4 research outputs found

    HUMAN STRATEGIES IN THE CONTROL OF TIME CRITICAL UNSTABLE SYSTEMS

    Get PDF
    The purpose of this study is to investigate the human manual control strategy when balancing an inverted pendulum under time critical constraints. The strategy was assessed through the quantification and evaluation of human response while performing tasks that require fast reaction from the human operator. The results show that as the task becomes more difficult due to increased time delay or shortened pendulum length, the human operator adopts a more discrete-type strategy. Additionally, dissimilarities between control of a short pendulum and a delayed pendulum are identified and discussed. Finally, the discrete-control mechanism is interpreted by relating the observed human responses to human-performance models. These results can be applied to systems requiring human interaction, such as teleoperation, which could be designed to maximize human response

    On the intrinsic control properties of muscle and relexes: exploring the interaction between neural and musculoskeletal dynamics in the framework of the equilbrium-point hypothesis

    Get PDF
    The aim of this thesis is to examine the relationship between the intrinsic dynamics of the body and its neural control. Specifically, it investigates the influence of musculoskeletal properties on the control signals needed for simple goal-directed movements in the framework of the equilibriumpoint (EP) hypothesis. To this end, muscle models of varying complexity are studied in isolation and when coupled to feedback laws derived from the EP hypothesis. It is demonstrated that the dynamical landscape formed by non-linear musculoskeletal models features a stable attractor in joint space whose properties, such as position, stiffness and viscosity, can be controlled through differential- and co-activation of antagonistic muscles. The emergence of this attractor creates a new level of control that reduces the system’s degrees of freedom and thus constitutes a low-level motor synergy. It is described how the properties of this stable equilibrium, as well as transient movement dynamics, depend on the various modelling assumptions underlying the muscle model. The EP hypothesis is then tested on a chosen musculoskeletal model by using an optimal feedback control approach: genetic algorithm optimisation is used to identify feedback gains that produce smooth single- and multijoint movements of varying amplitude and duration. The importance of different feedback components is studied for reproducing invariants observed in natural movement kinematics. The resulting controllers are demonstrated to cope with a plausible range of reflex delays, predict the use of velocity-error feedback for the fastest movements, and suggest that experimentally observed triphasic muscle bursts are an emergent feature rather than centrally planned. Also, control schemes which allow for simultaneous control of movement duration and distance are identified. Lastly, it is shown that the generic formulation of the EP hypothesis fails to account for the interaction torques arising in multijoint movements. Extensions are proposed which address this shortcoming while maintaining its two basic assumptions: control signals in positional rather than force-based frames of reference; and the primacy of control properties intrinsic to the body over internal models. It is concluded that the EP hypothesis cannot be rejected for single- or multijoint reaching movements based on claims that predicted movement kinematics are unrealistic

    Low Latency Rendering with Dataflow Architectures

    Get PDF
    The research presented in this thesis concerns latency in VR and synthetic environments. Latency is the end-to-end delay experienced by the user of an interactive computer system, between their physical actions and the perceived response to these actions. Latency is a product of the various processing, transport and buffering delays present in any current computer system. For many computer mediated applications, latency can be distracting, but it is not critical to the utility of the application. Synthetic environments on the other hand attempt to facilitate direct interaction with a digitised world. Direct interaction here implies the formation of a sensorimotor loop between the user and the digitised world - that is, the user makes predictions about how their actions affect the world, and see these predictions realised. By facilitating the formation of the this loop, the synthetic environment allows users to directly sense the digitised world, rather than the interface, and induce perceptions, such as that of the digital world existing as a distinct physical place. This has many applications for knowledge transfer and efficient interaction through the use of enhanced communication cues. The complication is, the formation of the sensorimotor loop that underpins this is highly dependent on the fidelity of the virtual stimuli, including latency. The main research questions we ask are how can the characteristics of dataflow computing be leveraged to improve the temporal fidelity of the visual stimuli, and what implications does this have on other aspects of the fidelity. Secondarily, we ask what effects latency itself has on user interaction. We test the effects of latency on physical interaction at levels previously hypothesized but unexplored. We also test for a previously unconsidered effect of latency on higher level cognitive functions. To do this, we create prototype image generators for interactive systems and virtual reality, using dataflow computing platforms. We integrate these into real interactive systems to gain practical experience of how the real perceptible benefits of alternative rendering approaches, but also what implications are when they are subject to the constraints of real systems. We quantify the differences of our systems compared with traditional systems using latency and objective image fidelity measures. We use our novel systems to perform user studies into the effects of latency. Our high performance apparatuses allow experimentation at latencies lower than previously tested in comparable studies. The low latency apparatuses are designed to minimise what is currently the largest delay in traditional rendering pipelines and we find that the approach is successful in this respect. Our 3D low latency apparatus achieves lower latencies and higher fidelities than traditional systems. The conditions under which it can do this are highly constrained however. We do not foresee dataflow computing shouldering the bulk of the rendering workload in the future but rather facilitating the augmentation of the traditional pipeline with a very high speed local loop. This may be an image distortion stage or otherwise. Our latency experiments revealed that many predictions about the effects of low latency should be re-evaluated and experimenting in this range requires great care
    corecore