, the affinity of an individual to cooperation, etc. On
top of this, assuming that a dependence relationship exists only among the individuals in
close proximity and is therefore at the epicentre of the the emergence of collective behaviors
is rather naive. In an effort to move past this simple model, we introduce a stochastic element
to the interactions between individuals in their range of communication. The next section
defines the characteristics of this probabilistic variable and alludes at the physical elements
in nature that can be modelled with it.

Our contribution is two-folds. First, we aim to probabilistically model the propagation of
information in a network of interacting agents. Many works have proposed complex models
to represent the propagation of information, especially infection spreading [17, 18, 133, 56]
with a number of parameters and settings. These models, for instance, are built on the
assumption that the infection rate, the state of the individual, time and age of infection,
etc. are known which might actually be difficult to acquire in a real case-study. The work
proposed in [18] goes as far as to require a pedestrian model to accurately estimate the
infection transmission in air travel. In addition, most proposed propagation models rely
on scenario-specific parameters such as an Susceptible-Infected-Recovered (SIR) model in
studying infection spreading which cannot be used to study the propagation of signals in
animal groups for instance. The strength of our model lays in abstracting the quantity
being propagated to a piece of information (visual queues, chemical signals, messages) with
the likelihood of transmission as an attribute (line of sight, infection probability, influence of
users). This eliminates the dependence of the model on the scenario being studied and renders
it applicable to multiple domains of study. In here, we model the information propagation
by striping away these details down to a fewer number of assumptions ; namely (1) a static
or slowly changing network, (2) the propagation of a single piece of information and (3)
information transmission probability of a node. The purpose here is to show that this simple
model is enough to explain the emergence and occurrence of certain events. Behaviors like
synchronized flashing exhibited by photonius carolinus fireflies and the tendency of certain
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fireflies to defect from the group is one interesting scenario to study [134]. In that regard,
the flashing lights are construed as information being sent to the rest of the group. The
model is then a tool to infer the influence of these defectors on others out of their line of
sight by studying the propagation of information between individuals in different regions.
As a sub-contribution, we explore the validity of centrality as a contributor to information
propagation. Oftentimes, centrality has been a key parameter to techniques that dealt with
detecting propagation sources and selecting influential nodes in the network [135, 136, 137].
In this work, we reveal the drawbacks of relying on centrality and propose a metric based on
conviction and influence probability to boost the propagation of information.

Second, armed with this model, considering that one of the incentives to studying collec-
tive behavior in nature is to gather the knowledge to engineer new systems (e.g. optimized
transportation routes, robot swarms as emergency responders), we analyse the timing char-
acteristics of information propagation and the ways it could lead to new technologies. To
illustrate this, we study leader-following consensus, common in decision-making problems
within groups of interacting individuals, in which the purpose is for the group to reach
and agree on the opinion of a leader. This can be modelled as an information propagation
paradigm in which an opinion is an information for which the convergence means the agents
in the network agreeing to that argument. This has been observed to be a feature that
groups, both animal and human, strive for to make decisions and establish certainty over
a choice of action [61]. When it comes to consensus, the research is focused on developing
controllers that are more resilient and those that guarantee convergence. To our knowledge,
little has been dedicated to explore the convergence times towards information propagation.
The work of Başar et al. [54] defines the expected convergence rate of Quantized Metropolis
consensus. The assumption though is that the graph remains connected in every sequence
and that the transmission occurs to a single node per step with a uniform probability. A
noisy environment increases the chances of information loss, and inter-individual conflicts
might arise, especially within heterogeneous groups. All this increases the time needed to
reach a consensus. This has been considered by Cheng et al. [62] in which the effect of
noise-attenuation gain was explored in leader-following consensus to define a bound to the
convergence rate. The results were limited to gains of a certain class of functions. From the
field of evolutionary graph theory, the authors [55] define the exact fixation probability and
time of a Moran process for arbitrary small graphs. Most of these works rely on Markov
chains to model the information propagation which renders the states intractable as the net-
work grows in size. Our aim is to provide a probabilistic estimate of information propagation
time which is of practical use to real-time modern systems, especially those with hard timing
constraints. In this work, we integrate the probabilistic model of information propagation
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with a timing analysis technique to estimate a probabilistic worst case convergence time
(pWCCT) for information propagation.

6.2 Information from an Observation to a Conviction

The communication among individuals that share feelings of uncertainty and are prone to
share their state and the state of the environment around them to their neighbors have been
observed to be at the root of the emergence of collective behaviors [14]. The time it takes for
a behavior to form and spread in a group relies heavily on the efficiency of the communication
medium as well as the affinity of the individuals to receive and share information; in other
words, their affinity to cooperation. The intuition here is to model the direct interaction
between an individual and its neighbors and the indirect interaction with the rest of the
group in a probabilistic manner to project this affinity and information loss.

We want to define the probability of an individual to receive information if broadcast by a
different individual in the network, and not necessarily by its neighbors. Suppose that indi-
vidual A sends an information that will reach individual B with probability pab = Pr(B|A).
We define the information conviction as the probability of an individual to hold the infor-
mation broadcast by another individual in the network. The conviction of B to have the
information is Pr(A) · pab. This is true provided B has a single source of information, A in
this case. For such, we need to define what it means to share information, and how to condi-
tion the information propagation on other sources of information. The example in Figure 6.1
shows that X has multiple of these sources. We model this as a message passing system in
which a message transmits the confidence of a node to pass on the information to a particular
neighbor. It can be viewed as an individual sending a message to broadcast their ability to
propagate the information; in other words, their conviction of holding the information and
the confidence of which they are to send it to a neighbor given what its other neighbors are
saying through the received messages. Hence, we recognize two types of messages:

• Received messages represent the messages π received by a node. They indicate the
opinion of the source node of how likely the information is to reach a certain node from
its neighboring nodes;

• Shared messages define the messages λ that a node share with its neighbors. Message
λXY1 for instance describes the likelihood of Y1 getting the information from a specific
source X and no other.

The algorithm is local in that a node relies only on the opinion of its neighbors from the
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Figure 6.1: Information propagation from and to X through passing messages of type λ
between X and its neighbors Yi ∈ N (X) and π between N (X) and X.

received messages to build its conviction of an information reaching it given that the in-
formation was observed and broadcast from remote parts of the network. That being said,
the interaction graph is defined as a directed graph that can contain cycles (See Methods).
Initially, the only observations are the messages shared by the broadcasting source whereas
all other messages are initialized to zero. To reach the information conviction of every in-
dividual considering direct and indirect interactions, messages are updated iteratively from
previous observations of the information propagation in the network. We direct the reader
to the Methods section for a detailed description of this process.

For illustrative purposes, a homogeneous network of 50 individuals is depicted in Figure 6.2.A
in which the information has been set to have equal chances of reaching a neighboring node
or getting lost in the process from any node in the network. Iterating over the procedure
described by Algorithm 2 (See Methods) produces the results in Figure 6.2 in which we can
observe the accumulation of the belief of the reception of an information broadcast at node
ν0 throughout different iterations. Once the algorithm converges, the conviction of every
individual to hold the information is as exhibited in Figure 6.2.D. The neighbours of the
broadcasting source are observed to have a high conviction that they hold the information,
which is expected. Surprisingly though, we notice that individuals such as {ν14, ν16, ν23} far
from the source and with a degree of separation higher than two nodes, in different clusters
altogether for that matter, have quite a high information conviction. This tells us that
the propagation of information in a network of interacting individuals might not necessarily
depend entirely on the distance to the source of the information and line of sight. This leads
us to question whether centrality is the reason behind these observations. This notion is
further studied in later sections where we show its validity and determine the circumstances
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Ψ(𝑋) 

Figure 6.2: The accumulation of information conviction for the network in (A) for iterations
(B) t = 1 (C) t = 3 (D) t = 6. We can see that as we observe new states, the conviction
of certain nodes grow larger than others. This is observed to not be entirely dependent on
the distance to the broadcasting source where some nodes in different regions of the network
exhibit higher conviction than immediate neighbours.

under which it no longer holds.

6.3 Probabilistic Worst Case Convergence Time

The transfer of knowledge acquired from studying animal group behaviors to artificial systems
has seen a surge of interest in the research community as of late. In light of this, there is
a need to study certain characteristics that are inherent to these modern systems; which
might, in turn, aid in understanding some behaviors in animals and humans alike that are
still unpredictable. One of these characteristics is timing performance. In particular, this
paper aims at providing a probabilistic estimate of the worst case time for a group to reach a
consensus over a piece of information. We develop a methodology to obtain the exceedance
probability curve (or Complementary Cumulative Distribution Function) which describes the
probability that the convergence time will exceed a certain threshold. We refer to this as
the probabilistic worst-case convergence time (pWCCT). This is of a particular interest to a
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system designer whom might have strict timing restrictions: for example, the need to ensure
that the time for a robot swarm to autonomously agree on a task assignment doesn’t exceed
a certain deadline.

For every individual νi, we define Iνi
(t) as a probability mass distribution (PMD) which

describes the probability of the individual νi to receive the information from its neighbors at
time t. The intuition is that, for an individual to receive the information at time t = T , it
suggests that its neighbors that hold the information have failed to transfer it at t < T . The
PMDs Iνi

represent the timing behaviour of corresponding individuals νi. To estimate the
timing for a consensus to be reached, we need to look at the timing behavior of the network.
Two elements are to be considered: (i) how to translate the individual timing behaviors into
a group timing, namely a probabilistic worst case convergence time (pWCCT); and (ii) what
possible structures to study to achieve a bound on the pWCCT.

In Figure 6.3, information is propagated to A and B with their corresponding PMDs. To
determine the timing of this information flow, we need to enumerate the times at which
both A and B have the information, and define the probability to reach every state. In the
figure, every arrow represents one of these cases. Convolving the two distributions turns
out to produce a probability distribution that describes these possible cases. To estimate
the exact timing of the information propagation, one needs to consider all possible paths
the information might take to propagate from an individual to the rest of the network. The
complexity of this grows exponentially as the size of the network increases. However, since our
main concern lays in estimating the worst case convergence time, it is sufficient to consider
the longest path in the graph of the network. This is similar to picking one node at a time to

A 

B 

t+1 t+2 

t+3    t    

Figure 6.3: PMDs of A and B in which the arrows represent every possible time when both
A and B have the information. The arrow linking times t and t+ 1 defines the case in which
A recieves the information at time t but fails to propogate to B which recieves it at time
t+ 1 instead.
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receive the information from the rest of the network at every time-step. As one can expect,
this consideration results in an upper bound of convergence time that is quite pessimistic. In
reality, individuals in a group are more likely to transmit information to multiple individuals
at the same time. In order to tighten this estimation of the probabilistic worst convergence
time, instead of considering the longest path that spans all nodes, we look for a spanning
tree with minimum branching. Among other assumptions (detailed in Methods), we have to
assume that the information propagates sequentially to all the individuals, as the inclusion
of branches hinders the use of convolution. The way to combine the PMDs of the nodes in
the branches with the rest of the spanning tree is by defining a merge operator (described
more thoroughly in Methods). This takes into account the possibility that certain individuals
receive the information at the same time, akin to a parallel process.

6.4 Results

As has been mentioned previously, collective behavior is the product of sharing some kind
of information among a group of individuals. Our work spans any system that can be rep-
resented as a network of agents propagating an information. In what follows, we illustrate
the efficiency of our framework in a few examples of information propagation, namely ru-
mour spreading and consensus reaching in a robot swarm. In this section, we showcase the
model presented in this paper as (1) a way to study behaviors and understand the reasons
certain events progress in the manner that they do; and (2) as a practical solution to issues
encountered in engineered collective systems.

6.4.1 A Rumour and its Counter-Rumour

We study the case of rumour spreading as an example of information propagation in social
media. We analysed 7 major news events from the PHEME rumour dataset [138] that spans
297 twitter conversations discussing rumours. We focus on one of the rumours that spread
during the Sydney hostage situation of 2014. Figure 6.4 shows the progression of the rumour
that claims that hostages were held by terrorists associated with ISIS. The rumour started
by the following tweet:

@User_zero: SYDNEY SIEGE: Gunman forces hostages to hold up ISIS flag in
window. [2014-12-14 23:27:39]

We observe the tweets that counter-attacked the false rumour and their spreading throughout
the network. We notice an explosion of tweets denying the rumour at around 23:45 after a
tweet published by a user that we refer to as Bob (For confidentiality purposes):
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Figure 6.4: Progression of the rumour and the counter-rumours in terms of time which reveals
two main attempts at correcting the false claim with differing reactions.

@Bob: Flag in window of Sydney Lindt cafe not an ISIS flag. Reads: ‘There
is no God but Allah and Muhammad is the messenger of God’. [23:45:51]

However, this was not the first attempt at correcting the false rumour. A tweet previously
published by a different user (Alice) revised the claim with visual evidence:

@Alice: These not the same. 1st Shahadah flag, 2nd is specifically claimed
by IS(ISIS). [2014-12-14 23:29:26]

In an endeavour to reach an understanding as to why the first counter-tweet by Alice didn’t
have much of an impact on correcting the rumour whereas the tweet by Bob did, we study
the spreading of the information as modelled in previous sections and examine interesting
patterns. The procedure to build a group interaction model is fully described in the Methods
Section, which is then used to model the information propagation for two different scenarios
to obtain the conviction of every user in the network to have the information. The first
scenario represents the propagation of the information in the network from Alice and the
second scenario sees the information spreading from Bob.

Figures 6.5a illustrate the conviction of receiving the information by every individual in the
network if the information was propagated initially by Alice and Bob respectively, based on
their distance from the source. The heat map generated for Bob shows a wider outreach and
propagation of the information to the other users in the network as compared to Alice. This
in part explains the reason behind the progression of information observed in Figure 6.4. We
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Figure 6.5: (a) Heat maps illustrating the probability of the information spreading from (1)
Alice and (2) Bob starting at the bottom-left corners to their neighbors. (b) Heat maps for
critical users in the intermediate neighborhood of User Alice that exhibit higher probabilitties
of information propagation than Alice.

also explore how this analysis could be exploited to prevent rumour spread. Figure 6.5a.1 can
be divided in three sections: the first is Alice propagating the information but failing to reach
its immediate followers; the second section can be observed to have a sudden darkening area
which indicates a user with a great conviction of receiving the information from Alice and a
higher influence on their immediate followers and indirect relationships; and a last section,
two-thirds through the network, that encounters another user able to further propagate the
information through the rest of the network.

Analyzing the spreading of information starting at these critical users results in the heat-
maps of Figure 6.5b. Both maps demonstrate a wider outreach then that observed for Alice.
These users exhibit high conviction as well as high influence on their direct and indirect
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neighbours. This could be an incentive to rely on the framework to detect critical users that
will spread the right information in times of crisis and quickly quench any rumours that
might arise unforeseen chaotic behaviors.

6.4.2 Timing and Resilience

We experimented with our framework as an analysis tool where we estimate timing charac-
teristics and study the resilience of a network to loss of information.

pWCCT and Kilobots

An interesting question to answer is how fast the spreading of infection could occur; either
through the body, similar to cancerous cells contaminating neighbouring healthy cells [139]
or at the population level, such as the spread of influenza. A recent work tackled this issue
to determine the takeover time [58]. The propagation model by Ottino et al. [58] assumed
an infected node transmits the infection to a single neighbor at random every time-step
from any infected individual in a network. With our framework, we go beyond this simple
model: whereas we don’t claim to estimate the exact probabilistic distribution of the time
for infection spreading, we model the probability of the infection spreading from any infected
individual and upper bound the worst takeover time in a probabilistic manner under two
assumption: (a) the infection can spread to more than one individual in a single time-step
(b) as well as consider that every individual might have a different transmission affinity.

In here, we employed a swarm of small robots to emulate the propagation of information –
infection in the example above– throughout a network. To validate the ability of our model
to upper bound the worst case convergence time towards a consensus, a set of experiments
on a real swarm of robots was performed in which a number of Kilobots [140] form a swarm
of different topologies (Figure 6.6a shows the robots in a scale-free topology) and the aim
is to study the time to converge to a consensus over a piece of information. Kilobots are
simple robots that rely on infra-red communication which renders message transmissions very
susceptible to noisy environments. Our motivation to experiment on a real robot swarm is
to appraise the performance of our framework when it deals with physical characteristics of
the swarm communication such as collision, interference, etc. that are difficult to simulate.

Figure 6.6c plots the results obtained for 30 runs of the same experiment on a scale-free
topology. We observe that the distribution of the convergence times has a high variance and
that is partially due to the fact that the scale-free topology contains a number of clusters
connected by a small number of links. This renders the nodes at these links highly critical
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Figure 6.6: For the scale-free topology in (a), we show the interaction graph in (b), the time
for the swarm of Kilobots to reach complete agreement (c) and its correspending estimation
of pWCCT (d).
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and whether they succeed to transmit the message or not highly affects the convergence time.
The convergence time recorded for this particular topology was in the range [3.8, 17.6](s).

Looking at what we estimated as the worst case convergence time expected for this topol-
ogy, we examine Figure 6.6d. We plot the exceedance probability distributions for mdp ∈
[0.5, 0.6, 0.7, 0.8, 0.85] varying the message drop probability (mdp). Our interest lays in the
plots for mdp1 = 0.6 and mdp2 = 0.7 (Refer to Methods) which show the worst convergence
time estimated at different exceedance probabilities. In other words, WCCT = 170(s) and
WCCT = 360(s) for mdp1 and mdp2 respectively, exceeded with a very low probability of
Pr = 10e−13. This upper bounds the time to convergence for the swarm of Kilobots, includ-
ing extreme cases. The pWCCT estimation based on both convolution and merge presented
here defines a safe upper-bound to the information propagation in a network that might be
pessimistic when only ordinary situations are expected. However, its use is promoted in hard
real-time systems that call for strict requirements on their timing behaviors such as robot-
aided space exploration or robot emergency responders. This also offers a flexible measure
to upper bound this timing characteristic by varying the exceedance probability threshold.

The advantage of our model over what is proposed in literature is its ability to estimate a
pWCCT for different topologies, and to be adaptable to different scenarios. In addition to
the scale-free topology we presented here, results on other topologies such as a snake-like
topology, and a topology where the robots are randomly distributed with obstacles can be
observed in Figure 6.9.

A Chain is No Stronger than Its Weakest Link

From our study of rumour propagation, it is clear that preventive measures that rely on
robustness analysis of the network are of utmost importance. This extends to non-biological
systems, such as wireless sensor networks (WSNs). Designing a network that is entirely
fault-tolerant can be too expensive, in terms of time, cost, and expertise. Our model can be
a smart solution to select critical nodes in wireless sensor networks (WSNs) to be hardened
against faults. Broadly speaking, our model is a tool to analyze a network and detect the
weaker individuals that interfere with the propagation of information.

To demonstrate this, we simulate a robot swarm in a random geometric topology in which
a selected number of robots have been hardened, i.e. they have been given message drop
probabilities mdp = 0 to ensure message transfer. In addition, instead of working with a
homogeneous swarm, we randomly assign different mdp for every node in the graph. The
purpose behind this choice is to observe networks that are heterogeneous in terms of informa-
tion propagation (e.g. due to individual preferences, different noise levels in the environment,
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Figure 6.7: pWCCT for a random geometric network in its original form, and different
selction methods as the number of selected elements m is varied to (a) m = 10, (b) m = 25,
and (c) m = 50.

etc.). We compare against random selection, in which a set of nodes are picked at random.
We also mentioned previously that our observations of information propagation might be
related to centrality. We study these claims by comparing our method against a centrality-
based selection which relies on the topology of the network and picks the nodes that have
a high out-degree. We run every scenario 100 times, while we vary the number of selected
elements m. This produces the results summarized in Figure 6.7.

While there is no major improvement in terms of shorter convergence time when the number
of selected elements is small, we observe a major decrease in the time to reach consensus with
m = 50 selected elements. The first observation shows that although our method reached
global consensus in less time than the original scenario (with no hardened elements), the
times reached were statistically similar to a centrality-based approach. In this case, since m
is small, both techniques were choosing geometrically similar nodes.

The choice of working with a heterogeneous swarm, at least in terms of mdp, is highlighted
in the results of Figures 6.7.b and 6.7.c. The idea is that a centrality-based technique
selects nodes with high connectivity regardless of their information conviction Ivi

. Instead,
we locate the weaker links in the network that might hinder the spreading of information
throughout the swarm, especially in terms of convergence time. We do so by identifying the
nodes that have a high conviction of obtaining the information, but are failing to transmit
the information to their neighbours. In other words, we favor a node that we consider a
weak link based on its ability to further propagate the information in the network, even if its
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connectivity is low. For the sake of brevity, we did not include the results for a homogeneous
network, but it is interesting to note that our model exhibits similar behavior as centrality-
based methods when considering a homogeneous swarm of robots where the mdp is constant
across the network. This leads us to conclude that centrality is a good measure to select
influential nodes. However, by itself, it fails to promote the propagation of information
especially in more complex configurations.

6.5 Discussion

Information propagation effects have been categorized by Arif et al. [127], in the case of ru-
mours, into 4 patterns: Giant, Snowball, Fizzle and Babble. The giant and snowball effects,
which both exhibit high derivative information propagation by high and low exposure indi-
viduals respectively, were of a particular interest since they present patterns that emergency
responders look out for to maximize spreadability and stave off the emergence of chaotic
behaviors. We observe both of these effects in Figure ?? from Bob and Alice respectively.
Although the giant effect could be intuitively interpreted, the snowball effect is an observed
fact that is not completely understood. In here, we introduced a simple but sufficient model
of information propagation for the aim of studying emergence of behaviors. The purpose here
was to explore the effect of stripping the propagation model from scenario-specific details,
such as the volume of shared tweets or the rate at which the information is transmitted,
etc. This showed that the few assumptions taken in modeling information propagation were
enough to discern the patterns that lead to the emergence of the observed event. The study
promotes the practice of bottom-up investigation when it comes to modeling information
flow and to properly identify and isolate the originator of specific events and behaviors ; as
is the case with giant and snowball effects in rumour propagation research. For instance, we
show that, although the snowball effect starts with low exposure individuals, it is mainly due
to highly influential individuals picking up the information from low exposure sources. Since
the model quantifies the information conviction of individuals, it is able to detect easily-
influenced individuals which are themselves apt to influence other individuals. Being able to
identify the major players in information propagation is of utmost importance especially in
crisis situations. We suggest that the framework can readily be used to spread the right infor-
mation and maximize the likelihood of giant effects. In fact, we exploited this characteristic
to analyze artificial networks in which the framework was used to detect the weaker links
that hinder information spreading which, as a result, produced more resilient systems. The
framework was extended with a timing analysis technique to study information consensus
in a group. We showed that despite the few assumptions taken to model the information
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propagation, which neither fully express the intricacies of the diffusion of information nor
the environment, it is able to provide a probabilistic measure of the worst convergence time
towards a consensus. Future work could see the framework extended to uncover the history
of current events, such as determining the time and place for the origin of an infection. Ad-
mittedly, the framework presented could model a single information with multiple sources.
However, future studies could see an extension of the framework to handle multiple, possibly
conflicting, information in the network.

6.6 Methods

6.6.1 Group interaction model

The interaction between the group individuals is represented by a directed graph G = (V , E)
in which the vertices V = {νi|i ∈ (0, n]} depicts the n individuals in a group and E =
{eij|(i, j) ∈ (0, n]} the information flow from νi to νj. The graph can have cyclic interactions
where the individuals exchange information in both directions, which makes the existence of
edges eij and eji possible. This is observed in a pod of bottlenose dolphins where whistles
are exchanged to identify whether a dolphin belongs to a certain group [141]. Since we
want to study a group of individuals in noisy environments that are apt to not cooperate, a
probability of the information propagating from νi to νj is defined as pij = Pr(νj|νi) and is
assigned to every pair (νi, νj).

6.6.2 Conviction Through Message Passing

The message-passing framework implements the idea that a node builds its conviction on
an information reaching it, given the information was observed at one or multiple sources,
by “listening” to the opinion of its neighbors about their own observations. This happens
through an exchange of messages loosely based on the message passing algorithm described
in [142]. In other words, the messages are a way to virtually strengthen a node’s belief that it
will hold a piece of information. This is done by observing the likelihood of its neighborhood
to bring the information to it. The observations are modelled through the received messages.
The node, by updating its conviction, shares a message to broadcast its conviction to hold and
transmit the information. The existence of cycles in the graph imposes a recursive process
for a node to iteratively reinforce its opinion until all messages converge.

The example in Figure 6.1 shows that X has multiple neighbors in which we recognize two
types of messages; Received messages and Shared messages. The received messages are built
on the direct relationship between a nodeX and its neighborsN (X) and the indirect influence
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from its second degree neighbors N (N (X)). They are interpreted as a node receiving the
opinion of its neighbors on the likelihood that they will transmit the information given the
state of the rest of the network and are defined as:

π
(k+1)
YiX

= 1
|N (Yi)|

Pr(X|Yi)
∑

Z∈N (Yi)
λ

(k)
ZYi

(6.1)

Shared messages are of a particular interest since they can be decomposed to represent how
much influence a node has on its individual neighbors. Message λXY1 for instance describes
the level of conviction that Y1 will get the information from a specific source X and no other.
They are defined as:

λ
(k+1)
XYi

= 1
|N (X)| − 1

∑
Yj∈N (X)

j 6=i

π
(k)
YjX

Pr(Yi|X) (6.2)

The summation excludes the message πYiX received from Yi since the shared message λXYi

represents the degree to which Yi is convinced that the information is coming from X, which
eliminates the possibility that πYiX will be holding the information.

We define Ψ(X) as the conviction of individual X that it holds the information observed to
have spread from a particular node in the network and is defined as

Ψ(X) = 1
|N (X)|

∑
Yi∈N (X)

πYiX (6.3)

Algorithm 2: Building conviction through message passing.
Input: An interaction graph G = (V , E). Nodes with observed information O(V).
Output: Information convictions Ψ(ν).

1 Instantiate messages ;
2 π

(0)
ij = 0;

3 λ
(0)
ij =

1 for i ∈ O(V)
0 for i 6∈ O(V).

;

4 for Node ν in traversal of G do
5 update received messages πην | η ∈ N (ν) (Equ. 6.1);
6 update shared messages λνη | η ∈ N (ν) (Equ. 6.2);
7 end
8 Repeat for-loop until messages state converges;
9 Calculate information conviction Ψ(ν) (Equ. 6.3) for ν ∈ V .
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Given the interaction graph defined above and an observation of the information at one or
multiple broadcasting sources, the way to properly build the conviction of the other indi-
viduals in the network is by traversing the graph and gradually updating the state of the
messages as information is observed. We do this in an iterative process that is summarized
in Algorithm 2. Intuitively speaking, since the information is only observed at the sources,
the messages are initialized to zero since they depict the conviction of an individual having
the information, except for the messages shared by the broadcasting nodes. The state of
the messages is then updated as dictated by Equations 6.1 and 6.2 by following the flow of
the information and repeating the process until convergence. We are able then to define an
information conviction for every node in the graph.

6.6.3 Probabilistic Worst Case Convergence Time

The multiple outbreaks of Spruce Budworms that ravaged north-American forests almost
every decade of the first half of the 20th century [143] is a scenario of infection propagation
that is still being studied extensively. Having a tool to estimate the time for an infection
to spread in a community could lead to better prevention methods and open doors to un-
derstanding the propagation patterns. The probabilistic model defined so far is an essential
part to reach this goal.

For every individual νi, we define a probability mass distribution (PMD) Iνi
(t) that describes

the probability of the individual to receive the information from its neighbors at time t.

Iνi
(t) = p(1− p)t (6.4)

where p = Ψνi
represents the conviction that individual νi will receive the information from

one of its neighbors.

The PMDs Iνi
represent the timing behavior of corresponding individuals νi. To estimate a

bound on the timing for a consensus to be reached, we need to look at the collective timing
behavior in the form of a probabilistic worst case convergence time, which rises two concerns:
(i) how to translate the individual timing behavior into a group timing and (ii) what possible
structures to study in order to achieve a tighter bound on the pWCCT.

Looking at the first issue, we look at how to combine all possible ways in which the information
could propagate in the network in terms of timing. We rely on the convolution operator to
implement this;

Iνi
∗ Iνj

(t) =
∞∑

s=−∞
Iνi

(s)Iνj
(t− s) (6.5)
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Since the interest lays in estimating the worst time to convergence, and in order to estimate
a tighter upper-bound on the pWCCT, instead of considering the longest path that spans all
nodes, we look for a spanning tree with minimum branching.

For the convolution to work however, we have to assume that (i) the PMDs are independent
and identically distributed (i.d.d) and (ii) the information propagates in a sequential manner
to all the individuals (See Figure 6.8b). The inclusion of branches in the considered structure
hinders the use of convolution solely. The way we go about combining the nodes in the
branches with the main spanning tree is by defining a merge operator:

Iνi
] Iνj

(t) = Iνj
(t)
∑
s≤t

Iνi
(s) + Iνi

(t)
∑
s<t

Iνj
(s) (6.6)

which looks into the probability of the information taking longer to reach the nodes in the
branch than the main path and vice-versa. This takes into account the possibility that
certain individuals receive the information at the same time, akin to a parallel process. In
the structure of Figure 6.8c, the merging will look at the probability of the information
reaching x at time t while the information has already spread to Λ at time s ≤ t and vice-
versa. This reduces the pessimism of the convolution-based pWCCT estimation and offers a
tighter bound.

Theorem 1. Let Λ be a simple path and x be a node in a graph G such that x 6∈ Λ then,
merging Ix(t) and IΛ(t) yields a tighter bound on the pWCCT than convolution.
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Figure 6.8: Example graph to demonstrate (b) sequential propagation of information from Λ
to x that requires convolution of PMDs and (c) the less pessimistic structure of seeing x as
part of a branch, akin to parallel process, which requires the merge operator.
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We introduce a small lemma to prove this theorem.

Lemma. Given a double summation, interchanging the order yields,

n∑
j=0

j∑
i=1

f(i, j) =
n∑
i=0

n∑
j=i+1

f(i, j)

This can be simply reached by looking at the double summation as one sum ∑
t∈{(i,j)|j≤i≤n} f(t)

Proof. Since the pWCCT is an exceedance probability distribution, to prove tightness of
bound, it is enough to show that the CDF of merging at any given time t is larger than that
of convolution. Formally, we want to prove that

t∑
k=0

IΛ ] Ix(k) ≥
t∑

k=0
IΛ ∗ Ix(k)

The convolution of two PMDs can be rewritten as a Cauchy Product,

t∑
k=0

IΛ ∗ Ix(k) =
t∑

k=0
Ix(k)

t∑
s=0

IΛ(s)

For the merge operator, given Equation 6.6, we study two cases;

For k ≥ t:

t∑
k=0

IΛ ] Ix(k) =
t∑

k=0

(
IΛ(k)

k∑
s=0

Ix(s) + Ix(k)
t∑

s=0
IΛ(s) + Ix(k)

k∑
s=t+1

IΛ(s)
)

>
t∑

k=0
IΛ ∗ Ix(k)

For k < t:

t∑
k=0

IΛ ] Ix(k) =
t∑

k=0

(
IΛ(k)

k∑
s=0

Ix(s) + Ix(k)
t∑

s=0
IΛ(s)− Ix(k)

t∑
s=k+1

IΛ(s)
)
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Given the lemma, the last term can be rewritten as:

t∑
k=0

IΛ ] Ix(k) =
t∑

k=0

(
IΛ(k)

k∑
s=0

Ix(s) + Ix(k)
t∑

s=0
IΛ(s)− IΛ(k)

t∑
k=1

Ix(s)
)

=
t∑

k=0

(
IΛ(k)Ix(0) + Ix(k)

t∑
s=0

IΛ(s)
)

≥
t∑

k=0
IΛ ∗ Ix(k)

6.6.4 Rumour Data Collection

We relied on the Twitter API to collect the relevant information to build the network connect-
ing users Alice and Bob to the users involved in the rumour and compile the data in the form
of a group interaction model as described above. The parameter of most importance in the
graph model is the probability of an individual transmitting an information to its neighbors
pij. In the context of social media networks and interactions among humans, this refers to
what is commonly addressed as social influence. On that account, metadata were extracted
to represent the influence probability pij defined as the probability of user i to influence the
opinion of user j. It is common in literature to rely on the rate of communication to quantify
the influence [144, 145]. In here, we define this parameter as:

fc(i 7→ j) = Number of tweets i 7→ j

Last 1000 tweets

In order to better represent the influence between individuals, we estimate the influence based
on two other quantities; the level of trust between users ft and the popularity of the user in
the network fp.

ft(i 7→ j) =

True (i, j) ∈ Φ(j) ∪ Φ(i)

False otherwise

Where Φ(i) represents the set of individuals following user i.

fp(i) = |Φ(i)|
maxk∈V |Φ(k)|
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We then define the probability of i influencing j as a weighted combination of these quantities:

pij = ωcfc + ωpfp + ωtft (6.7)

Where ∑k ωk = 1.

We explored different values to the weights and we noted that giving a high weight to the rate
of communication fc, following the common trend in literature, didn’t show any discernible
patters. We observed the same result when giving a high weight to the trust factor ft. The
popularity factor, on the other hand, with a slightly higher weight, resulted in the patterns
observed in Figure 6.5. This is highly pertinent to the fact that the case we study is the
propagation of a rumour in a wide-scale event, such as a siege, in which the popularity of the
propagator plays a bigger role in influencing their audience. We hypothesize that a study
of a smaller scale such as among family and peers would require the assignment of higher
weights to the communication rate and trust factors.

6.6.5 pWCCT Experiments

Experimental Setup

The communication protocol in the swarm follows the strategy proposed by Pinciroli et
al.[146] labelled Virtual Stigmergy; which is inspired by communication among insects and is
robust to sharing information in large swarms even under noisy conditions. The information
is stored as a timestamped tuple (key, value) and transmitted in a message to a robot’s
neighborhood. We encourage interested readers to go over the paper to fully understand how
Virtual Stigmergy works. In here, we limit the text to the elements necessary to understand
the experiment setup. Virtual Stigmergy states that a robot updates its tuple space only if
it receives a (key, value) pair that either does not exist in its table or a pair with a higher
timestamp; which indicates that the value received is more up-to-date than the stored value.
In these cases, the robot will update its table and broadcast a message to its neighbors in
order to share the updated information. In this manner, the information propagates from a
source node to the rest of the swarm even if the network is not strongly connected.

To ensure convergence, in these experiments, aside from the broadcasting procedure described
above, the robots broadcast a message containing their state every period of time Ts. This
time period models the time-step time that we mentioned in a previous section and is essential
to build the PMDs (Equation 6.4) in which a robot fails to receive a message from its neighbors
in the time kTs < t < (k + 1)Ts.
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We recall that the Kilobots rely on infra-red communication which is unreliable and highly
sensitive to the experiment’s environment. For such, a set of separate experiments were
performed to gauge the message drop probability of the Kilobots, labelled so forth mdp.
Although the quantity was highly sensitive to the saturation level of the communication
space and the environment such as the ambient light, the reflection of the communication
medium, etc., the recorded probabilities were in the range mdp ∈ [0.63, 0.78].

Additional Results

Figure 6.9 summarizes the results obtained for two different topologies: (a) a randomly
distributed swarm with two obstacles to limit the communication between sections of the
swarm and (b) a snake-like topology similar to a line topology which differs in the fact that
the out-degree of every node is not forced to 1. The figures plot the times to convergence
from 30 runs on Kilobots and their corresponding pWCCT estimations from our model.

The first thing that we observe is that the variance in estimations for different mdp differs
from one topology to another which is expected since our model relies on the topology to
estimate the pWCCT, more specifically, on the structure considered to combine the individual
timing behaviors. Particularly, we observe that the estimations for the snake topology are
more pessimistic as the mdp increases. This is due to fact that the structure of the spanning
tree with minimum branching is closer to that of the longest path which implies that the
convolution operator is mostly used. As proven before, the convolution introduces pessimism
to the estimation which explains the results of Figure 6.9.b.
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Figure 6.9: Time for a swarm of Kilobots to reach complete agreement and its corresponding
estimation of pWCCT for (a) a random topology with obstacles and (b) a snake topology.
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CHAPTER 7 GENERAL DISCUSSION

This chapter discusses the research work presented in the previous Chapters 3 – 6 and high-
lights the findings of the experiments conducted. Table 7.1 wraps up the chapter with a
summary of the main contributions of this research.

7.1 Bridging the gap

There is a rift between the needs of industry and what is pursued by academic research [147].
Complex large software systems such as those found in the avionics and automotive industries
tend to embrace a certain rigidity in the design of their systems. This stems from the
criticality of such systems which favors the predictability of the system behavior before
deployment. As such, there is a reluctance to move towards potentially better systems and
explore more daring approaches proposed through both fundamental and applied research,
despite their demonstrated efficiency. At the same time, because of confidentiality reasons,
researchers have limited access to essential information to properly model the system. A
lack that researchers fill by taking appropriate assumptions to approach issues and questions
known to these fields. For similar reasons, the curiosity-driven nature of “Blue Sky research”
tends to build approaches on assumptions that, on one side, certainly advance knowledge
and might stumble upon scientific breakthroughs, but this makes them unsuitable and hence
undesirable for the design of industrial applications.

"New technology always needs an additional effort for optimization and
confirmation of its practical feasibility. If this extra step is not carried out,
a new technology, regardless of the hard background work put into it, will
most likely fade away and never develop into a technology that can make
real benefits to society."

– Jong-Hyun Ahn,
From an idea to a technology,

Nature Nanotechnology, 2018. [22]

Chapter 1 calls attention to this issue by highlighting the “lack of relevant data to describe,
optimize and integrate complex large real-time systems” as well as the “fluctuation of rel-
evance of information from one phase to another during system design” which makes it
challenging to employ certain techniques such as Design Space Exploration methodologies.
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The work presented in Chapters 3, 4, and 5 in part attempts to bridge this gap and bring
proposed academic research close to being implemented in real-life applications.

In particular, exploring the design space through search and optimization techniques the
likes of those developed in Appendix B requires access to information that Subject Matter
Experts oftentimes lack the expertise to provide. Although tools that could produce per-
formance metrics about a particular system are available, they tend to be slow and their
use becomes prohibitive in the context of Design Space Exploration of real-time embedded
systems as discussed in Section 3.4.2. The work in Chapter 3, as a matter of fact, takes
advantage of the accuracy provided by hardware simulators and the speed of an analytical
approach such as regression to estimate the performance of the system (i) without having
access to the end-target hardware platform on which a system is to be deployed and (ii) in
a comparatively reasonable time. This last feature shines when methodologies that explore
the design space, such as when deciding the optimal final hardware architecture, are de-
manded. These methodologies generally require the evaluation of a great number of possible
configurations that can grow to hundreds of thousands. Clearly, relying on simulations solely
becomes restrictive, even with the fastest simulators available at the time of writing. Having
a framework, such as the one presented in [19], that can provide performance estimates of
thousands of scenarios in a short time can be a game changing addition and a first step to
using DSE technologies to enhance the integration of complex systems.

In the same effort to provide relevant information to the design of complex real-time systems,
Chapter 4 extends the Real-Time Systems toolkit with more accurate scheduling tools that
conform to today’s technological advances. The work presented in 4 [21] develops a random
cache model that is able to provide estimates of pWCET while being aware of memory
sharing contention. The probabilistic nature of the timing analysis, by itself, provides tighter
bounds on the execution time, an information that is valuable and is of practical use to
experts designing systems under hard timing constraints. By virtue of its compact nature,
as compared to already existing cache models, the proposed model is integrated in a multi-
core scheduling simulator. Section ?? illustrates how it can be quite useful in uncovering
risky configurations and deciding the scheduling policies that are more suited for the studied
scenarios. This is becoming of relevance as critical system developers are turning more
towards multi-core platforms to deploy their complex systems which generally involve the
optimization of resources and exploring better allocations. The work cited in Appendix B
falls under this category where the authors rely on the use of a scheduling simulator to find
optimum allocation of tasks to a set of available resources.
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7.2 A Hidden Simplicity

As highlighted by the problem statement on Chapter 1 and discussed in the previous section,
exploratory research tends to make quite the number of assumptions that are difficult to
translate to practical uses. This, as shown, might be prevalent in the complex real-time
system and embedded systems but it stretches to other fields as well, especially in the natural
sciences. This is partly due to the restrictions and limited access to live subjects, especially in
the wilderness. Chapter 6 attempts to answer the question: What knowledge can be acquired
by studying a system through the simplest of information propagation models?. The first half
of the chapter explores the scenario of having limited access to data and attempts to model the
propagation of information in a connected network with a minimal number of assumptions;
namely (1) a static or slowly changing network, (2) the propagation of a single piece of
information and (3) information transmission probability of a node. The latter is dependent
on the scenario studied and can be modelled as the infection probability, influence of users,
etc. The modelling approach applied to the rumour case study detailed in Section 6.4.1 was
able to give a reason for the reported progression of events. It further exposed influential
users in the studied network that have high potential to affect the spread or attenuation of
the rumour. The purpose here was to explore the effect of stripping the propagation model
from scenario-specific details, such as the volume of shared tweets or the rate at which the
information is transmitted, etc. This showed that the few assumptions taken in modeling
information propagation were enough to discern the patterns that lead to the emergence
of the observed event. The study, although narrow in terms of scope and possibly biased
by the choice of scenario, promotes the practice of bottom-up investigation when it comes
to modeling information flow and to properly identify and isolate the originator of specific
events and behaviors; as is the case with giant and snowball effects in rumour propagation
research.

7.3 Information Propagation in Artificial Systems

As it is common with information propagation models proposed in literature (some of which
have been addressed in Section 2.2.1), there is a certain passiveness to approaching the matter
of propagation of information, especially when biological systems are concerned. These mod-
els are developed to uncover the underlying causal dependence, if any, between an observed
behavior and a given property or are satisfied with the study of the distributions that inhibit
the propagation itself. The rumour study discussed above falls under the same category since
the aim was to explain why certain events occurred in the way they did. Having a more active
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approach to studying information flow might not be of import to biological systems yet, but
the knowledge gained so far could be transferred to benefit artificial systems.

As a matter of fact, the study of the proposed information flow on the siege rumour presented
in the previous chapter revealed the potential of studying infromation flow. It was indeed
able to identifying the strong elements that lead to a stronger circulation of the rumour. Sec-
tion 6.4.2 exploits this finding to engineer more efficient wireless sensor networks that ensure
a faster spread of information by locating the weakest links in the network that are more
prone to hinder the propagation of information. The results shown in Figure 6.7 demon-
strate the performance of the proposed approach, especially when analyzing heterogeneous
networks.

Transferability of information flow models and findings is not only limited to artificial systems
that, in one way or another, imitate biological systems; either in structure (e.g. wireless sensor
networks) or in behavior (e.g. robot swarms). It extends to any system that can be abstracted
as a network of nodes linked with some kind of causal dependency relationship similar to the
study of [59] conducted to detect the root of anomalies by studying the spread of fault in large
complex systems. This is the subject of the work presented in Chapter 5 which addressed the
description of large complex systems. These systems can be viewed as a network of connected
modules which, differently from multi-agent systems, can not function as separate agents.
Due to the black-box view of the system modules, and in order to break a cycle, we virtually
inject an error at these nodes and study the spread of the error in the system to assign a
criticality attribute to the data being transmitted by the different modules. This has the
potential to represent raw data of a system into a practical description such as a DAG. Even
with the apprehension that some industries have towards this kind of fundamental work,
this approach offers a transformed graph description of the system that can provide starting
configurations to integration specialists that can have a huge impact on time-to-market as
well as cost (This is backed-up by the findings of the Full-Mission Simulator case study of
Section 5.6.2).

Finally, Section 6.3 capitalizes on merging the lessons learned from biology – information
propagation models – with techniques built for real-time software/hardware systems – prob-
abilistic timing analysis – which lead to the emergence of new techniques for systems of
connected artificial entities. The static probabilistic timing analysis (SPTA) approach, pro-
posed for a single random cache presented in Chapter 4, was extended with the proposed
information propagation model. The new approach establishes a probabilistic upper-bound
for the time it takes for an information to propagate in the system. Figure 6.6 shows that,
despite the few assumptions taken to model the information propagation, which neither fully
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expresses the intricacies of the diffusion of information nor the environment, it is able to
provide a probabilistic measure of the worst convergence time towards a consensus.

With the growing interest that both research and industry are giving robot swarms, to
respond in emergency cases or to explore the far-reaches of space, knowing what and when
an event is to occur becomes crucial. This is applicable on a small scale such as Amazon’s
fleet of transporting drones or larger scale the likes of Facebook’s ambitious plan to provide
internet access through a linked network of drones [148]. The work in Chapter 6, by providing
a timing estimate of flexible and practical use to the design of software intended for these
types of systems, along the tools developed in Chapters 3 and 4, are an essential first step to
ensuring a proper timing behavior and advancing the development of these technologies.
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Table 7.1: Summary of the main contribution of the disseration.

Ch. Ref. Contributions Impact & Influence

3 [19]

A framework for performance esti-
mation with zero knowledge of soft-
ware functionality and no access to
the hardware platform.

Advance integration of large systems
and ease the adoption of DSE tech-
niques.

4 [21]

A compact random cache model for
the estimation of (pWCET) of soft-
ware executing on different cores and
sharing cache space.

The ease of integration into modern
simulation tools and reinforcement
of shared cache modelling literature.

An extension to an existing
scheduling simulator with a cache
contention-aware execution of ap-
plications scheduled on multi-core
systems.

An addition to the real-time sys-
tems design and validation toolkit
and contributor to more accurate de-
sign space exploration.

5 [20]

A methodology to transform raw
and scarce data into a pertinent sys-
tem description in the form of a
DAG.

Connecting the benefits of existing
techniques with the needs of indus-
try like by access to DAG-based
techniques abd easing the integra-
tion and optimization of systems.

A strategy to provide starting con-
figurations for the assessment of
proper functional and timing behav-
ior of complex systems.

A flexibility and acceleration of soft-
ware system integration and a more-
desirable time-to-market.

6 –

A probabilistic modelling of infor-
mation propagation among interact-
ing entities under minimal assump-
tions.

Re-evaluattion of the complexity in
information flow modelling and the
benefit of bottom-up exploration
strategies.

A timing analysis approach to esti-
mate a probabilistic measure of the
worst convergence time towards an
information consensus.

Enabling the design of hard real-
time multi-agent systems by provid-
ing a flexible and practical timing
property.

strategy to strength the informa-
tion spreading in connected net-
works such as robot swarms

Incentive to further explore informa-
tion flow in the engineering of better
artificial systems.
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CHAPTER 8 CONCLUSIONS

“One is a scholar as long as he keeps seeking knowledge, the moment he
thinks that he has learned it all, he is ignorant.”

– Ibn Al-Mubarak

“Now it is established in the sciences that no knowledge is acquired save
through the study of its causes and beginnings, if it has had causes and
beginnings; nor completed except by knowledge of its accidents and accom-
panying essentials.”

– Ibn Sina

With the data overload experienced thanks to today’s technology, the main questions that our
research attempted to answer are: Is relevant information truly abundant? and if not, how
to grasp its essence in a manner that is meaningful to the advancement of knowledge? The
research journey undertaken here started with the intention to bridge the gap left by the mix
of expertise in approaching a problem and implementing the existing and proposed solutions
in the design of complex real-time systems. These have been outlined in objectives 1 and 2
– providing relevant information and accurate real-time tools for a better exploration of the
design space, which was covered throughout Chapters 3 and 4. The role of information then
became palpable introducing the work in Chapter 5, which tackled objective 3 – determining
the criticality of data for the purpose of providing convenient descriptions of the system by
studying the flow of information. The outcomes of that work was an incentive to engage
objective 4 – modeling the information flow under fewer assumptions. The research done
in Chapter 6 was driven by curiosity to appraise the potential behind the simplicity of the
model to explain and uncover existing and likely new patterns. In undertaking objectives 5
and 6, Chapters 5 and 6 promote the study of information flow as a bedrock to investigate
and engineer new and more efficient solutions both in large software systems and multi-agent
systems.

The discussion performed in the previous chapter highlighted the findings of these works and
their impact on biological systems in part but especially on artificial systems. The significance
of this research endeavor shines in these outcomes: (1) strategies to contribute and specify
relevant information for the bettering of the relationship between academic achievements
and the design of industrial systems; (2) A better understanding of the importance of the
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information flow and the underlying simplicity that might govern certain behaviors; (3)
Frameworks to engineer better connected networks and boost the information propagation
among interacting agents.

This chapter brings this document to an end with a summary of the main findings of this
research and the lessons learned both scientifically and personally and closes up with a couple
questions to be addressed in future research and some topics that could be explored and built
on top of the currently presented findings.

8.1 Knowledge Transfer and Self-Reflection

As ingrained in any journey, the research path undertaken during these past years yielded
worthwhile lessons, some more obvious than others. We outline the main ones here:

1. As Gary Johnson’s book title goes: “Living with Less in the Land of More”, the trend
seems to extend to our understanding of life as a whole and technological design in
particular. Through this research, Chapter 6 in particular, a simplicity to modeling
information was uncovered to be in some cases enough to explain certain behaviors;

2. Although it is starting to be established that information is inherent to biological
systems, information flow is a potent property to be explored to a great extent in the
context of artificial systems as has been demonstrated through [20] and 6;

3. Probabilistic models are powerful tools to fill the void of uncertainty and the unknown
due to ambiguous descriptions or faulty devices (e.g. unreliable communication media,
unpredictable faults, erratic behavior, etc.);

4. Recognized techniques built on certain assumptions that have long been established in
both academia and industry should be re-evaluated as technology advances and their
premises are no longer negligible as is the case of memory contention introduced in [21].

For the purpose of sharing experiences and lessons learned through the process of performing
research, these are some self-reflective suggestions for the interested reader:

1. In the process of designing one’s research, it is fruitful to have a clear idea of what the
research questions that those specific experiments are going to answer;

2. Hand in hand with the former point, it is better to establish the kind of research one
wants to pursue; problem-driven versus curiosity-driven;
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3. Explore side-projects and get involved with works in other research laboratories, if
possible. It will build your knowledge of other topics as well as develop new attitudes
to approaching your own research;

4. Embrace failure. Every researcher have had some of their works rejected at some point.
The best learn to cry about it then pick themselves up and progress.

8.2 Future Ventures

As the epigraph at the beginning of this chapter states, scientists are in a constant quest for
uncovering the unknown and improving existing knowledge. Predictably, the last developed
research presented in Chapter 6 is comparatively young which makes it closer to today’s
issues and more in need of growing. This passage expands on few limitations of the presented
research that could be addressed in future work:

• The probabilistic model of information propagation was developed under the assump-
tion that a single piece of information is propagated, conceivably from one or more
sources. Further study would extend the model to handle multiple, possibly conflict-
ing, information spreading;

• A fresher look at information flow has been introduced here which views information
as an emergent property instead of a stored entity. A question that this opens though
is whether information and its flow are an inherent property to artificial multi-agent
systems as it is deep-rooted in the essence of biological networks?

A compelling future venture that further promotes the duality of biology and technology
discussed at the beginning of this document has been proposed. It aspires to untangle the
factors that contribute to the emergence of certain behaviors, and more importantly those
that are responsible for transitional behaviors, from a robotic swarm point of view. The first
stage to achieve this endeavor has already been undertaken under the work performed during
the National Institute of Informatics Internship program spent during the first half of 2018 in
Tokyo, Japan, which deals with identifying relevant subspaces – and in turn relevant factors
– within high-dimensional data (The summary of which can be found in Appendix A). The
next stages will have to call on knowledge from the machine learning and meta-heuristics
fields to develop new approaches in order to reach a further meaningful understanding of
information.
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APPENDIX A IDENTIFICATION OF RELEVANT SUBSPACES BASED
ON LOCAL INTRINSIC DIMENSIONALITY

During the time spent in the laboratory of Pr. Micheal Houle in Tokyo, Japan, under the
National Institute of Informatics (NII) Internship program, our research exploration took a
deeper dive into an inherent property to data, its intrinsic dimensionality. More particularly,
the research interest of Pr. Houle focused on local intrinsic dimensionality which recent
findings triggered the work accomplished during this stay. The appendix provides a brief
glimpse into the context/motivation of the work and the efforts given to achieve these goals.

Subspace Clustering and Intrinsic Dimensionality

Subspace clustering differs from classical clustering in that, in addition to cluster discovery,
a step essential to subspace clustering is detecting the subspaces in which data points form
the clusters; referred to as cluster/instances subspace preference. Previous work focused
on either arbitrarily-oriented subspaces which detection requires some kind of heuristic; or
axis-parallel subspaces which shrinks the search space to 2D different subspaces of a space
with D dimensions. Whilst techniques based on the former perform better in terms of finding
subspaces that best fit the data, they may suffer from over-fitting and outputs transformations
of the features that are difficult to interpret (this approach is least desirable in the fields of
bio-informatics (gene annotation, micro-array analysis) and chemistry (mass spectra analysis,
interpretability of molecular signatures), etc. which require results that are interpretable in
terms of the original feature set). The real features can be projected to axis-parallel subspaces
which makes them more appealing in these fields.

Given the recent advances in the characterization of data sets according to local intrinsic
dimensionality (ID), our aim was to propose an approach to detect axis-parallel subspaces
based on ID and develop a heuristic for subspace clustering. The developed approach show
immense potential when it comes to accurately identifying the subspace with relevant infor-
mation compared to existing methodologies both in terms of accuracy and the number of
parameters to tune.

The research carried out here sparked and established the first step towards attaining the
future endeavor of discovering the main influencers of emergent behaviors in swarms of robots
and more importantly, the factors that drive a swarm to transition from one behavior to
another.
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APPENDIX B RESOURCE OPTIMIZATION OF LARGE COMPLEX
REAL-TIME SYSTEMS

This appendix addresses a couple contributions to the optimization community which focused
on the optimization of large complex system resources with timing constraints in terms of
allocation and scheduling. The work developed under our collaboration with an industrial
partner to optimize full-mission simulators which are complex software avionics systems. The
main orchestrator of these works is Rabeh AYARI. My co-author contributions involved:
(i) providing advice and recommendations on optimization approaches (ii) Handling the
integration of simulator in the implementation and experiments (iii) writing and preparing
some figures (iv) reviewing/editing.

Real-time systems not only require functional correctness, but also specific tim-
ing properties. Correct timing is especially challenging for hard real-time systems
such as in medicine, avionics, and space industries, where missing a deadline can
lead to catastrophic failure. A number of theories tackled this issue to determine
whether a set of tasks running on a given architecture meets its timing constraints.
One technique is schedulability analysis, which can provide guarantees for the tim-
ing behavior for a set of tasks. However, the use of schedulability tests involve an
intrinsic amount of pessimism, which greatly reduces the number of configurations
that can be considered as schedulable. This removes potentially promising system
configurations from the task allocation optimization process, thereby reducing the
quality of the final result. The aim of this paper is to overcome this limitation in
the context of heterogeneous multiprocessor architectures. We propose a simulation-
based approach to assess solutions discarded by a schedulability test, and include
them in the optimization process. We tested our method on the optimization of the
communication cost of a set of tasks scheduled on a quad core architecture, showing
an improvement of up 11% when compared to the use of a schedulability test.

Authors: R. Ayari, I. Hafnaoui, G. Beltrame and G. Nicolescu
URL: http://dl.acm.org/citation.cfm?id=3015574.3015604

SIMULATION-BASED SCHEDULABILITY ASSESSMENT FOR
REAL-TIME SYSTEMS
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Full-mission simulators (FMSs) are considered the most critical simulation tool
belonging to the flight simulator family. FMSs include a faithful reproduction of
fighter aircraft. They are used by armed forces for design, training, and investigation
purposes. Due to the criticality of their timing constraints and the high computation
cost of the whole simulation, FMSs need to run in a high-performance computing
system. Heterogeneous distributed systems are among the leading computing plat-
forms and can guarantee a significant increase in performance by providing a large
number of parallel powerful execution resources. One of the most persistent chal-
lenges raised by these platforms is the difficulty of finding an optimal mapping of n
tasks on m processing elements. The mapping problem is considered a variant of the
quadratic assignment problem, in which an exhaustive search cannot be performed.
The mapping problem is an NP-hard problem and solving it requires the use of
meta-heuristics, and it becomes more challenging when one has to optimize more
than one objective with respect to the timing constraints. Multi-objective evolu-
tionary algorithms have proven their efficiency when tackling this problem. Most of
the existent works deal with the task mapping by considering either a single objec-
tive or homogeneous architectures. Therefore, the main contribution of this paper
is a framework based on the model-driven design paradigm allowing us to map a set
of intercommunicating real-time tasks making up the FMS model onto the hetero-
geneous distributed multi-processor system model. We propose a multi-objective
approach based on the well-known optimization algorithm “Non-dominated Sorting
Genetic Algorithm-II” satisfying the tight timing constraints of the simulation and
minimizing makespan, communication cost, and memory consumption simultane-
ously.

Authors: R. Ayari, I. Hafnaoui, A. Aguiar, P. Gilbert, M. Galibois, J.P.
Rousseau, G. Beltrame and G. Nicolescu
DOI: https://doi.org/10.1177/1548512916657907

MULTI-OBJECTIVE MAPPING OF FULL-MISSION SIMU-
LATORS ON HETEROGENEOUS DISTRIBUTED MULTI-
PROCESSOR SYSTEMS
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APPENDIX C TIMING ANALYSIS WITH A PERMANENT FAULT
DETECTION MECHANISM

This last appendix addresses the work done to develop an SPTA technique that considers the
effects of permanent faults in the estimation of pWCET. The main contributor to this work
is Choa CHEN. My co-author involvement covers: (i) writing the introduction (ii) reviewing
and editing the paper.

In recent years, random caches have been proposed as a way to simplify the tim-
ing analysis of real-time systems. However, technology-scaling makes caches prone
to faults. Fault detection mechanisms can detect permanent faults but they affect
the timing analysis of a random cache. This paper introduces a Static Probabilistic
Timing Analysis (SPTA) technique that accounts for a permanent fault detection
mechanism. The permanent fault detection mechanism periodically checks caches
for faults and disables faulty cache blocks to prevent future accesses. The SPTA
method operates by periodically switching its runtime between the fault-detection
and the no-fault-detection states. This is the first SPTA with a realistic permanent
fault detection mechanism. Experiments show that the proposed method always
provides safe timing estimations-even when few memory blocks are provided-and
accurate results-when sufficient memory blocks are present.

Authors: C. Chen, J. Panerati, I. Hafnaoui and G. Beltrame
DOI: https://doi.org/10.1109/SIES.2017.7993373

STATIC PROBABILISTIC TIMING ANALYSIS WITH A PER-
MANENT FAULT DETECTION MECHANISM
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