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ABSTRACT

Performance estimation is a key step in the development of an em-
bedded system. Normally, the performance evaluation is performed
using a simulator or a performance mathematical model of the tar-
get architecture. However, both these approaches are usually based
on the knowledge of the architectural details of the target.

In this paper we present a methodology for automatically build-
ing an analytical model to estimate the performance of an applica-
tion on a generic processor without requiring any information about
the processor architecture but the one provided by the GNU GCC
Intermediate Representation. The proposed methodology exploits
the linear regression technique based on an application analysis
performed on the Register Transfer Level internal representation of
the GNU GCC compiler. The benefits of working with this type of
model and with this intermediate representation are three: we take
into account most of the compiler optimizations, we implicitly con-
sider some architectural characteristics of the target processor and
we can easily estimate the performance of portions of the specifica-
tion. We validate our approach by evaluating with cross-validation
technique the accuracy and the generality of the performance mod-
els built for the ARM926EJ-S and the LEON3 processors.
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C.4 [Computer System Organization]: Performance of Systems

General Terms

Algorithms,Design,Performance
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1. INTRODUCTION
Timings constraints are among the most critical aspects of the

embedded systems design flow. Verifying these constraints only in
the last phases of the design process is not possible: fixing the sys-
tem in the last design process stages can require significant changes
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of the system itself delaying the final system production of an un-
sustainable amount of time. For this reason, system performance
has to be evaluated from the early design steps.

The spreading of the MultiProcessor System on Chip (MPSoC)
platforms in the embedded systems has increased the difficulty of
estimating their performance. Difficulties arise not only from the
presence in a system of multiple components, the interactions of
which have to be taken into account, but also from their heterogene-
ity. This heterogeneity consists not only of the presence of different
classes of components in the system (e.g., GPP, DSP, FPGA), but
also of the availability of different components for a given class of
processing elements. Since the hardware of an embedded system
is not fixed, often the system designer has to select which com-
ponents will be included into the final system and have to guaran-
tee that these components will satisfy timing, power and economic
constraints. Judging which are the more appropriate components is
not a trivial task: in principle the designer has to evaluate the per-
formance of each available candidate on the different portions of
the application which are supposed to be mapped on it. Evaluation
can be hardened by the fact that, since hardware and software are
usually co-designed [23], multiple partitionings and mappings of
the application may have to be considered and so the designer has
to evaluate the performance of several arbitrary pieces of code.

The methods to early evaluate the performance of a processing
element can be mainly divided into three categories: direct mea-
sures, estimations by simulation, estimations by use of mathemat-
ical models. Most of the time the first solution is not affordable
since the real components are not available during these phases
of the design and integrating the measurement on the real com-
ponent in a Design Space Exploration framework can be a difficult
task. For these reasons, techniques based on estimations have to be
preferred. In the simulation based ones estimation is achieved by
simulating the behavior of the component on a particular code by
running a Cycle Accurate Simulator. Finally in the last category
techniques, the estimation is obtained by exploiting mathematical
models which correlate some numerical features of an application
with its performance. In general, they are less accurate than the
simulator based, but they are much faster.

Most estimation techniques present the same disadvantage: they
require the designer to have some knowledge of the architecture of
the target component (typically larger in case of simulation based
techniques) to guarantee accurate estimation. This requirement,
which could be rationale when the designer dealt with a single or
few processing elements, can be not satisfiable anymore since the
available processing element candidates are too many to be threated
with such type of techniques.

In this paper, we present a performance estimation methodology
focused on the estimation of application performance on arbitrary
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embedded processor. The proposed methodology does not require
any knowledge of the target processor by the embedded system de-
signer, but it exploits the information about the target processor
provided by the GNU GCC compiler [12] internal representation.
For this reason, the processor has to be targeted by the GNU GCC
compiler. The performance models are built combining the linear
regression technique with an analysis of operation sequences per-
formed at the GNU GCC Register Transfer Language (RTL) level.
RTL representation has two peculiar properties: the language it-
self is target-independent, but the descriptions of the applications
written in this language differ according to the considered target
processor. Thanks to the former characteristic, we do not need to
specialize the analysis to support different processors, thanks to
the latter we can still perform a target-dependent analysis without
requiring direct knowledge of the architecture. Moreover, the oper-
ation sequences allow the analysis to catch also complex architec-
tural aspects such as the pipeline.

To the best of our knowledge, all the other solutions in literature
work at a somewhat higher (virtual instructions) or lower (assem-
bly code) abstraction levels. So, the formers are not able to capture
many significant architectural aspects and compiler optimizations,
or require complex translations to gather at least some of them.
With the latter, instead, it is necessary to know in detail the In-
struction Set of the target architecture for generating the annotated
specification. We resort to the use of a linear model because our
main objective is to perform an unbiased analysis among differ-
ent intermediate representations. We also show that our regression
technique is quite accurate and comparable to non-linear models.

The remainder of this paper is organized as follows. Section 2
discusses the related work in the field of performance prediction,
focusing mainly on embedded system design. Section 3 introduces
the use of linear regression for performance estimation. Section 4
describes the proposed methodology, detailing the application anal-
ysis, the model building and the model utilization. Section 5 pro-
vides the experimental evaluation and finally Section 6 concludes
the paper.

2. RELATED WORK
Several methodologies for building mathematical performance

models of a processor have been proposed. Roughly, in most of
these methodologies we can identify three different steps: identifi-
cation of some numerical features significant of the application per-
formance (e.g., number of times an operation appears in the code or
is executed), extraction of these features from the applications with
a static or a dynamic analysis (e.g., by profiling the application on
the host), building of the performance model by correlating these
features with the application performance. The parameters of these
performance models can be built mainly in two different ways: by
hand or by exploiting automatic methods.

The first method requires a deep knowledge of the architectural
characteristics of the considered processor. For example Bran-
dolese et al. [7] use the concept of “atoms” to describe basic el-
ements of the source code. The key idea is that the performance of
an application can be modeled as the sum of the estimated execu-
tion delays of each atom. The estimated execution delay of an atom
is expressed as the sum of two contributions: a reference timing,
that accounts for all the deterministic aspects in ideal conditions,
and a statistical deviation that depends on the architectural aspects
and on the compiler. The limits of this methodology reside in the
complexity to get the reference times for the atoms and in particular
their statistical deviations.

Also Beltrame et al. [5] propose a flexible approach to estimate
the performance of applications on superscalar architectures based

on combination of multiple contributions for each operation. In
this approach the Cycles Per Instruction of each assembly instruc-
tion are modeled as the combination of three contributions: a fixed
term for the nominal execution delay of the operation, a statistical
term accounting for the stall overheads associated and a parallelism
coefficient which models how much of the theoretical parallelism
is exploited. The limit of this methodology consists in the data
required for computing the parameters of the model. In fact, the
starting and the ending time of each instruction of the execution
trace of an application are needed.

Hwang et al. [14] work at higher granularity: they propose an es-
timation technique that takes in input C application processes and
performs a basic block analysis. The basic blocks are annotated
with execution delay estimated considering processor models. In
particular these models describe the pipeline, the memory hierar-
chy and branch delays of the processor. This approach is extended
to multiple processing elements by wrapping the annotated code
with a SystemC wrapper used to model the communications. The
generated Transaction Level Model is then compiled and executed
natively on the host machine. In this way this solution takes into
account multiprocessor issues, but it still requires a quite accurate
model of the target processors and works only at the basic block
granularity.

Performance models can also be built by exploiting automatic
techniques: Meyr et al. [15] for example link the processor model
generated from an architecture description language (at behavioral
or cycle-accurate level) to SystemC based simulation. They inte-
grate a fine-grained software instrumentation tool to obtain perfor-
mance and memory access statistics. The approach is faster than
using an ISS, but it requires the architectural description of the ex-
amined processor.

Some methodologies build the model by exploiting regression
techniques instead of tuning parameters by hand or starting from
an architectural model; however they may still require knowledge
of the target platform or at least of its assembler. For example, La-
jolo et al. [16] exploit the GCC compiler by performing a timing
analysis on the assembly code and then regenerate the C code with
the timings annotations related to the assembly instructions. Ex-
ecution times of the assembly instructions on the target processor
are obtained from the machine description files of GCC. The re-
generated C code is then compiled on the host and run to obtain an
estimation of the performance of the program. This approach is at
a lower level than our RTL representation, but the regeneration of
the original C code requires the knowledge of the Instruction Set
for each desired target processor since the produced C source code
has to be functionally equivalent to the assembly.

The approach of Oyamada et al. [19, 20] is also based on the in-
struction set of the target processor, but adopts another non-linear
method, based on neural networks. Also in this case, for a given
target processor, it is necessary to employ not only the trained neu-
ral network, but also the compiler and the methods to extract the
dynamic assembly instructions count of the application. Moreover,
nonlinear models may estimate more accurately software perfor-
mance in some specific cases, but they make design space explo-
ration more complex: they are usually not additive, and require
code rewriting if the designer wants to explore only parts of the
code.

Bontempi and Kruijtzer [6] use a non-linear method for the exe-
cution delay estimation of the whole program. They perform pro-
filing through IPROF to gather statistics on the execution of the
applications on a virtual processor (with a set of 42 virtual instruc-
tions). Being based on the profiling feature of the GNU GCC com-
piler and on its disassembler, IPROF directly collects statistics by



running automatically instrumented assembly code. In this way it
does not require any particular knowledge of the target processor,
but it requires the availability of a processor with the same ISA of
the target to run the profiling; this requirement is often not satisfi-
able. They exploit the lazy learning modeling technique: it builds
an estimation function, which may be locally linear, based on the
closeness of the application and the training set. This approach also
suffers from the lack of architectural details in the estimation due
to the use of virtual instructions.

Prediction techniques have also been developed for evaluating
the trade-offs of different optimizations during compilation [25].
Two types of prediction models are presented. The firsts estimate
how a particular optimization will change the characteristics of the
intermediate code. The seconds predict how these changes will
affect the performance.

Some techniques, which do not require any knowledge of the
target processors, have already been proposed, but they can be
adopted only in particular cases or produce not very accurate pre-
dictions. Indeed, since they work at high abstraction levels, they do
not consider at all compiler optimizations nor architectural charac-
teristics.

An example of this type of methodology is proposed by Suzuki
et al. [21]. They estimate the execution time on the chosen target
processor exploiting a simple additive performance model based
on high-level C language statements. The cost of each statement is
obtained by executing a set of benchmarks on an ISS and extracting
an average cycle count. This work does not consider compiler and
architectural features and can be only applied to applications with
a very simple structure (no loops, no recursion), so it can not be
adopted for estimation of most of the real applications.

Lavagno et al. [4] use virtual instructions instead of source in-
structions for estimation. The source code is compiled to an inter-
mediate representation, with all the representative operations of a
RISC processor. The code is then translated back to C with timing
annotations that gather statistics on the execution of such virtual
instructions, when compiled and run on any host. The cost of each
virtual instruction on the target processor is obtained through two
different techniques: by deriving the cycle counts from the proces-
sor manual or its ISS, or by exploiting linear regression technique.
The authors of this work, however, highlight that this approach has
some drawbacks: it does not consider all the possible compiler op-
timizations and use a reduced set of Virtual Instructions to model
all the possible instructions of the target processor. To overcome
these limitations, the authors resort again to an assembly-level es-
timation.

Also Giusto et al. [11] exploit a model based on virtual instruc-
tion set and linear regression. They, however, conclude that a linear
approach based on virtual instructions is accurate only when the ap-
plications of the training set are very similar to the ones they want
to estimate. Furthermore, approaches that adopt virtual instruction
sets do not take in account the architectural characteristics of the
processors, such as pipelining.

Generally, the recent literature on analytical models produced
with zero knowledge of the target architecture has limited its scope
to specific applications or to a limited set of benchmarks, with well
defined characteristics. In this work, we try to broaden these ap-
proaches, dealing with very heterogeneous classes of applications,
different levels of compiler optimizations and different target pro-
cessors. The objective is to show how we construct a “good per-
formance estimator”, sufficiently accurate to give reasonable sug-
gestions at the initial stages of design space exploration, and suf-
ficiently fast to easily evaluate a large number of design solutions
without requiring any knowledge of the target processor.

3. LINEAR REGRESSION FOR PERFOR-

MANCE ESTIMATION
The proposed methodology aims at automatically producing a

performance model for estimating the execution time of an appli-
cation on a generic embedded processor by exploiting the linear
regression technique.

Regression analysis refers to mathematical techniques for the
analysis of the relationships among data consisting of a dependent
variable Y and one or more independent variables Xi. The de-
pendent variable Y is modeled as a function of the independent
variables Xi, the corresponding parameters βi and an error term ǫ,
treated as a random variable:

Y = f(X, β, ǫ) (1)

Linear regression is a form of regression analysis in which the
model function is a linear combination of independent variables:

Y = β0 + β1X1 + β2X2 + ...+ βkXk + ǫ (2)

These techniques can be used for several purposes: prediction,
inference, hypothesis and testing. In the case of the performance es-
timation problem, given a generic application, the dependent vari-
able Cycles corresponds to its execution time expressed in clock
cycles. The independent variables xi, instead, are a set of numeric
features which well describe the performance characteristics of the
specification. We detail this set F in Section 4.1. Since we are
considering a linear performance model, we have:

Cycles = β0 +
∑

i∈F

βi · xi (3)

A regression technique is composed of two phases: the model
building and the model application. For the first phase regression
techniques require a set of benchmarks representative for the con-
sidered field. This set, used to develop and tune the regressive
model, is called training set.

For each benchmark of the training set, the real execution de-
lay in clock cycles has to be provided. It can be measured either
by profiling the benchmark directly on the target processor or by
running the application on a cycle accurate simulator.

The produced model is then used in the second phase of the
methodology to estimate the performance of other applications, not
present in the training set. The model takes in input the numerical
features of the analyzed application and returns as output the esti-
mated execution time.

Since both the model building and the model application phases
use the numerical features, they share the application analysis step
where these features are extracted.

4. PROPOSED METHODOLOGY
The following Sections detail the different parts of our methodol-

ogy. Section 4.1 shows how the numeric features are extracted from
an application. Section 4.2 describes how these data, obtained from
the applications of the training set, are used to build the model. Fi-
nally Section 4.3 shows how the numeric features extracted from a
new application and the performance model are used to predict the
performance of this new application.

4.1 Application Analysis
One of the key aspects of the proposed methodology is which

numerical features are extracted during the application analysis. To
obtain a good estimation with a regression technique, it is necessary
to extract really meaningful features that describe the performance
behavior of the considered application. Nevertheless, in the contest



of a fast and portable performance analysis, the significance is not
the only characteristic to take into account when choosing the type
of analysis to apply.

The characteristics required by the analysis can be summarized
as follows:

1. it should take into account as much as possible the charac-
teristics of the target processors, but without requiring the
designer to have any knowledge of the architecture itself nor
of its Instruction Set;

2. it should be easily extendible to other target processors;

3. it should consider the effects on the performance of the object
code due to compile-time optimizations;

4. it should allow the estimation of the performance of arbitrary
portions of the program and not only of the whole applica-
tion;

5. it should take into account the dynamic behavior of the appli-
cation: a static analysis may produce very poor results since
it is very difficult to statically find correlation among source
code, input data and performance.

In the following, we will discuss how our analysis, based on RTL
operations sequences [8] of GNU GCC, well fits these require-
ments.

4.1.1 RTL sequences analysis

The GNU GCC compiler is divided into three main components:

• front-end: translates the source code in a language indepen-
dent intermediate representation called GIMPLE [13];

• middle-end: performs the target independent optimizations;

• back-end: translates the GIMPLE representation into the RTL
representation, performs the target dependent optimizations
and then convert RTL representation into assembly language.

Figure 1 shows an example of the different representations used
by the GNU GCC compiler during compilations targeting an ARM
processor and a SPARC-compliant processor. The numbers at the
beginning of the lines are used to show the correlation among op-
erations in the different representations. The correlation among
source code and GNU GCC internal representations has been com-
puted automatically by a slightly modified version of the GNU
GCC compiler, while the correspondence with the assembly op-
erations has been added by hand. The Figure shows how an RTL
description consists of a sequence of instructions of type insn or
jump_insn. Each RTL instruction is composed of a combina-
tion of RTL operations: an RTL operation is mainly characterized
by an operator (e.g., plus, minus), a data type (e.g., SI - Single
Precision Integer), some operands (e.g., registers, results of other
RTL operations) and annotations. For example the first ARM RTL
instruction is composed of a set operation which writes in a reg-
ister (reg) the result of a PLUS operation executed on a register
(reg) and on a constant integer (const_int). In the rest of the
methodology, we take into account only the first two characteristics
of an RTL operation (i.e., we ignore the operands and annotations);
moreover, for each RTL instruction we consider only its most sig-
nificant RTL operation. In the example, these operations have been
highlighted by using uppercase letters.

The different representations of this small piece of code give an
idea of the advantage of using the RTL representation in this type
of analysis with respect of others based on higher representations
such as GIMPLE or Virtual Instructions. Consider in particular the
sum operations which are annotated with indexes 1 and 3 in the

source code and their corresponding assembly code. Even if they
are apparently performance-equivalent operations (sum of a param-
eter and of a constant), the first is translated into just a single add
ARM assembly instructions, the second into one mov and three
add ARM operations. Also during the compiling process targeting
SPARC the two sum operations are translated into different assem-
bly operations: in this case, the first one is translated into a single
add as in the ARM case while the second is translated into a se-
quence composed of sethi, or and add. An analysis performed
at source code level or at GIMPLE level can not forecast these dif-
ferent translations. On the other hand, it is easy to see that the RTL
representations provides information similar to the ones provided
by assembler in terms of operations really executed. Indeed in the
RTL produced during ARM-targeted compilation the two sum op-
erations are represented as a single plus (which corresponds to
the single add) and a sequence of a simple assignment (which cor-
responds to the mov) and of three plus respectively. In the RTL
produced during SPARC-targeted compilation instead the two sum
operations are translated as follows: the first one is translated into a
single plus (which corresponds to the single add) while the sec-
ond into a sequence of a simple assignment (which corresponds to
sethi), a ior (corresponding to or) and a plus (corresponding
to add).

Starting from the RTL description of the application, we con-
sider all its two-length operations sequences instead of considering
the single operations. Use of sequences is motivated by the try-
ing of modeling the dependence among the execution time of an
operation and the type of the operations which precede it in the
computational flow. For example, the execution time required by a
sum can be different if it is preceded by a multiply (the couple can
be transformed into a Multiply and Accumulate operation), by a
conditional jump (additional stalls caused by mis-prediction could
be inserted into the pipeline) or by a generic operation. We par-
tition the RTL sequences of the application into classes according
to the double pair <op:type-op:type> which characterizes each of
them. We profile the analyzed application on the host to retrieve
information about how many times each execution path (i.e., se-
quence of Basic Blocks) is executed. Exploiting the correlation
among source code operations and GIMPLE operations and then
the correlation among GIMPLE operations and RTL operations, we
infer how many times each RTL sequence is executed.

For each sequence class <op:type-op:type>, we sum the dy-
namic execution counters of all the RTL sequences of that class.
At the end of the process, we obtain the counters that represent
how many times the sequences of class <op:type-operation:type>

have been executed. An example of the sequences extracted from
the representation of Figure 1(c) is reported in the left part of Ta-
ble 1: the first two columns list the identified sequences and their
execution counters.

4.1.2 Evaluation of the approach

The RTL sequences based analysis meets the requirements pre-
viously listed for the following reasons:

1. RTL representations of the same application for different tar-
get processors are different, because during their generation
the GNU GCC already considers architectural characteristics
of the target processor; moreover the sequences allow to take
into account effects on the performance of the interactions of
operations executed in order (e.g., effects of the pipeline);

2. the Language is target independent: the analysis can easily
be extended to any processors (old and new) supported by
GNU GCC;



int main() {

int a, b, c;

1: b = b + 10;

2: c = 3 * b;

3: a = a + 10000000;

4: return a - c;

}

(a) Source Code

;; main (){

int a, b, c;

int D.774;

<bb 2>:

1: b_2 = b_1(D) + 10;

2: c_3 = b_2 * 3;

3: a_5 = a_4(D) + 10000000;

4: D.774_6 = a_5 - c_3;

4: return D.774_6;

}

(b) GIMPLE representation

1: (insn 7 6 0 example.c:4 (set (reg/v:SI 134 [ b.4 ])

(PLUS:SI (reg/v:SI 139 [ b ])

(const_int 10 [0xa]))) -1 (nil))

2: (insn 8 7 9 example.c:5 (set (reg:SI 140)

(REG/v:SI 134 [ b.4 ])) -1 (nil))

2: (insn 9 8 10 codes_example.c:5 (set (reg:SI 141)

(ASHIFT:SI (reg:SI 140)

(const_int 1 [0x1]))))

2: (insn 10 9 11 example.c:5 (set (reg:SI 142)

(PLUS:SI (reg:SI 141)

(reg/v:SI 134 [ b.4 ]))) -1)

2: (insn 11 10 0 example.c:5 (set (reg/v:SI 135 [ c ])

(REG:SI 142)) -1 (nil))

3: (insn 12 11 13 example.c:6 (set (reg:SI 144)

(CONST_INT 9961472 [0x980000])) -1 (nil))

3: (insn 13 12 14 example.c:6 (set (reg:SI 145)

(PLUS:SI (reg:SI 144)

(const_int 38400 [0x9600]))) -1 (nil))

3: (insn 14 13 15 example.c:6 (set (reg:SI 143)

(PLUS:SI (reg:SI 145)

(const_int 128 [0x80]))))

3: (insn 15 14 0 example.c:6 (set (reg/v:SI 133 [ a.5 ])

(PLUS:SI (reg/v:SI 138 [ a ])

(reg:SI 143))) -1 (nil))

4: (insn 16 15 0 example.c:7 (set (reg:SI 136 [ D.746 ])

(MINUS:SI (reg/v:SI 133 [ a.5 ])

(reg/v:SI 135 [ c ]))) -1 (nil))

4: (insn 17 16 18 example.c:7 (set (reg:SI 137 [ <result> ])

(REG:SI 136 [ D.746 ])) -1 (nil))

4: (JUMP_INSN 18 17 19 example.c:7 (set (pc)

(label_ref 0)) -1 (nil))

(c) RTL representation during ARM-targeted compilation

1: add r1, r1, #10

2: mov r2, r1, asl #1

2: add r2, r2, r1

3: mov r3, #9961472

3: add r3, r3, #38400

3: add r3, r3, #128

3: add r0, r0, r3

4: rsb r0, r2, r0

4: ldmfd sp, {fp, sp, pc}

(d) ARM Assembler code

1: (insn 7 6 0 example.c:4 (set (reg/v:SI 108 [ b.4 ])

(PLUS:SI (reg/v:SI 113 [ b ])

(const_int 10 [0xa]))) -1 (nil))

2: (insn 8 7 9 example.c:5 (set (reg:SI 114)

(REG/v:SI 108 [ b.4 ])) -1 (nil))

2: (insn 9 8 10 example.c:5 (set (reg:SI 115)

(ASHIFT:SI (reg:SI 114)

(const_int 1 [0x1]))))

2: (insn 10 9 11 example.c:5 (set (reg:SI 116)

(PLUS:SI (reg:SI 115)

(reg/v:SI 108 [ b.4 ]))) -1)

2: (insn 11 10 0 example.c:5 (set (reg/v:SI 109 [ c ])

(REG:SI 116)) -1 (nil))

3: (insn 12 11 13 example.c:6 (set (reg:SI 118)

(CONST_INT 9999360 [0x989400])) -1 (nil))

3: (insn 13 12 14 example.c:6 (set (reg:SI 117)

(IOR:SI (reg:SI 118)

(const_int 640 [0x280]))) -1)

3: (insn 14 13 0 example.c:6 (set (reg/v:SI 107 [ a.5 ])

(PLUS:SI (reg/v:SI 112 [ a ])

(reg:SI 117))) -1 (nil))

4: (insn 15 14 0 example.c:7 (set (reg:SI 110 [ D.774 ])

(MINUS:SI (reg/v:SI 107 [ a.5 ])

(reg/v:SI 109 [ c ]))) -1 (nil))

4: (insn 16 15 17 example.c:7 (set (reg:SI 111 [ <result> ])

(REG:SI 110 [ D.774 ])) -1 (nil))

4: (JUMP_INSN 17 16 18 example.c:7 (set (pc)

(label_ref 0)) -1 (nil))

(e) RTL representation during SPARC-targeted compilation

1: add %i1, 10, %i1

2: sll %i1, 1, %g2

2: add %g2, %i1, %g2

3: sethi %hi(9999360), %g1

3: or %g1, 640, %g1

3: add %i0, %g1, %i0

4: sub %i0, %g2, %i0

4: restore

4: jmp %o7+8

4: nop

(f) SPARC Assembler code

Figure 1: Example of different representations of the function main obtained by compiling the source code without optimization. The
number at the beginning of the lines in each representation shows the correlation among operations in that representation and operations in
the original source code.



Numerical Features
Initial Value After Normalization After Main introduction After clustering

Sequence class Absolute Normalized

ashift:SI-plus:SI 1 0.09 1 0.08 0.08
const_ int:-plus:SI 1 0.09 1 0.08 0.08
main:-plus:SI 1 0.08 0.08
plus:SI-minus:SI 1 0.09 1 0.08

0.25
plus:SI-plus:SI 2 0.18 2 0.17
minus:SI-reg:SI 1 0.09 1 0.08

0.25
plus:SI-reg:SI 2 0.18 2 0.17
reg:SI-ashift:SI 1 0.09 1 0.08 0.08
reg:SI-const_int: 1 0.09 1 0.08 0.08
reg:SI-jump_insn 1 0.09 1 0.08 0.08

Overall 11 1.00 12 1.00 1.00

Cycles 100 9.09 100 8.33 8.33

Table 1: Numerical features (for the ARM processor) extracted by a single execution of the function main presented in Figure 1(a) and
effects of the pre-processing steps on it.

3. it is generated after the middle-end compilation flow: in this
way all the target-independent optimizations have already
been performed;

4. with a slightly modified version of the GNU GCC compiler it
is possible to preserve the correlation among corresponding
source code operations, GIMPLE operations and RTL oper-
ations; this allows, given a portion of the source code of the
application, to identify the set of RTL operations generated
from it; note that the changes applied to the compiler are
independent from the target processor considered, so we can
use the same GNU GCC patches to build performance model
of different processors;

5. we can profile the application on the host machine by anno-
tating its original source code; the profiling information can
then be easily coupled with the static information contained
in the RTL representation.

Nevertheless, this type of analysis still has some intrinsic limita-
tions and can not model all the performance details of an appli-
cation. The first limitation consists of the neglecting of the caches,
whose effects are difficult to describe in a linear performance model.
The second limitation depends upon the stage of the back-end flow
where we extract the representation to be analyzed which is at the
early stages of the back-end flow before most of the back-end opti-
mizations have been applied. Transformations and optimizations
performed in the back-end flow can change the structure of the
application code, destroying the possibility of easily correlate the
GIMPLE operations with RTL operations. This correlation has to
be preserved for two reasons: to allow the estimation technique
to give feedback to the designer on the performance of arbitrary
pieces of code and to map source code level profiling informa-
tion to the RTL representation. For this reason we do not use the
RTL produced in the final stages of the compilation flow and we
do not consider assembly level suitable for the proposed methodol-
ogy. However, since we need to model in some way how a back-end
optimization changes the relation between the RTL representation
and performance, we use a different performance model for each
combination of back-end optimizations.

4.2 Model building
Before executing the linear regression, we apply three steps of

data pre-processing. The three steps are: normalization, main in-

troduction and clustering. The first two steps aim at improving the

accuracy of the model, while the third simplifies the performance
model.

4.2.1 Normalization

One of the limitations in applying standard linear regression tech-
niques to the performance estimation problem resides in the evalu-
ation of the fitness of a model. The standard approach minimizes
the Mean Squared Error MSE:

MSE =
1

n

n
∑

i=1

e
2

i (4)

where ei (residuals or estimated errors) are the difference between
the observed data Vi and the predicted data Vi:

ei = Vi − Vi (5)

.
For example, consider two observed data Vi = 100 and Vj =

10, 000 and their predicted values Vi = 200 and Vj = 10, 100.
According to the MSE criterion, the error introduced in the two
estimations is the same (1002 = 10, 000). However, the first es-
timation is double with respect to the real value, while the second
estimation is wrong by only the 1%. This means that the relative

error is 2 for the first prediction and 0.01 for the second. The fact
that MSE does not take into account the relative error is critical in
the case of performance estimation, because different applications
may have very different execution delays, up to several orders of
magnitude. Thus, a model built by only minimizing MSE would
better fit long applications, while it would not correctly describe
the shorter ones.

There also exist other linear regression techniques which con-
sider different evaluation criteria, such as Robust Regression and
Generalized Least Squares, but they still use criteria which are
based on the absolute rather than the relative error.

In the proposed methodology, we overcome this limitation by
changing the dependent variables cycles through a normalization
process. Instead of building a model for estimating the overall ex-

ecution cost of an application, we apply the linear regression tech-
nique to infer a performance model for estimating the average cost

of a sequence.
So, the new performance model which we are considering is

characterized by:

• input: for each RTL sequence class, the fraction of the se-
quences of the application which belong to that class;



• output: the average number of cycles required by an RTL
sequence of that application; range of this new dependent
variable is less sensible than the original one.

All these data can be easily obtained by dividing both the RTL se-
quences classes counters and the measured execution delay of an
application by the number of its RTL operations.

The third column of Table 1 shows the values of the features after
the normalization on the example of Figure 1.

4.2.2 Main introduction

Generally, when we retrieve the execution delay of an applica-
tion on a processor, using either simulators or direct instrumenta-
tion, we obtain a measure which is comprehensive of the start-up
time of the application itself. This overhead can be approximated
to be constant and independent from the application we are mea-
suring, but its effect on the average cost of a sequence depends on
the length of the application. Since we are using fractions instead
of absolute values, the data passed to the regression do not store
information about the overall dimension of the application. Thus,
the relative influence of the start-up time on the average number of
cycles of each sequence is not quantified.

This problem has been solved by introducing a fake operation at
the beginning of the execution flow, belonging to a special class of
operations called main. This operation represents the start-up of the
application. The operation class main is treated like all the others,
so the first sequence of the application will be an RTL sequence
<main:, . . .>: its corresponding fraction will be larger for the short
applications and smaller for the long.

The fifth column of Table 1 shows what happens to the compu-
tation of the fractions when the main operation is introduced.

4.2.3 Clustering

The last pre-processing step consists of reduction of the numer-
ical features cardinality performed through a sequence clustering.
Indeed, if we considered each single possible <op:type-op:type>

as a different sequence class, we would have to consider millions of
numerical features and so we would need millions of applications
to build a performance model. Since not all these operations can
be executed by a particular processor and not all these sequences
can really occur in an application, the actual number of sequences
is less but however it can still be quite huge.

In the practice, the number of the RTL operation classes and
consequently the number of the RTL sequences can be drastically
reduced by imposing an equivalence relation among <op:type>

classes. This equivalence relation should describe which opera-
tions can be considered performance-equivalent. Since the pro-
posed methodology is based on zero knowledge of the target ar-
chitecture, building this relationship without this information could
seem a very hard task. However, there are couple of operations
which can be reasonably considered performance equivalent inde-
pendently from the target architecture (e.g., plus and minus, less
than and greater than, same operation on similar type of data) and
so that can be inserted into the equivalence relation. Adding not
performance equivalent operations to this relation can obviously
decrease the accuracy of the produced model: the introduced er-
ror in particular will depend on their actual performance difference
and on their frequency. On the other hand, the obtained benefits
are a simpler estimation model and a reduction of the training set
over-fitting.

The results of a possible clustering on the example of Figure 1
are shown in the last column of Table 1. In this case, the data
regarding plus and minus have been aggregated.

Finally the Equation of the produced linear model is:

AC = M(N) = β0 +
∑

i∈F

(

βi ·
Ni

∑

j∈F
Nj

)

(6)

where AC is the average number of cycles required for executing a
sequence, β0 is the intercept term, F is the set of sequences classes,
βi is the regression coefficient of the sequence class fi, Ni is the
counter of sequences of class fi.

4.3 Model application
Given a generic application, we now want to use the performance

model M(N) to estimate its overall execution delay Cycles. We
apply the RTL analysis described in Section 4.1 to obtain the se-
quence class counters (N).

The overall execution delay Cycles can be expressed as:

Cycles = AC ·

∑

i∈F

Ni (7)

.
By substituting AC with the value computed in Equation 6 we

obtain:

Cycles = β0 ·

∑

i∈F

Ni +
∑

i∈F

βi ·Ni =
∑

i∈F

((βi + β0) ·Ni) (8)

If we replace in Equation 8 βi+β0 with β̂i = βi+β0 we obtain:

Cycles =
∑

i∈F

(

β̂i ·Ni

)

(9)

The performance model described by Equation 9 is derived by
Equation 6 but allows to estimate directly the overall execution de-
lay of the application. Furthermore, it allows to easily identify the
contribution to the overall delay given by each RTL sequence. In
fact, the contribution of a generic sequence belonging to class Fi

is β̂i. The contribution of a generic part of the source code can be
computed by retrieving the corresponding RTL sequences and by
summing all their contributions.

5. EXPERIMENTAL EVALUATION
In this Section, we validate our methodology by estimating the

performance of a set of benchmarks onto two processors based onto
two different Instruction Set Architectures: an ARM926EJ-S pro-
cessor and a LEON3 processor. We initially describe the experi-
mental setup and then present the experimental results.

5.1 Experimental Setup
We integrated this methodology in PandA [2], a framework for

the Hardware/Software codesign based on the GNU GCC compiler.
We exploit three components of the framework: an RTL represen-
tation analyzer, a basic block profiler and a tool for measuring the
application performance on the target processor. The analyzer and
the basic block profiler are used both in the performance model
building and application, while the last tool is used only during the
training.

The RTL representation analyzer is implemented by applying
the changes described in Section 4.1 to the GNU GCC, which is
wrapped by the framework itself which directly controls which op-
timizations the compiler performs. Since the RTL description of
the application produced during the compilation flow depends on
the considered target, the used GNU GCC has to target the pro-
cessor for which we want to build the performance model. In par-
ticular, since we validate our methodology on the estimation of the



performance of an ARM processor and of a SPARC-compliant pro-
cessor, we build both an ARM cross-compiler and a SPARC cross-
compiler.

Regarding the profiler, the framework implements the Hierar-
chical Path Profiling technique [10] which works by instrumenting
the source code produced starting from the GIMPLE internal rep-
resentation. The instrumented code is then compiled for the host
machine and executed on it. If it is not possible to execute the an-
alyzed application on the host machine, the profiling information
has to be provided with other methods, otherwise it is not possible
estimate the application or use it in the training set.

From the path profiling information we extract the GIMPLE se-
quence counters and, by correlation, the RTL sequence counters
presented in Section 4.1. Data are then pre-processed by applying
all the steps described in Section 4.2. In particular, the main clus-
tering introduced concerns the data types, which have been clus-
tered into two: integer and floating point. In this way all operations
characterized by a given operator have been clustered into only
two classes: integer operations and floating point operations. This
grouping surely introduces approximation in the produced mod-
els, but it allows to reduce significantly the number of possible
sequences. The time required for the analysis of an application
is mainly determined by the time required for performing its pro-
filing. The instrumentation overhead introduced for the profiling
ranges from 20% to 200% on a host linux machine with an Intel
Xeon X5355 CPU (four cores, where each core runs at 2,33 GHz
and accesses 4 MB of L2 cache shared with another core).

Considering the first target processor, the execution delays of
the applications in the training set are obtained by direct execu-
tion on the target ARM926EJ-S processor, implemented on the
Atmel DIOPSIS 940HF [1], running a Linux 2.6.24 kernel. The
ARM926EJ-S processor implements the ARMv5TEJ instruction
set with 5 stage pipeline, includes an enhanced 16 x 32-bit mul-
tiplier capable of single cycle MAC operations, and embeds sepa-
rated 16 KB data and instruction caches. The delays are measured
by adding instrumentation at the beginning and at the end of the
source code of the application and just before and after system and
library function calls, exploiting the gettimeofday c function.
The time spent on the execution of system and library functions is
subtracted from the application execution time since the proposed
methodology doesn’t aim at estimating the execution time of func-
tions which source code is not available.

Obviously, the accuracy of these measurements directly influ-
ences the accuracy of the estimation model. In particular, the per-
formance measures can be influenced by operating system activity
such interrupt handling or execution of other applications. To try to
remove such effects, we measure the execution delays of the train-
ing applications several times (at least 10). The data of the different
runs are collected by the framework which tries to identify possible
outliers. This is done by computing the mean value and the stan-
dard deviation and discarding the values that differ from the mean
more than the deviation. The mean value of the remaining data is
considered the real measure. Nevertheless, there can still be small
measure errors in the collected data.

The second embedded processor used to validate our method-
ology is the LEON3 processor, a 32-bit microprocessor compliant
with the SPARC V8 ISA. Based on LEON architecture originally
designed by the European Space Agency, it is currently developed
by Gaisler Research and licensed under GNU GPL. Real execu-
tion times of applications on LEON3 processor are obtained by ex-
ploiting TSIM, a cycle accurate simulator of the LEON3 processor.
Also in this case, the execution times of system and library func-
tions is subtracted from the application overall execution time.

To perform the linear regression, we use RapidMiner (formerly
YALE [18]), an open-source java based tool for knowledge discov-
ery and data mining.

To evaluate the quality of the models produced by our methodol-
ogy and in particular to evaluate the gain provided by its two main
contributions (i.e, the use of the RTL representation and the use
of operations sequences), we compare their accuracy with the ones
obtained starting from analyses performed on single operations and
at higher level (GIMPLE representation).

GIMPLE representation is by design target independent and well
fits in the class of Virtual Instructions representations proposed
in [4, 11]. In fact, GIMPLE provides simple integer operations
(e.g., plus_expr on integer_type), floating point operations
(e.g., plus_expr on real_type), multiple and divide opera-
tions (e.g., mult_expr and rdiv_expr), subroutine call and re-
turn (e.g., call_expr and return_expr) and conditional and
unconditional branches (e.g., cond_expr and goto_expr). We
analyze the GIMPLE intermediate representation produced at the
end of the middle-end optimization flow so that all the middle-end
optimizations performed by the GNU GCC compiler are taken into
account. From this representation and the profiling information, we
extract the dynamic counters of the different classes of GIMPLE
operations and of GIMPLE sequences which are then used as data
for the linear regression after the same pre-processing described in
Section 4.2.

We validate the proposed methodology on a very large set of C
benchmarks. We extracted more than 600 benchmarks from six
suites: DSP Stone [22], Splash 2 [24], Powerstone [17], Omp-
SCR [9], NAS Parallel Benchmark [3] and the GNU GCC test-
suite [12]. The first three suites are typically used to validate Em-
bedded System Design methodologies. DSP Stone, in particular, is
used to measure the performance provided by DSPs coupled with
their compilers. OmpSCR, instead, is a benchmark suite for evalu-
ating the performance of shared memory multiprocessors platform
in distributed systems; the NAS Benchmarks are designed to eval-
uate the performance of supercomputer systems. Finally, the GNU
GCC testsuite is a set of tests used by the GCC developers to verify
the correctness of the compiler. In building performance models
for each processor, we consider two different set of optimizations
corresponding to two optimizations levels of the GNU GCC: -O0
(no-optimization) and -O2 (optimize even more).

5.2 Experimental Results
To guarantee the generality of the presented results (i.e., to guar-

antee that this type of models can correctly estimate new applica-
tions), we apply the cross-validation technique provided by Rapid-
miner. Cross-validation is a technique for assessing the perfor-
mance of a statistical analysis on an independent data set: in par-
ticular it is used to prove that the performance of the estimation
does not depend on a particular choice of the training and the test-
ing sets. Several methods for performing cross-validation exist: we
use the K-fold cross-validation that acts as follow. The initial data
set is randomly divided into k subsets (in our case, k = 10). The
model building process is repeated k times and, at each iteration
i, a performance model is built by analysing all the subsets except
the i-th, which is used to test the model. At the end, the average
error across all k trials is computed and a single model is built by
combining the k models. The randomness and the repetition of
the process guarantee that the results do not depend on a particular
choice of the training and testing data.

Table 2 reports the results of the cross-validation of the models
produced by using the analyses at the GIMPLE and at the RTL level
based both on single operations and on sequences. The Table shows



GIMPLE RTL
Single Operations Single Operations

Operations Sequences Operations Sequences
Processor Opt. Level ME SD ME SD ME SD ME SD

ARM O0 34.19% 51.54% 32.73% 39.69% 15.45% 30.15% 8.25% 7.08%
ARM O2 33.50% 47.12% 34.92% 35.64% 24.64% 13.94% 18.72% 18.64%
LEON3 O0 15.57% 30.32% 9.09% 8.48% 13.60% 25.08% 8.03% 6.28%
LEON3 O2 14.16% 28.11% 14.68% 31.69% 9.91% 11.79% 6.74% 5.67%

Table 2: Cross-validation results on the accuracy of the performance models built starting from the different application analyses. ME is the
Mean Error, SD is the Standard Deviation.

Single Operations
Operation Sequence Gain

GIMPLE 34.19% 32.73% 1.46%
RTL 15.45% 8.25% 7.20%

Gain 18.74% 24.48% 25.94%

(a) Accuracy gain on ARM performance model at O0
optimization level

Single Operations
Operation Sequence Gain

GIMPLE 33.50% 34.92% −1.42%
RTL 24.64% 18.72% 5.92%

Gain 8.86% 16.20% 14.78%

(b) Accuracy gain on ARM performance model at O2
optimization level

Single Operations
Operation Sequence Gain

GIMPLE 15.57% 9.09% 6.48%
RTL 13.60% 8.03% 5.57%

Gain 1.97% 1.06% 7.54%

(c) Accuracy gain on LEON3 performance model at
O0 optimization level

Single Operations
Operation Sequence Gain

GIMPLE 14.16% 14.68% 0.52%
RTL 9.91% 6.74% 3.17%

Gain 4.25% 7.94% 7.42%

(d) Accuracy gain on LEON3 performance model at
O2 optimization level

Table 3: Gains obtained by exploiting RTL representation and operation sequences. Lowest rightest cells report the overall gain of the
proposed methodology (analysis based on RTL sequence) with respect of analysis based on single Virtual Instruction (GIMPLE).

the mean and the standard deviation (in percentage) of the error ob-
tained at the end of the process. These data are compared in the
Table 3 which shows the contribution of the two characteristics of
the proposed technique (i.e., use of RTL operations and use of se-
quence of operations) to its overall gain with respect to a technique
based on analysis of Virtual Instructions. This Table shows how the
models produced with the proposed methodology are almost twice
more accurate than the models produced using GIMPLE operations
in the worst situation (18,72% vs 33.50% for the ARM with O2 op-
timizations) and almost four times accurate in the best case (8.25%
vs. 34.19% for the ARM with O0 optimizations). In particular the
gain provided by the usage of RTL representation is more relevant
in the estimation of the performance of the ARM processor since
the GIMPLE representation worse approximates the final assem-
bly code of the ARM processor (accuracy is 34.19% and 33.50%)
than in the SPARC case (15.57% and 14.16%). Instead the use of
the RTL representation, which is closer to the assembly than the
GIMPLE, allows to better estimate its performance. Performances
of the ARM, in particular when O2 optimization level is applied,
are however harder to estimate than LEON3 also exploiting RTL
representation because of its more complex architecture.

Considering the introduction of sequences in the analysis, it can
be noticed how they do not provide a real advantage in performance
estimation performed at higher level, since they are not able to cor-
rectly model all the assembly sequences. On the other hand, in-
troducing the analysis of RTL sequences gives real benefits such
as doubling the accuracy in the case of the performance model of
the ARM with O0 optimization levels. For both the processors, the
gain provided by the use of the RTL sequences is more significant
at O0 optimization level than at O2 optimization level since back-

end optimizations performance effects are however not so easy to
predict using a linear models.

We now compare the results obtained by our methodology with
some of the works presented in Section 2 that exploit analytical
models. Our proposed methodology builds estimation models by
exploiting linear regression and predicts quite accurately the perfor-
mance of a set of heterogeneous applications, in contrast with what
is stated in [11]. Our approach seems able to well describe appli-
cations from different application fields with the same models, and
thus it requires less model specialization. Furthermore, by using a
virtual instruction set, the models in [11] do not consider the effects
of the optimizations. In our work, instead, we show that with the
RTL representation, a pre-processing of the data before applying
the linear regression, and an adequately sized training set, we are
able to obtain a good estimation for very heterogeneous applica-
tions. The average error shown by the technique proposed in [21]
is 6.03%, which is smaller than what obtained by our methodology,
but it can only be used on applications without loops and recursion.
The methodology proposed in [6] for estimating the performance
of new applications on the same architecture produces average er-
rors comparable to ours. The error ranges from 0.06% to 19.3% for
the linear models and from 0.15% to 17.0% for non linear models.
However, it seems that their methodology is focused on the perfor-
mance estimation of known applications on unknown data, and not
on the estimation of unknown applications. The number of ana-
lyzed benchmarks is also limited with respect to the number of the
datasets: at most they use 6 benchmarks, with 15 different datasets
for each. Furthermore, all the considered applications come from
the same field, and have similar characteristics.

Results obtained by methodologies working at assembly level



are better than our as expected, but this gain requires a detailed
knowledge of the target architecture. The methodology presented
in [16] works at the assembly level and seems to give better results.
The average error obtained is smaller than 4%, but only three con-
trol intensive applications have been tested. Oyamada et al. [19,20]
obtain an average error of 10.08% on a sufficiently hetereogenous
set of benchmarks. The average error is measured by partitioning
benchmarks in a training and in a test set and not with a cross-
validation analysis. Their methodology combines the use of a non-
linear model such as Neural Networks with assembly level infor-
mation. Nevertheless, the use of a more detailed information and
of non-linear models give a gain of only 8.64% with respect to the
results obtained with our methodology in the worst case.

6. CONCLUSIONS
In this paper we presented a methodology for estimating the exe-

cution delay of C applications using the linear regression technique.
The methodology combines basic block profiling information col-
lected on the host machine with the RTL level information pro-
duced by the GNU GCC. The designer does not have to provide
any information to build the performance model. All the needed
information about the characteristics of the target is automatically
and directly extracted from the RTL representation and indirectly
by exploiting operation sequences. Moreover, the use of the RTL
sequences allows to preserve correlation between the performance
estimation and the source code. We applied the proposed method-
ology onto a set of heterogeneous C benchmarks and we tested its
accuracy by using a cross-validation technique on two processors
with different ISA. The results show that our approach produces
better results than techniques based on target independent repre-
sentations (i.e. GIMPLE), with an average error of 10.43% (vs.
24.35%). Nevertheless, by maintaining the correlation between the
GIMPLE and the RTL representation, it remains sufficiently flexi-
ble to be adapted to any target processor supported by GCC without
any modifications. Finally, by using different models for different
levels of compiler optimization, the performance estimations cor-
rectly take into account the effects of a good range of optimizations.

Future works will mainly focus on exploiting numerical features
based on longer operation sequences. Since the number of different
sequences can grow exponentially with their length (e.g., extend-
ing the ARM rtl sequences from two to three operations increases
the number of sequences from 141 to 1243), we have to improve
the clustering phase to allow the building of performance models
based on sequences longer than two using only some hundreds of
benchmarks.
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[22] V. z̆ivojnović, J. M. Velarde, C. Schläger, and H. Meyr. DSPSTONE:
A DSP-oriented benchmarking methodology. In ICSPAT ’94:

International Conference on Signal Processing and Technology,
1994.

[23] W. Wolf. The future of multiprocessor systems-on-chips. In DAC

’04: The 41st annual Design Automation Conference, pages
681–685, 2004.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
splash-2 programs: characterization and methodological
considerations. In ISCA, pages 24–36, 1995.

[25] M. Zhao, B. R. Childers, and M. L. Soffa. An approach toward
profit-driven optimization. ACM Trans. Archit. Code Optim.,
3(3):231–262, 2006.


