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Abstract

The research presented in this thesis concerns latency in Virtual Reality (VR) and

synthetic environments. Latency is the end-to-end delay experienced by the user of

an interactive computer system, between their physical actions and the perceived

response to these actions. Latency is a product of the various processing, transport

and buffering delays present in any current computer system. For many computer

mediated applications, latency can be distracting, but it is not critical to the utility of

the application. Synthetic environments on the other hand attempt to facilitate direct

interaction with a digitised world. Direct interaction here implies the formation

of a sensorimotor loop between the user and the digitised world - that is, the user

makes predictions about how their actions affect the world, and see these predictions

realised. By facilitating the formation of this loop, the synthetic environment allows

users to directly sense the digitised world, rather than the interface, and induce

perceptions, such as that of the digital world existing as a distinct physical place.

This has many applications for knowledge transfer and efficient interaction through

the use of enhanced communication cues. The complication is that the formation of

the sensorimotor loop that underpins this is highly dependent on the fidelity of the

virtual stimuli, including latency.

This thesis is concerned specifically with the application of dataflow computing

to rendering for virtual reality. Dataflow computing is an alternative computing

architecture that distributes an algorithm in space rather than time. The main research

questions we ask are how can the characteristics of dataflow computing be leveraged

to improve the temporal fidelity of the visual stimuli, and what implications does this

have on other aspects of the fidelity. Secondarily, we ask what effects latency itself
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has on user interaction. We test the effects of latency on physical interaction at levels

previously hypothesized but unexplored. We also test for a previously unconsidered

effect of latency on higher level cognitive functions.

To do this, we create prototype image generators for interactive systems and

virtual reality, using dataflow computing platforms. We integrate these into real

interactive systems to gain practical experience of how the real perceptible benefits

of alternative rendering approaches, but also what implications are when they are

subject to the constraints of real systems. We quantify the differences of our sys-

tems compared with traditional systems using latency and objective image fidelity

measures. We use our novel systems to perform user studies into the effects of

latency. Our low-latency apparatuses allow experimentation at latencies below those

previously tested in comparable studies.

The apparatuses are designed to minimise what is currently the largest delay

in traditional rendering pipelines and we find that the approach is successful in

this respect. Our 3D low latency apparatus achieves lower latencies and higher

fidelities than traditional systems. The conditions under which it can do this are

highly constrained however. We do not foresee dataflow computing shouldering the

bulk of the rendering workload in the future but rather facilitating the augmentation

of the traditional pipeline with a very high speed local loop. This may be an image

distortion stage or otherwise. Our latency experiments revealed that many predictions

about the effects of low latency should be re-evaluated and experimenting in this

range requires great care.
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Chapter 1

Introduction

Synthetic environments are those experienced through a computer mediated interface.

Synthetic environments may be experienced via a desktop user interface, head

mounted display (HMD) or some other bespoke configuration. Like other computer

systems, synthetic environment systems consist of a computer, a human operator,

and an interface. What distinguishes synthetic environments however is that they

aim to transport the operator into a new interactive environment by means of multi-

modal interfaces [50]. The first synthetic environments were those experienced by

teleoperators, perceiving the real world through cameras and manipulating it through

remotely controlled actuators. It was not long though until entirely synthetic or

virtual worlds took the place of digitised views of the real one. The purpose of such

worlds is to enable more efficient communication, interaction and understanding, by

utilising the full range of experiential modalities. Synthetic environments do this

by inducing perceptions in their users. They can do this because unlike traditional

media, the computer mediation is designed to foster the formation of a sensorimotor

loop between the digitised world and its user. Essentially, a mental model of the

world is formed, with which the user makes predictions and sees them realised.

When this happens they sense the digitised world directly, rather than the interface.

These senses are combined into a single perception of the digitised world as a distinct

physical place.

The formation of the sensorimotor loop is the underlying distinction between

synthetic environments and other media. In order to allow this to take place, the
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behaviour of the interface must match the predictions of the user. This is complicated

by the fact that users will have strong preconceptions about the model, brought with

them from their experiences with the real world. Further, in almost all cases, this is

not coincidental. Synthetic environments might present a digitised view of the real

world in teleoperation or teleconferencing systems, or an entirely virtual environment

may deliberately mock the real world with the goal of studying or influencing user

behaviour.

Many characteristics affect the perceived fidelity of the model at different levels.

The absolute value and range of the light and sound waves is important, but equally

so is behaviour of the animate and inanimate objects they represent. Every one of

these characteristics is worthy of deep study, but the one this thesis is concerned with

is latency. The delay between the input to the interface, and the perceived response,

is highly important in synthetic environments. This is because, put simply, most

synthetic environments create the expectation of a realistic response - and while the

real world has no latency, the typical computers driving such environments do.

That latency limits the effectiveness of computer interfaces is not controversial

or novel (e.g. [129, 91, 221, 143, 28, 43, 235]). Such interfaces are limited by the

available technology of the time however, and many modalities and characteristics

besides latency have had inherent limitations. Recently though, certain techniques

and technologies are becoming available to compensate for latency. While latency in

synthetic environments will not be eliminated any time soon, it is not unrealistic to

consider techniques that attempt to make it imperceptible. The remaining questions

are how and where should these techniques be best applied to see this realised.

1.1 Research Problem

Latency is known to inhibit the effectiveness of synthetic environments, yet the

presence of latency itself does not mean that the synthetic environment immediately

becomes unusable. Interaction with any world, real or digital, and the formation of

perceptions is not completely understood. It is a combination broadly of presence

[211], the binding problem [134], and the sensorimotor loop [211], with all three
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concepts having overlaps, interdependencies and ambiguities in their functioning.

To work around the lack of understanding in this area, synthetic environments are

developed on the principle of correlation between the fidelity of the virtual stimuli

and effectiveness. With respect to latency then, the goal is to reduce it by making

approximations and assumptions in the simulation, but these must be balanced to

avoid introducing artefacts that may have more severe implications than the latency

removed. The study of latency is how to make simulations faster, but also the

implications of doing so.

Accordingly, this thesis is concerned predominantly with fast computer archi-

tectures. It is also concerned with fidelity, more than just temporal, and the impacts

of this on user behaviour. There are three main research questions which affect how

latency is managed in synthetic environments.

The first is how to make simulations faster, or appear faster. This is essentially

the same problem that the creators of real-time interactive virtual worlds have faced

since their inception. It is about exploring assumptions and approximations that can

be used to optimise away computations, since it is these that cost time. It is also

about exploring data structures and how best to store and manage the information

within them, to further reduce computations in the critical loop. Examples are taking

advantage of temporal coherence, or pre-computation, such as is done in latency

compensating image warping.

The second question is how to quantify the fidelity of the virtual stimuli. Fidelity

can be judged at different levels, for example by low level response time or dynamic

range, to high level physical plausibility [207]. Measuring the physical colour and

luminance of the light emitted by a display and comparing it to a capture from a

real world equivalent is a way to judge one type of fidelity. An equally important

measure however is whether the objects those frequencies represent bounce around

the environment in a physically plausible manner, and what their trajectories and

interactions convey about their properties.

The third question is what the implications are of the deviations in these from

the real world standard. Until computer systems have enough processing power to
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replicate stimuli indistinguishable from the real world, some approximations and

trade-offs have to be made. As before, just because a digitised representation is not

perfect, it does not mean it is useless. By understanding how the fidelity of each

virtual stimuli affects users perceptions of the digitised world, limited resources can

be spent on optimising those characteristics which will have the biggest benefit. A

prescient example is image warping, which is becoming very popular in commercial

Virtual Reality (VR) systems. This technique minimises perceptual latency at a cost

of geometric and spatial artefacts in the resulting stimuli. Understanding the effects

of both latency and spatial artefacts independently will allow objectively optimal

image warping or equivalent algorithms to be developed - and it is the understanding

of both, temporal and the resulting spatial, that is necessary to build the best VR

systems.

1.2 Research Questions and Scope

The goal of this project was to explore the applications of dataflow architectures to

rendering for VR, and so the predominant area explored was how the advantages of

dataflow computing could be used to construct better image generators for Virtual

Environment (VE) systems. This was done by building prototype image generators

and integrating them into VR systems. As stated above, any optimisations for latency

will have implications for other aspects of the stimuli. Therefore a secondary theme

of the project was into the characterisation of these effects and how latency affects

user behaviour.

The primary questions were if the hypothesised performance of a dataflow

rendering algorithm could be realised, when it is implemented ‘for real’. The

performance is considered in terms of latency and expected feature set. For example,

dataflow graphs are theoretically deterministic, but implementation details such as

feedback loops and non-deterministic resources such as Dynamic Random Access

Memory mean that there are caveats. What tolerances these theoretical requirements

have will determine where a dataflow algorithm may be utilised. Of equal interest was

whether such a renderer can integrate with a ‘real’ interactive system and continue to
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function optimally while subject to its constraints. Both questions are important as

they determine where dataflow rendering components may be used.

There are a number of previous works which build similar systems to ours,

however the use of dedicated hardware has become less common recently, with

many systems opting for implementations utilising the programmable pipeline of

off-the-shelf GPUs. Our platform is very high performance, so we are not concerned

with building consumer equipment or products, though the lessons learned about the

implications could guide such efforts. We do not consider a direct comparison with

these previous works, because all such efforts are a means to an end - identifying

the requirements of the visual stimuli to get the best VE possible. The final systems

we have constructed are most suitable for highly constrained research applications.

In terms of making quantitative judgements of fidelity, we make methodological

contributions in this area, but deliberately limit our experimentation as this is a very

expansive area with much to be done, especially in terms of quantifying temporal

characteristics. In this area we borrow heavily from methods used by those working

in image compression.

The secondary questions were how the dataflow rendering implementations

differed qualitatively and quantitatively from comparable systems using other tech-

niques. As seen in Chapter 5, when examined closely, the temporal behaviour of

a VE is too complex to describe with a single value for latency. The objective

difference in terms of how the stimuli appears to the user is assessed, as only when

this is quantified can the impact on user behaviour be properly measured. Finally,

user behaviour is examined at various levels. To get the best trade-off of latency and

quality an understanding of how delay and spatial artefacts affect perception, how-

ever there is little existing methodology to work from. To begin with, we examine

the effects of delay on perception in an effort to identify thresholds and elucidate

the effects on important physiomotor functions which contribute to higher order

behaviours.

The characteristics that contribute to latency are wide and far reaching. Users

do not perceive temporal artefacts from one modality but many. For example the
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tracking system that measures head orientation will have a different latency to that

which measures position, and the delay from the hand tracking will be different to

that of the physics simulation that drives the consequences of the moving hands.

We constrain our experiments into the effects of latency out of necessity, as such

comprehensive experiments would take many theses. We consider only the lowest

level temporal characteristics, to do with the sensorimotor loop between the users

hand and its proxy, and head movement and perception of the space of the digitised

world. Interdependent effects such as the difference in latency between head motion

and hand motion are also out of scope and we design the experiments to avoid

them. Such interactions are interesting and may be highly consequential, but the

implications of low levels of latency (0-20 ms) in the context of a single sensorimotor

loop are still not yet understood.

1.3 Contributions
The main contribution of this thesis is the design and evaluation of low latency

rendering systems for VR. The prototype image generators presented have been

integrated into immersive VR systems and proven capable of underpinning real

user studies into the effects of latency. While the inflexibility of the designs mean

they are unlikely to find broad applications as a solution to latency, they are a good

platform with which to test the effects of latency and image distortions from various

sources. Such results can inform the modification and augmentation of existing

rendering pipelines to enable the optimal experience. The experiments performed

with the apparatus had unexpected results, challenging the prevailing predictions and

revealing there is much work to be done before the effects of latency at the current

state-of-the-art levels is understood.

1.3.1 Methodological contributions

1. Guidelines for characterising the temporal behaviour of the interaction between

rendering algorithms & displays (Chapter 5).

2. An experimental prototype for performing image fidelity comparisons between

two synthetic environment systems (Chapter 5).
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3. Elucidation of a potentially confounding non-linear effect of latency on the

physiomotor loop, with implications for studies that intend to continue using

pointing and reaching tasks to investigate low latencies at current state-of-the-

art levels (Chapter 6).

1.3.2 Substantive contributions

1. Research findings that address the thresholds of latency on the physiomotor

loop in pointing and steering tasks (Chapter 6).

2. Research findings that address the influence of latency on participant gait and

distance estimation in immersive VR (Chapter 7).

1.3.3 Technical Contributions

1. Design and prototyping of two ultra low latency renderers, one capable of

driving an immersive 3D VR system (Chapters 3 & 4).

1.4 Structure
Chapter 2 contextualises the project and purpose of the research. It provides an

introduction to the concept of synthetic environments and how they are applied. A

thorough survey of the concepts of presence and the sensorimotor loop and how

they relate to synthetic environments is provided, as this is truly the distinguishing

characteristic of synthetic environments that underpins their utility. Existing work on

latency and rendering in virtual reality is reviewed, so that the current contributions

can be judged relative to the experiments on the effects of latency, current approaches

to mitigate it, and also to historical attempts to develop similar hardware.

Chapter 3 provides the foundation to the discussions of the technical con-

tributions. It reviews the concept of spatial/dataflow computing and our chosen

prototyping platform in detail. This section re-evaluates a number of rendering

techniques with respect to the capabilities of dataflow computers. It introduces our

first prototype, using it to explore the architecture of rendering systems that map well

to dataflow platforms, and the implications of the platform and what its capabilities

mean for the design of the algorithm.
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Chapters 4 & 5 present in detail a real-time ray caster renderer, built based on

our conclusions from Chapter 3. Its design and evaluation is the primary technical

contribution of the project. Chapter 4 introduces its architecture and explains its

operation, and Chapter 5 describes how it was evaluated.

Chapter 6 presents the first experiment to use one of our low latency apparatuses.

The experiment explores the effects of latency on the physiomotor system. Partici-

pants interacted with a non-immersive system designed to facilitate the formation of

a sensorimotor loop between the hand and a sprite. The experiment used pointing

and steering tasks to measure the effects of latency at levels lower than ever tested

previously and found the effect was non-linear, in contrast to prevailing predictions.

Chapter 7 presents the second experiment, this one conduced in an immersive

3D world. Participants locomoted in two environments while exposed to differing

levels of latency. One environment was designed to induce the distance compression

phenomena, and the other to inhibit it. Distance compression is a known phenomena

in VR but despite being well studied, it does not have an explanation as of yet. Our

experiment was designed to elucidate the correlations between gait and distance

judgement with and without distance compression. To our surprise the distance

judgements in both environments were consistent with the highest accuracy so

far observed in a VE, previously demonstrated only under a very precise set of

conditions.

Chapter 8 draws conclusions and suggests future works based on our results.

Appendix A lists the publications that have resulted from this project.



Chapter 2

Previous Works

In this chapter we survey previous works on latency & VR, as well as rendering

techniques applicable to VR. We review synthetic environments and what distin-

guishes them as a concept, as well as the effects of latency and their significance.

Understanding what the effects of latency are, and how they come about, is important

for deriving specifications of any subsequent hardware. We survey rendering in

virtual reality to understand the decisions that have led to the current state-of-the-art

configurations and where latency arises in the existing pipeline. We review alterna-

tive rendering techniques to glean any available knowledge that may be applicable

outside the mainstream, as there may be overlap between these techniques and ours.

Finally we review existing specialised hardware and what attempts have already

been made to mitigate latency.

2.1 Virtual Reality and Synthetic Environments
Even when computer graphics were limited to vector plotting, and the predominant

input device was the typewriter keyboard, innovators and researchers were already

as aware as today of the benefits of synthetic environments. Serving as a ‘looking

glass’ into the ‘mathematical wonderland’ inside the computer, such environments

would enable more efficient interaction, experimentation into how humans perceive

the world, and exploration of spaces unconstrained by the ‘ordinary rules of physical

reality’ [220].

Synthetic Environments are those in which the interaction of a human operator
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with a world is mediated by a computer system [50]. Synthetic Environments may be

teleoperation systems, in which the computer allows the user to sense and transform

the real world. They may be virtual environments, where the world exists entirely

within the computer system. In all cases, the synthetic environment system consists

of a digitised world, a hardware interface into this world, and a human operator to

drive it.

The characteristics of synthetic environments are as highly varied as their use

cases. Immersive systems may use Cave Automatic Virtual Environment (CAVE)

[38] like environments or HMDs which completely obscure the real world. Aug-

mented Reality (AR) or Mixed Reality (MR) systems combine the real and synthetic

through novel optics like half-silvered mirrors. What is common to these, and what

distinguishes them from other mediums, is that such systems serve to extend the

user’s sensorimotor loop - they allow direct interaction with the synthetic world

[50, 197].

2.1.1 Applications

This ‘direct’ sensation and actuation with a computer system has seen clear applica-

tions in a number of fields.

Telepresence and Teleoperation has been a mainstay of synthetic environments

for decades, as there are tangible benefits of more comprehensive and immersive

systems. Devices such as exoskeletons and tactile displays systems allow users to

‘feel’ the contact between an actuator and the environment (e.g. the contact between

a spanner and a nut). Such sensations can significantly improve performance in

exploration and manipulation tasks as demonstrated by, for example, Kontarinis &

Howe [108, 18]. On the visual side, more immersive representation of sensor data,

such as synthesised 3D views, can aid in navigation and reduce operator cognitive

workload compared to traditional multi-screen displays, as shown by Lin & Kuo

[117].

It is not just physical cues from the inanimate world that can be enhanced either.

Synthetic environments can enable the communication of interpersonal cues such as

eye gaze [164] and body language [17]. These cues are important - they facilitate
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more natural interaction and define how one is perceived [223]. In addition to such

direct cues, interaction can be enhanced with the perception of shared personal and

task spaces [30].

Synthetic environments are also used for training purposes. As explained by

Valverde [232], knowledge transfer may occur when two activities are similar in

substance or procedure. The ability to recreate sensations and responses akin to the

real world has seen synthetic environments adopted for this purpose, especially in

areas where operational training may be hazardous or expensive. Some of the first

synthetic environments were flight simulators, though virtual reality has been proved

effective in a number of equally demanding training scenarios, for example surgery

[195].

It is not just muscle memory that these re-created sensations and reactions

induce however. The interplay of this sensory data, along with the typical accompa-

nying cognitive processes, forms by the user perceptions - experiences - more than

just the sensation of the stimuli themselves. For example, the experiential qualities

of immersive virtual worlds have been shown to correspond significantly with the

spatial models that they represent [58]. This has seen synthetic environments adopted

in areas such as computer aided design and architectural visualisation, to enable

better communication and reduce risk [243].

This ability to induce perceptions has seen synthetic environments used for both

medical research and treatment as well. For example, virtual environments can be

used to conduct psychology experiments that would be too expensive or unethical

to conduct in the real world [208]. They have been used to treat disorders, such

as phobias with exposure therapy [167]. In some cases, it is simply the perception

of ‘being elsewhere’ that has a useful effect, for example as an analgesic during

procedures [75].

Finally, a very visible use case is currently entertainment. The ability to directly

communicate experiences or places is a facility many game developers have always

desired but is now possible [79].
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2.1.2 Immersion, Presence & Believability

The previous section contains just a sample of the vast literature on applied synthetic

environments. A comprehensive review is beyond the scope of this thesis, if it were

even practical. What is apparent from those examples though is that the utility of

synthetic environments is beyond simply enhanced performance or communication

of information. The practitioners above make reference to perception, immersion,

embodiment, a feeling of ‘being there’. These terms refer to a concept that is unique

to synthetic environments, and has come to be known as presence [188, 83].

Sherman & Craig [198] describe VR as another stage in the natural progression

of technologies utilised for communication and the expression of ideas. They

consider the value, not in the medium, but in the experience the media depicts.

‘Virtual Worlds’ exist apart from the virtual reality system (medium) that delivers

them, and their definition of VR emphasises this most important quality of the VE,

“giving the feeling of being mentally immersed or present in the simulation”.

Until recently there was little consensus on how to characterise this mental

immersion. Sherman & Craig define it as the “state of being deeply engaged” and

“involved” [198]. This is similar Witmer & Singer’s definition of presence - “the

subjective experience of being in one place or environment” [249]. Witmer & Singer

propose that presence is a result of involvement and immersion. Involvement is a

psychological state resulting from a user focusing attention on one set of stimuli

relating to an activity or event of interest. Immersion is the perception of being

“enveloped by, included in, and interacting with an environment”, directly, rather

than through an interface [249]. This definition of presence is similar to that of

“believability” presented by Kim et al. [105]. Believability is a measure of how much

a “participant feels the generated experience as from the real-world”. Kim et al. state

it is a combination of sensory believability and perceptual believability. Sensory

believability is the realism in the “sensory channel” (the fidelity of the stimuli), while

perceptual believability corresponds to the realism of the behaviour of the world (the

virtual characters to responding as the user would expect, for example). Slater et al.

[211] are careful not confound involvement and presence; the latter they define as “the
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sense of being there signalled by people acting and responding realistically to virtual

situations and events”. They assert that presence is independent of involvement or

emotional engagement, and is a “reaction to immersion”. Immersion here is not

a psychological state as it is to Witmer & Singer but an objective measure of the

technical fidelity of the VE, defined in terms of resolution, frame rate, FOV, number

of sensory modalities, etc.

While there may be some disagreement and overlap in the terminology, there

are concepts expressed consistently by all parties.

‘Presence is a sense of being, distinct from emotional engagement’

When presence is considered, it is almost always referred to in some way as

a perception of being somewhere other than the physical locale (i.e. in the virtual

world). While there is disagreement to the extent presence and involvement are

interdependent, all parties agree that presence is an experience of a user, distinct to

the experience of being involved with the synthetic world. An emotive book or film

may grab the users attention, but never do they feel they are part of the depiction.

In a VE, they need to be convinced that the photons hitting the retina are not

from a display showing a table, but from a table itself. Kim et al. and Witmer &

Singer in their respective definitions of sensory believability and immersion consider

this to be a result in part of the users focus [249, 105]. Slater et al. consider

the acceptance of the virtual stimuli as real to be the definition of presence itself.

Emotional involvement, rather than being a contributing factor to presence, can be

used to assess it: if the user responds in the same way to generated stimulus as they

would to real stimulus, a high level of presence has been achieved [211].

‘Presence is achieved through creation of the sensorimotor loop’

Jelfs & Whitelock [92] write that presence is “where we are immersed in a very

high bandwidth stream of sensory input” and is “engendered by our ability to affect

the world through touch, gesture, voice etc”. This ability to affect the world, even

if it is just turning ones head to change the view, is the key difference between the

feeling of being an observer and a participant. Yet, it is not enough to influence the

world: the world must respond in a way that matches the users expectations [249].
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Anecdotally it is known that the characteristics of the stimuli for different senses,

and the interplay between them, do not equally affect presence. Visual realism,

for example, has little correlation with presence, yet dynamic shadows and sound

increase it significantly [188]. How the generated stimuli interact to create a sense of

presence, or lack of it, is considered by Harvey & Sanchez-Vives [72] to be the same

problem as how the brain takes any collection of disparate sensory data to form a

unified perception - the binding problem.

The binding problem is concerned with how discrete neuronal populations

combine information to form a single experience, occurring at all levels of perceptual

and motor processing [134]. For example, how is a small, brown, spherical object

(modalities of size, colour and shape: all processed separately) resolved into the per-

cept of a ball, and how does the recognition of this object influence the understanding

of the current environment?

Harvey & Sanchez-Vives consider cognitive binding, which includes this last

question, as most important to presence research. They assert that the loss of presence

is a ‘failure of binding’ owing to a discord between sensory inputs, or sensory inputs

and prior experience. Further they suggest neurophysiologic mechanisms responsible

for binding can inform the understanding of presence. For example, the theory of

hierarchical processing - where sensory details are analyzed at different levels of

complexity - could explain the high levels of presence experienced despite low

levels of realism [188]. The propensity of the mind to fill-in missing information

explains the experiences of participants in simulations of social settings hearing

voices, despite none being generated by the VE [72, 211].

It is accepted that participants experience different levels of presence. Witmer

& Singer consider this directly proportional to how much attention the participant

gives the VE [249]. Slater et al. & Kim et al. recognise the degree of presence

as the cognitive level to which the substitution of the virtual stimuli is successful

(e.g. sensory & perceptual believability) [105]. Slater et al. define it as “extent that

the participant in a virtual or mixed reality forms percepts from the sense data and

responds to and acts upon these as if they were real” [211].
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While semantic discord in generated stimuli results in reduced presence, it

is shown that fast, coherent, plausible stimuli elevates it [211]. Plausible here

refers to more than fidelity, but realism in the response of the VE. Slater et al.

[211] note the propensity of humans find correlations between their internal state

and perception of their environment - creating a model in which observed events

are meaningful responses to their actions. They term this correlational presence,

and the more the VE matches their expectations the more presence is enhanced

(binding is successful). This takes place at many levels. For example, Garau et al.

[66] exposed participants to an identical library simulation containing a number of

virtual agents, which responded to the user at different levels (from no reaction, to

acknowledging their presence, to attempting conversation). They found with the

more complex behaviours, participants expressed a higher sense of presence in a

number of ways: in their behaviour (avoiding the ‘personal space’ of the agent),

questionnaire responses, and measured physiological response. At a lower level,

Meehan et al. studied the effects of latency at different levels (50 & 90 ms) in an

environment designed to provoke a stressful response. While questionnaire results

on presence and fear were not conclusive, there was significant interaction between

heart rate and latency [143]. The closer the experienced stimuli is to that anticipated

by the user (spatially and temporally) the more the user feels the world is responding

to them. Slater et al. define this as the sensorimotor loop: “the continued, predictable

correlation between proprioception and sensory data”, which is fundamental to an

effective VE [211].

‘The sensorimotor loop is a direct result of immersion’

Though the definition of presence may be broad, it has been shown that it is

not an unpredictable emergent property, but a direct response from the mind of

the participant to a set of stimuli. Though the combination and character of the

stimuli set required for optimal presence is still being studied, VEs can be designed,

objectively, to maximise presence. Presence has become one of the more popular

terms to describe the concept. The idea that the user should respond ‘as if the

VE were real’, has seen the term adopted in literature which assess presence using
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subjective, objective, high and low level cues and measures [259].

As presence is typically accepted to be a result of immersion, it is easy to see

why its most popularly used to describe entirely virtual immersive worlds. This does

not mean it is not applicable to other synthetic environments however. The very

concept of presence was introduced by Minsky as ‘telepresence’ where it described

the feelings of remote operators of robots beginning to sense they were in a different

place, and the robotic avatar becoming part of their own body [188].

Synthetic environments are distinct from other interfaces due to the nature of

the interaction that they facilitate - i.e. the sensorimotor loop is formed between the

user and the digitised world, rather than the user and the interface. Latency has an

obvious affect on this due to requirement of an accurate model which is confounded

by latency. The effectiveness of synthetic environments for knowledge transfer and

entertainment however rely on more than just low level physiomotor interaction. The

concept of presence is underpinned by the sensorimotor loop but may be influenced

by other factors such as plausibility and attention. How presence is formed through

the binding problem is still unclear. It is clear though that while we are focused on a

low level characteristic - latency - we should not ignore higher level functions such

as presence, as these are critical to useful virtual worlds. We must also be aware of

the potential for significant implications of trading off fidelity for response time.

2.2 Latency in Synthetic Environments and Interac-

tive Systems

One characteristic that appears in numerous studies on the effectiveness of syn-

thetic environments is latency. The implications of inducing presence are what

distinguishes synthetic environments, and gives them abilities beyond, traditional

media. Presence arises with the formation of the sensorimotor loop. To facilitate the

formation users must be able to make predictions of how the world will respond, and

see those realised. Such predictions are made in terms of space and time, and so a

timely response from the VE is one of its most important abilities.
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2.2.1 Definition and Sources of Latency

2.2.1.1 Latency and Jitter

In the context of VEs, latency is ‘the time lag between a user’s action in the VE

and the system’s response to this action’ [165]. We consider latency as the total

delay of the VE as experienced by the user - from the moment the user begins to

move to the moment the photons conveying the consequences of it hit the retina. In

addition to the absolute delay from one moment to the next, its change over time can

be characterised, defined as jitter. Predictions take time to form, and are based on

prior knowledge so jitter is as much of a consideration as latency itself.

2.2.1.2 Sources of latency

The source of latency is the propagation delay of the user input, to the output devices

of a VE. This signal is delayed in a number of ways including sampling delay,

processing delay, synchronisation or buffer delay and transport delay.

• Sampling delay is the time it takes a sensor device to react to user behaviour.

Some sensors may poll the real world at discrete intervals, potentially introduc-

ing latency between these times depending on when the stimuli was generated.

Alternatively there may be a delay between the user beginning to act and the

threshold of a reactive sensor to be reached.

• The processing delay is the time it takes each component of the VE system

to transform the input into a form useful for the next stage. For example, a

motion tracker may filter and average a number of samples, before transmitting

them via USB to the host computer; the host computer will then parse the data

from the USB port and form it into system messages to be processed by the

VE application.

• Synchronisation or buffer delay results from different stages acting asyn-

chronously. The synchronisation delay is the time between one stage com-

pleting its transformation and the next stage sampling the results, due to the

requirement of buffering when crossing clock domains [146].
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• Transport delay is a result of moving the signal around a system using channels

with limited bandwidth.

All of these delays are inherent in any computer system. Faster processors

and network connections have a part to play in reducing latency, but in many cases

latency is studied so that it may be modelled and thus predicted and compensated for.

Non-determinism in any stage will also contribute to jitter.

Figure 2.1: End-to-end delays in head mounted systems [147]

Such stages in a typical VE configuration are illustrated by Mine in Figure 2.1.

This diagram only shows one such loop however, whereas in practice a VE may

have many. For example, the transform of the users head in the world may be a

combination of multiple tracking systems, which operate at different rates with

different latencies. Further, many components do not operate in direct response to

user action, but have a cadence of their own. Examples would be the sampling and

polling of a tracker, or the scan-out of a typical display. Where and when a user

action takes place relative to this cycle will impact the perceived latency [64]. This

is distinct from jitter, which is a characteristic of the system itself.
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2.2.2 The Effects of Latency

2.2.2.1 Physical Interaction & Performance

Many studies have been conducted into the effects of latency on physical interaction.

It is not hard to see why, given that one of the benefits of synthetic environment is for

improving performance and basic interaction tasks usually have unambiguous metrics

by which performance can be judged. For example Anvari et al. [9] investigated

the impact of latency on telepresence surgery. The number of latencies considered

was small, and there were interactions between individual participants (surgeons)

and type of task performed, so a model relating latency and performance was not

defined. Still, it was demonstrated that latency significantly increased both error

rates and task completion time. Jay et al. [91] studied the effects of latency in

a collaborative haptic environment, on both performance (with movement times

and error rates) and perceived difficulty (with questionnaires). When users were

asked to jointly touch and move a target across the screen using a 3 DOF (degree

of freedom) haptic interface, they found performance would degrade sharply with

latency (starting at 25-50 ms) then level out (after 100 ms for error rate). This

phenomenon was explained on examining the questionnaires: they showed perceived

difficulty was proportional to latency from 50 ms onwards, which gave rise to Jay

et al.’s ‘Impact-Perceive-Adapt’ model. The theory being that latency affects user

performance, sooner than they can detect, and only once latency begins to cause

the breakdown of the perception of immediate causality does the user begin to use

error-limiting strategies such as moving more slowly.

The same results were found in systems with only visual feedback. Teather et

al. [221] studied latency in both 2D pointing tasks and 3D movement tasks, with two

input devices (a mouse and a 3D optical tracker). Latency was found to consistently

affect the throughput of the pointing tasks, regardless of the input device used. These

results were not repeated for the 3D movement task however. It was theorised jitter

could have confounded these results.

Other authors attempt to model the effects of latency such that they can predict

performance. How the various faculties used to perceive and interact with the world



2.2. Latency in Synthetic Environments and Interactive Systems 36

Figure 2.2: Test setup of Jay et al. showing the FCS HapticMaster feedback arm used [91]

operate is not well understood, but some aspects of these can be reduced to the point

where they can be accurately modelled and experimented on. The model of how a

person carries out goal directed movements such as reaching or pointing has been

extended considerably since it was devised by Woodworth in 1899 [251], but the

basic principles are that movement can be split into two stages, the ballistic stage

and the online stage. In the ballistic stage the brain will launch the muscles in the

general direction of a target using information in memory. As the limb approaches

the target, the online stage takes over, and the visual system is used more to feedback

information to allow the motor system to make fine adjustments and bring the limb

directly onto the target [253]. There are a number of interaction models that quantify

the relationship between the temporal and spatial characteristics of a person carrying

out an interactive task, such as Liu & Liere’s model of 3D object pursuit [122],

or Accot & Zhai’s steering law [1]. The most often studied model however when

considering latency is Fitts’ Law [56]. Fitts’ Law models the motor response of a

given person, using two constants (a and b). With these, it predicts the time (MT)

to move to any target of given width & distance as shown in Equation 2.1. The the

typical apparatus and configuration to study it is shown in Figure 2.3 [253].

MT = a+b · ID (2.1)
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where

ID = log2(
2 ·Distance

Width
) (2.2)

Figure 2.3: Fitts’ apparatus for the serial tapping task [128]

Fitts’ Law is ubiquitous in studies of HCI (Human Computer Interaction). Its

scope & robustness likely play a part in this. It may also be due to it expressing

very simply, in its Index of Difficulty (ID), where the effect of latency is so keenly

felt: the online stage in the above model - the ability to make quick corrections

to movement. Conclusive results were achieved by MacKenzie & Ware [129] for

example, showing a clear correlation between performance and visual feedback delay

in a target acquisition task similar to a Fitts’ Law trial, and by Ware & Balakrishnan,

who extended the study to include multiple spatial dimensions & lag on different

input modalities [240]. In this second study, Ware & Balakrishnan observed the

impact on performance of lag in the input device - a 6 DOF hand tracker - and

alternatively in the head tracker. They found that performance impact was expectedly

large for the hand tracker but negligible for the head tracker. This was not pursued

and was mostly attributed to the fact the users made few head movements. Even if

they moved more though, the results may not have been that much different, due

to the mechanism by which lag is believed to impact performance. MacKenzie

& Ware modified Fitts’ Law to account for latency, finding it had a multiplicative

relationship with ID [129]. So & Chung pursued this and discovered that it was the

width component of the ID specifically which latency interacted strongly with (as

opposed to the distance, with which there was little interaction) [214].

Watson et al. [242] conducted the first study on jitter and performance, using



2.2. Latency in Synthetic Environments and Interactive Systems 38

reaching and tracking tasks. Users were asked to perform these tasks in a VE with

varying levels of frame rate1 and jitter, and their performance in terms of time and

error rate was measured. Watson et al. found no significant interaction with jitter

and performance: for the high frame rate conditions (20fps) jitter of up to 40%

was tolerated without degrading performance, only when the frame rate dropped

to 10 FPS did latency begin to interact significantly. The base latency in these

conditions was very high however, between 235-285 ms. Further, the jitter was not

true jitter, but rather controlled sinusoidal fluctuations with respect to the current

frame, making the jitter periodic. Park & Kenyon [166] studied the effects of network

jitter on performance in a collaborative virtual environment. In their experiment

users completed tasks designed to test dexterity and synchronisation (moving objects

through paths), over four different networks (see Table 2.1).

Network Latency (ms) Jitter (ms)
Scramnet-10-msec 10 -
Ethernet 7-18 500
Scramnet-200-msec 200 -
ISDN 150-300 2000

Table 2.1: Network performance characteristics for Park & Kenyon [166]

They found strong interaction between network latency and path difficulty.

Though there was no discernible performance difference between the networks

for simple tasks, the impact of the choice of network became greater as difficulty

increased. This is consistent with the findings reviewed before on latency and the

index of difficulty of physical tasks. Their results were similar to Watson et al.’s in

that no statistically significant interaction between jitter and performance was found.

However, they did find the Scramnet-200-msec network resulted in performance

closer to the Ethernet network than the ISDN; they asserted more investigation was

needed as it not conclusive whether the performance degradation was due to jitter or

simply the perceived average increase in latency.

In a study by Gutwin [69], jitter was examined independently of latency to

1A proxy for latency, though as described in Section 2.2.1.2 the impact on perceived stimuli is
more complex than that of simply increased delay.
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determine its effects on prediction. In a collaborative task, one user was asked to

move to one of a number of targets as fast as possible, and a second user asked

to predict which target the first was aiming for. In a coordination task, users were

asked to interact with a shared resource, dragging objects from it onto their own

targets. Users performed the tasks with low latency (40 ms) and varied jitter (0-1000

ms), and then with high varied latency (40-1040 ms) and no jitter. Again, jitter had

negligible impact compared to latency until high values of jitter (400-600 ms) were

reached. Latency had a much stronger interaction with the cooperation task than

jitter. Similar results were encountered by Wu & Ouhyoun [162] when they assessed

movement prediction algorithms (Linear Extrapolation, Grey-System and Kalman

Filter). When provided pre-recorded test data to quantify the various algorithms

they found that the Kalman filter had the worst jitter performance, and yet it along

with the Grey-System provided the biggest improvements to the performance of the

movement tasks participants were asked to complete. The users of these algorithms

performed significantly better than those in the control and linear extrapolation

groups, with low jitter. The latencies involved in the study were however, like those

before it, high: ∼120ms. Anecdotally, both Gutwin and Wu & Ouhyoun observed that

when performance of the VE was reduced, users adopted a ‘wait and see’ approach

to their actions, consciously waiting for their collaborative partners to finish their

movements, and then carrying out their own in isolation.

A study in which jitter was found to be significant was performed by Souayed et

al. [216], investigating the use of haptic devices in distributed VEs. Effective haptic

feedback must be provided at a much higher rate than visual feedback: ∼1 kHz vs.

∼30 Hz. In their study of network characteristics on perceived effectiveness of haptic

feedback they discovered jitter of 3 ms was unacceptable with a latency of 10 ms.

More investigation is needed into the effects of jitter, especially at lower levels

of latency. Though it does appear the visual system has a surprisingly high tolerance

of it, jitter has been shown to interact with performance. It is difficult to discern

though whether jitter is affecting performance by some mechanism of its own, or

whether it is simply on average having the same affect, for the same reasons, as small
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amounts of latency (the high rates of jitter needed by Gutwin could support this).

Further, all the studies referenced here have focused on interactive task performance,

which we have seen, relies less on prediction than previously expected. Jitter may

have a more considerable affect on presence where the importance of the stimuli

matching a cognitive model is higher.

Fitts’ Law is just one model of user motion - and readers should note that it

is is user motion itself being modelled, rather than the underlying functions. For

example, across two studies Samaraweera et al. [187, 186] showed how latency in

visual feedback could manipulate gait.

2.2.2.2 Perception & Presence

While the efficiency of physical interaction is important, as we have seen what is

truly valuable about synthetic environments is the ability to induce experiences or

perceptions of a world that does not exist in the immediate vicinity. A number of

authors have examined what the effects of latency are on this. One of the difficulties

of this compared to primitive physical interaction tasks is actually measuring presence

or perception, which are intangible concepts. Traditionally questionnaires would be

used but these must be applied very carefully as they can be subject to interference

and mis-interpretation [231, 206]. More recently, physiological cues are being

adopted as an objective measure of the users internal state.

Meehan et al. [143] were one of the first groups to consider physiological cues

as a measure of presence. They used heart rate to test the effects of latency on

presence, under the hypothesis that there would be a stronger effect during exposure

to a stressful environment when presence is higher. They found this was the case

using a pit-room environment. The results were borderline, however the study was

between-subjects with many data points needing to be discarded due to situational

constraints. In a meta-study Meehan et al. [142] surveyed four studies which used

heart rate and skin conductance, and contrasted these with self-reported measures.

Both measures were significantly correlated with factors affecting presence in the

expected direction, for multiple exposures and the addition of haptic feedback.

Slater et al. [209] investigated the potential of using physiological cues to identify
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significant changes in the users state. They found for example that participants

who had higher social anxiety would have a stronger response to speaking with a

virtual character, as signified by heart rate, and that galvanic skin response may have

potential to identify breaks-in-presence. Breaks-in-presence are the disruptions of

presence due to events that cause the users’ hypothesis about the environment to fail

[205].

In a very comprehensive survey Youngblut [259] reviewed numerous technical

and experiential factors that may affect presence. Significant predictors included

spatialised audio, image quality, haptics & locomotion technique. However they also

included level of interaction/responsibility, level of immersion of a collaborator and

task difficulty. These studies all used self-reported measures.

Other authors have used suggested the use of objective behavioural measures,

rather than physiological measures, to estimate the users internal state. For example

Phillips et al. [176] and Phillips et al. [172] suggested that gait parameters could

be used as a presence measure, as the greater the extent to which the user responds

to the world as if it were real, the closer these parameters will match the real

world behaviour. Phillips et al. [175] demonstrated a correlation between distance

judgements and factors that would be expected to increase presence. Mania et al.

[131] used spatial memory tasks based on traditional memory research to evaluate

the fidelity of virtual environments. Few studies however beside Meehan et al.’s have

used physiological or behavioural cues to investigate latency.

2.2.2.3 Experiential Factors

While presence and performance are important, they are not the only ways latency

can interfere with the utility of synthetic environments. For example, latency has

been shown to contribute to simulator sickness [28], which can be highly disruptive

and expensive to training regimes [43]. Anecdotally, latency has resulted in ‘Negative

Training’ when trainees adopted behaviours to compensate for latency in a flight

simulator, which degraded their performance when flying a real aircraft [235].
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Authors Subject ∼JND (ms) ∼PSE (ms)
Ellis et al. [53] Scene composition and latency detection 10-20 50
Ellis et al. [52] Hand movements and latency detection 16.7 -
Adelstein et al. [4] Latency detection mechanism 5-18 5-50
Mania et al. [130] Latency detection and scene complexity 9.1 14.3
Allison et al. [6] Tolerance of latency - 60-200
Moss et al. [151] Perceptual thresholds for latency - 147

Table 2.2: Comparison of relative latency detection thresholds

2.2.2.4 Conscious Detection of Latency

We have seen by multiple measures that latency reduces the effectiveness of VEs.

We have even seen that it can do so before it is even perceptible to the user. In this

section we review when latency becomes perceptible, and under what conditions.

Given that sensory acceptance of the world by the user is dependent on main-

taining a sensorimotor loop, it would stand to reason the latency detection threshold

would be dependent on the components that make up the loop, and thus the threshold

is tightly coupled to the current environment or task. It is surprising then to find that

this is repeatedly demonstrated to not be the case. When the JND (Just Noticeable

Difference) between two levels of latency is considered, Ellis et al., found it to be

independent of the base latency, and of the type of scene being viewed (single object

or background) [52]. Mania et al., found no interaction between the JND, FOV, scene

content (number of objects) or photo-realism [130]. Moss et al. confirms this, and

further that not even the judgement task employed significantly affects the threshold

[151]. In another study, Ellis et al. obtained similar results for the JND in a hand

movement task (∼16.7 ms), as were obtained for those in a head oscillation task

(10-20 ms) [53].

The mechanism by which latency is detected then could be fairly consistent

across VEs and tasks, which is promising for latency compensation techniques. A

summary of the results obtained across various studies is in Table 2.2.

PSE (Point of Subjective Equality) is the level at which 50% of participants

detect that the stimulus (latency) has changed with respect to the reference. JND is

the additional amount of stimuli required for this level to increase (by convention)

to 75%. In terms of psychophysics, it is defined as the “change in a stimulus required
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to produce a just noticeable difference in sensation” [130]. Most experiments on

latency discrimination follow a similar set-up. A user will wear an HMD and be

asked to rotate their head back and forth by a specific angle (selected to keep the

visual stimulus within the FOV, usually 30◦). Users rotate their head at various

frequencies, calibrated by tones from a metronome. They are then exposed to

different levels of latency and asked whether they can differentiate between them.

This protocol is consistent with that used by Ellis et al., Adelstein et al., Mania et al.

and Allison et al. (though the last also used physical buffers to prevent movement)

[53, 4, 130, 6]. Moss et al. used a similar configuration but with an interlinked chair

and drum, instead of a VE, to provide a system with no latency [151].

In their studies of scene-motion perception Jerald et al. [96] had participants

view a projector through goggles limiting the FOV, in order to emulate a zero

latency HMD. The purpose of this experiment was to discover the rate at which

they could rotate a scene without the user perceiving it. This is distinct from latency

detection (the judgement task here is whether there is any motion at all) but the

mechanism under study is likely to be very similar if not the same. An often-

mentioned discrepancy is between the PSE results of Allison et al. (200 ms) and Ellis

et al. (50 ms). Mania et al. first theorised this could be due to scene composition

but found this was not the case. Instead they suggest the difference in experiment

protocol (the judgement task and level of training) could be the source [130]. Moss

et al. pursued this and obtained results similar to Allison et al.: they found the

judgement task not to have a significant interaction, but training the users to detect

latency improved their performance considerably. Anecdotally Moss discovered

that over time participants would devise ways to detect latency (e.g. by focusing

on clear fixed features). The exposure time of Ellis et al.’s participants to the VE

was greater than those of Allison et al. [151, 52]. Jerald & Whitton in their study

of scene-motion perception found different participants had significantly different

perception thresholds [95]. The implication being latency discrimination may more

similar to presence than physical interaction, in that user characteristics and the

‘practice effect’ could play a larger part than the underlying biological wiring - and
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that the threshold may decrease over time.

The 180-320 ms threshold found by Allison et al. is also an extreme result.

They studied the interaction of head movement speed on the perception of stability,

and found as the velocity of the head increased, the more small amounts of additional

latency were reported as causing instability. At 90 degrees per second the 50%

threshold was 60 ms, not dissimilar to the results of Ellis et al. [6]. The differences

in experimental set-ups between Ellis et al., Adelstein et al., Mania et al., and

Moss el al. and Jerald et al. are important in that all VEs have inherent delay.

Therefore when latency discrimination capabilities are judged it is with regards to

changes in latency, which make the results more pertinent to jitter than absolute

maxima. Ellis et al.’s discovery that latency perception does not follow Weber’s law,

and equally small changes can be detected regardless of the baseline is especially

important to this [52]. Out of the above though only Moss et al. have attempted to

discover the threshold at which participants can discern between latent and non-latent

visual feedback. Though Mania et al. assert since Weber’s law does not hold, the

sensitivities reported will be equally great compared to zero latency pedestals [130].

Precisely how the latency detection mechanism operates is still an open question.

One theory is that it is the result of a discrepancy between the expected view of

the world and the experienced view of the world due to image slip. Image slip,

or oscillopsia if movement is repetitive, is the phenomena encountered in HMDs

whereby the world will appear to move with the user for a latent period, until the VE

can update it to its proper perspective (as it would appear if the world were static) at

which point it will appear to swim back into position. Image slip, as in the spatial

discord, rather than the delay between the movement and the motion, was considered

by Ellis et al. to be how users detected latency as it accounted for the observed

immunity of the mechanism to Weber’s law. Adelstein et al. explored this theory

by testing latency sensitivity of groups who had predictable head movement, and

those that did not. It was found that as participants transitioned from predictable

movement to unpredictable movement their sensitivity dropped significantly, but

those who started with unpredictable movements showed only a marginal change [5].
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Another theory is that it is the swimming - the velocity of the image - that reveals

latency. When Allison et al. investigated temporal tolerance they found that latency

sensitivity interacted strongly with the speed of movement [6]. Jerald et al. studying

scene-motion perception, found that detection rates increased as the world moved

against the rotation of the head, or while the head was nearing the end of its rotation

(and slowed) - that is, when the relative velocity was highest. They assert that while

there are dedicated systems to detect velocity, primate brains rely on cognition to

derive acceleration. They also assert that as head movement increases, sensitivity to

velocity decreases, explaining both their results and Allison et al.’s [94, 6]. Adelstein

et al. explored whether observing displacement error or velocity error resulted in

better latency detection. They observed that at the bounds of the head rotation, the

relative velocity of the scene was greatest as the head stopped moving but the VE

was still correcting, while at the apex of the head movement, the displacement error

was high but the relative velocity was low, as the speeds were now well matched.

Subsequently, they blanked from view one stage or another, from one of two groups,

and found that those observing only the velocity error had much higher sensitivity

than those observing only the displacement error, indicating velocity is the main

contributor to latency detection [4].

A great deal of work has been undertaken to study the effects of latency on

VR. It undoubtedly has an effect, but identifying thresholds has proven difficult

and inexact. This is because probing the users’ internal state is hard, so it is not

always clear whether an effect is due to latency, or a confounding factor, or even

if these can be entirely decoupled. Likely for this reason most works focus on low

level tasks, which have clear performance metrics. Many works hypothesise the

effects of latency on physiomotor behaviour, using observations such as that of

latency not following Weber’s law. Due to technical limitations though, few have

actually explored latency at levels lower than 30-40 ms. Experimental prototypes in

area have been refined over many previous works, presenting a obvious avenue to

pursue, described in Chapter 6. As seen in Section 2.1 higher level functions such as

presence are no less important, though studies into the effects of latency on them
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have been surprisingly sparse. Experimenters have shown that physiological cues

have potential as measures, and hypothesised objective behavioural cues may do so

as well. We pursue these in Chapter 7.

2.3 Rendering in Virtual Reality
Synthetic environments aim to exercise the same functionalities as would the real

world, so rendering for these is typically concerned with creating a physically plausi-

ble approximation of a realistic environment. Rendering realistic 3D environments

for VR is one of the most challenging applications due to the extent that the world

should be responding to the user. A renderer for a VE should support dynamic

lighting & objects, object deformations and a quickly changing viewpoint.

How much visual fidelity affects presence in immersive VR is not entirely

clear. Some studies show a strong effect, while others show the relationship is not

constant between metrics, with some having no effect at all [210, 264]. Despite

this ambiguity, there is a clear trend in VR and related industries towards high

quality environments with high pixel densities. This can be seen in design of recent

simulators (e.g. [10, 48]). Further, industry leaders predict the eventual adoption of

techniques such as ray tracing due to their support of second order effects such as

shadows and ambient occlusion, which give high fidelity results [111].

2.3.1 The Rendering Equation

All algorithms which render 3D geometry ultimately approximate the rendering

equation. Introduced by Kajiya [102], the rendering equation (2.3) models the

radiance (light) from one point in space, visible from another point in space. Or, put

another way, the light transported between the first point and the second.

I(x,x′) = g(x,x′)
[
e(x,x′)+

∫
S ρ(x,x′,x′′)I(x′,x′′)dx′′

]
(2.3)

The equation states that the intensity I at x from x′ can be expressed as the sum

of the emittance from x, and the irradiance from all other points visible from x (the

visibility is given by the term g). Note how the equation is recursive. If the equation

were solved, a model would be created describing the transport of light from every
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surface point in a 3D scene to every other surface point in the scene. The cost of

computing such a dataset is prohibitive, and so rendering algorithms approximate

the solution and return a result in a reasonable amount of time. Approximations

are made in two ways. First, the accuracy of the light transport model can be tuned

to balance quality and computational load. For example, algorithms such as ray

tracers will approximate the contribution of all surface points in a scene, by sampling

the contribution of a select few. Second, algorithms can pre-process the scene to

model the transport of light offline. An example is texture baking, where shadows

and colours reflected by surfaces are not determined when those surfaces are drawn

on screen, but pre-computed and stored along with the surface. If however the

state of the scene changes, for example the shadow casting object changes position,

the shadow on the surface will not change leading to a discrepancy which may be

detected by the user. Balancing the final image quality, dynamic potential of the

scene and rendering time is an ever present theme in computer graphics.

2.3.1.1 Real-time Rendering Continuum

Simulating the physically correct propagation of light in 3D space is prohibitively

expensive. However if real-time rendering solutions were limited to only the effects

that could be simulated in real-time, the results would be far from the required levels

of photorealism. Rendering techniques therefore use pre-computation, to gather and

store information about the light distribution in the scene, which then has only to

be referenced when the scene is rendered allowing high speeds to be maintained.

An example is texture mapping2 (Figure 2.4). Note the difference in illumination

between the front and left sides of the cube - the left side appears in shadow. The

shadowing is computed in real-time and the luminance of that side of the cube would

change if the cube was rotated. The complex interaction of light with the surface

of the bricks though is not simulated, but simply read from the texture in a single

operation. The texture, being pre-computed however cannot respond to changes in

2Texture mapping is a way to provide local data about points on a surface, beyond that provided
by the parameters which define the surface. It can be used for storing light propagation, but much
more as well. For example, texture mapping can allow an algorithm to simulate the interaction of
light with surface details not stored in the geometric model itself, through the use of normal maps
[80].
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the scene. As the colour of the bricks has been sampled and stored in the image it

would not, for example, provide depth cues as the viewpoint moved above or below

the face of the cube.

Figure 2.4: Applying a 2D image to each side of a 3D shaded box can create the illusion of
geometric details which are not present

Figure 2.5: All rendering techniques exist along a continuum balancing pre-computation
and online simulation to get the best quality images possible within the bounds
of the limited hardware of whatever application they are designed for. Image
from [265]

All rendering techniques exist on a continuum (Figure 2.5), the contributions of

pre-computation vs. simulation in each term of the rendering equation are carefully

balanced. The more the lighting in a scene is sampled and not simulated, the less

dynamic the scene can be; but the more complex the simulation, the longer the
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rendering time. This is the rendering continuum and most techniques exist some-

where between the extremes. Zwicker et al. [265] classified rendering techniques

with four characteristics: Scene, Discretization, Representation and Reconstruction.

Scene refers to how the environment is stored and provided to the algorithm, for

example, as functions describing the shape of a continuous surface or a collection of

images. Discretization and Representation refer to how the algorithm samples the

scene description and how these samples are represented when passed to the renderer.

For example, is the scene represented as discrete surfaces or luminance samples.

In the final stage, Reconstruction, the algorithm will use these discrete samples of

the scene to compute its appearance from a specific point of view. How it does this

depends on how the scene is represented. If the algorithm has been provided samples

of the appearance of the scene around that viewpoint it may just average them. If it

has been provided samples of geometry it must simulate the light transport between

them.

As can be seen be seen, with a couple of exceptions, the techniques have a trend

from entirely geometry and simulation based to entirely sample and image-based.

Over the coming sections, three techniques which span the full continuum will be

explained in detail. From the left side of geometry based rasterization - which is

the technique of choice for most real-time renderers - to ray tracing, to light field

rendering.

2.3.2 Real-time Rendering

Economies of scale have made GPUs the most cost-effective hardware solution for

almost every application requiring real-time rendering. Some specialist applications

until recently used dedicated hardware, such as boards to perform post rendering

warping [235]. Now though, even large simulators are based on Commerical Off-

The-Shelf (COTS) parts for their cost and flexibility [10]. Even when new algorithms

are presented, they are usually designed for implementation on a traditional GPU

[140].
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2.3.2.1 Painters Algorithm Rasterization

As a consequence of the ubiquity of GPUs, the most common real-time rendering

technique is the one that they have been optimised for - the painters algorithm. The

process of rasterization is: taking a continuous geometry representation (polygonal

mesh) in 3D space, and processing this into a discrete geometry presentation in 2D

space (pixel grid). The ‘2D space’ the 3D geometry is rasterized into, is the frame

through which the user sees the scene. Any rendering algorithm which works with a

geometry based representation of a scene technically rasterizes it. The distinguishing

feature of the painters algorithm is that it projects each 3D primitive into this frame in

turn, compositing all elements of a scene together as a painter would. This approach

is also the source of the major limitations of this algorithm with regards to latency,

and support of second order effects.

An overview of the painters algorithm, or rasterization pipeline, is shown in

Figure 2.6. The following section explains the principles behind this method in more

detail. An more detailed description of this algorithm and others is available from

Hughes et al in [80].

Figure 2.6: Block diagram of the painters algorithm [80]

2.3.2.2 Representing Geometry

The painters algorithm utilises a geometry-based representation of the scene. That is,

the surfaces of the scene and their properties are described, along with the lighting
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conditions. Most commonly the scene will be provided to the rendering algorithm in

the form of a triangle mesh. This is illustrated in Figure 2.7, which shows a cube

made up of 12 triangles. Each triangle is defined by 3 Cartesian coordinates (known

as vertices), all relative to a single point in the scene. The three points lie on a single

plane and define the boundaries of the continuous geometry representation.

Figure 2.7: A triangle is made up of three points on a plane, sets of connected triangles
make up the surface of a 3D shape

While triangle or quad representations are most common they, they are not

the only representations. For example, parametric surfaces can be used in place

of polygonal meshes. Parametric surfaces are described by a set of control points.

A continuous function defines the surface at any given location based on these

control points. Such representations may be used in order to achieve a higher quality

rendering or a more memory efficient description of the geometry. Algorithms

have been designed for real-time subdivision of these surfaces into patches that can

map to discrete pixels [34, 37]. In the hardware-accelerated painters algorithm on

modern GPUs these representations, no matter what form, are discretized into sets of

triangles. This discretization step is termed tessellation. The triangles, whether they

came from parametric surfaces or were explicitly modelled, are termed primitives

[265, 80].

2.3.2.3 Creating a 2D image of a 3D scene

To render a scene made up of these triangles, a viewpoint or camera must be defined.

This viewpoint defines the viewing frustum (image space). This can be thought of

as an area of 3D space which contains all visible primitives. It is at this stage that
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vertices are transformed in world space if required, for example during animation.

The transformations for each vertex are provided to the stage, which applies them

before projection into image space. This is the ‘Geometric Transformations’ stage

in Figure 2.6. The primitives are projected into image space based on the camera

properties. Projection is essentially a transformation from one coordinate system

(the world space) to another (the viewing frustum). Note that at this point all the

primitives are still in 3D space, just not world space. In the next stage, the triangles

are projected onto the 2D image plane, and portions of the triangles mapped to

discrete pixels. These discrete portions are known as fragments. It is for each

fragment that the colour is computed, and these colours are written to the frame

buffer to make up the final image [80, 34]. This is illustrated in Figure 2.8.
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Figure 2.8: The operation of the painters algorithm as it projects primitives into image space
[34]
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2.3.2.4 Computing the Colour

How the colour is calculated is entirely up to the programmer, but typically a function

will approximate the physically correct appearance of a given fragment. This is

done by implementing a model of the interaction of the fragment with the lighting

conditions of the scene. One such class of models are BRDFs.

A Bi-Directional Reflectance Distribution Function, or BRDF, attempts to model

the most salient observations we can make about the interaction of light and matter.

We can say, for example, that light is a form of energy and is conserved, so that:

light incident at sur f ace = light re f lected + light absorbed + light transmitted

(2.4)

This is illustrated in Figure 2.9.

Figure 2.9: Illustration of how light scatters when it meets a surface in the real world [254]

We can also observe the amount of light reflected is not always constant across

a surface, but is a function of location. This will cause the radiance to change

depending on viewer direction. This can be seen clearly for example in the case of

specular highlights (Figure 2.11). The distribution of the reflected light is controlled

by the parameters of the model.

A simple BRDF models the radiance from an eye position e based on the

direction of the light source l, surface normal n and surface properties (Figure 2.12).

Clearly, this is not entirely physically accurate. The function can be made more

or less accurate (and complicated & intensive) based on the requirements of the

application. For example Sub-Surface Scattering functions can model the absorption
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Figure 2.10: Different ways light can scatter depending on the properties of the surface
[112]

Figure 2.11: Objects showing how specular highlights may appear depending on the rough-
ness of the surface [126]

and re-transmission of light to accurately render materials such as marble and skin.

These more advanced functions however usually have a higher computational load

that make them unsuitable for real time rendering.

An example of a BRDF is the Phong Lighting Equation given in Equa-

tion 2.5 [254]:

Iout = Iin(Kd(max(l ·n,0))+Ks(r · e)n) (2.5)

Iout is the radiance computed by the function. In is the intensity of the light

source. l is the direction of the light source to the surface. n is the normal. e is the

direction to the viewer and r is the principle reflection direction. These are shown

in Figure 2.12. Kd , Ks and n are the parameters that control the distribution of the

reflected light and thus the appearance of the material. For example n in this function

controls the width of the specular highlight.

In the painters algorithm rasterization pipeline the BRDF or equivalent function
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Figure 2.12: Illustration of the parameters a typical BRDF uses to compute illumination for
a point [80]

is implemented in the fragment shader. This is the Rasterization and Lighting Block.

A shader is a small kernel program executed on the GPU. Each fragment has a

position in space, and from this the shader can compute the directions to the viewer

position and light source. The properties of the lights and materials are passed to

the fragment shader by the programmer, and these are used to solve the function

for each fragment. As can be seen, the light sources in the scene are passed only as

parameters to the function. They have no other representation or influence on the

scene, unless one has been defined explicitly by the programmer. Neither do the

fragments interact. High locality and coherence between fragments however allows

them to be computed in parallel on a massive scale [254, 80].

2.3.2.5 Image Assembly

Once the BRDF or equivalent has been solved, both the position of the fragment

in the final frame, and the colour is known. The fragment cannot yet be written

to the frame buffer however. Clearly it is possible for multiple fragments to share

the same 2D location in the final frame, as some objects in a non-trivial scene are

likely to occlude others. The original painters algorithm does not specify the order in

which primitives must be rasterized. The painters algorithm therefore must explicitly

handle the case where two fragments overlap.This is done most commonly with the

use of a depth buffer or Z-Buffer [80]. When the position of a fragment in image

space is calculated, it is calculated in 3D, resulting in a 2D location on the final
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frame, and a depth value from the camera. The depth value is checked against the

current value in the depth buffer, and if it is behind the existing value, that fragment

is discarded. The assumption being that an occluding or non-occluding fragment

has already been rendered and has written its colour value to the frame buffer. This

process makes rendering transparent fragments difficult, with multiple passes needed

to ensure that transparent fragments are drawn over opaque ones. More advanced

algorithms such as depth peeling have been designed to handle multiple layers of

translucent objects, but they add considerably to the rendering time [120].

Transparent objects are the first of many examples of edge cases which must

be modelled explicitly outside of the painters algorithm and the BRDF. Shadows,

ambient occlusion and caustics are other second order effects which rely on more

physically accurate modelling of the transport of light between and within objects in

a scene. Once all fragments have been tested in this manner, and had their colours

computed and written to the colour buffer, the frame is complete. At this stage post

processing effects can be applied. These for example could be image filters, which

can easily be applied to the resulting frame in the same way they would be in image

editing software. This is one advantage of operating with discrete complete frames.

Image Assembly is the final stage in Figure 2.6 and the frame is now ready to be

swapped and drawn on the display.

2.3.2.6 Variations on the pipeline

The flexibility of modern GPUs has allowed variations on this pipeline, with data

being passed back and forth between stages. For example, deferred rendering

involves computing all the fragment positions, and performing visibility tests, before

any fragment shader is executed. This allows for increased performance in certain

situations as only visible fragments have their colour computed.

There are further opportunities for improving efficiency depending on the

application. For example, depending on the BRDF the colour of a flat surface may

be constant across it. In this case a fragment program could be executed once for the

’master vertex’, and the result reused for each subsequent fragment of that primitive.

Other techniques include interpolated shading (Gouraud shading). Here the
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Figure 2.13: Illustration of an object using colour computed from a set of master vertices to
shade flat surfaces [80]

BRDF is computed for a set of vertices on a surface, and the colours interpolated

between them. This allows curved surfaces to be represented with relatively low

resolution meshes [80].

Figure 2.14: Illustration of Gouraud shading [80]

All of these variations rely on the feed-forward nature of the painters algorithm.

The biggest performance gains come from reducing the number of computations with

further approximations. There are no modifications which offer physically correct

simulation of second order effects because the surfaces of the scene do not interact.

Likewise methods to reduce the rendering time below the interval of a single frame,

such as frameless rendering [41], are made difficult by the potential mapping of any

primitive to any location in image space.

2.3.3 Modern Graphics Processing Units

Computer graphics algorithms were originally designed to work with very low

powered hardware. To begin with all operations were carried out on the CPU. When
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graphics accelerators first became available operations similar to those described

above were implemented in dedicated hardware, with the programmer passing

parameters to control each stage. The programmer would pass in, for example,

the parameters to the BRDF, and later, vertex transformations. Modern GPUs are

essentially stream processors. They consist primarily of collections of compute

units (or Single Instruction Multiple Data (SIMD) cores) which are general purpose

vector processors. In addition they will have dedicated hardware for accelerating

operations such as sorting and texture filtering. The latest GPUs are idiosyncratic

devices designed specifically for deep pipelining and execution of rasterization

algorithms [80].

It should be noted that the current incarnation of GPUs was not the first, nor

the first to become so powerful and flexible that they began to be used as generic

coprocessors. Since the 1960’s a number of attempts at designing graphics co-

processors were made. By requirement these would grow as powerful and fully-

featured as the host computer that was driving them. The requirements for low latency

access to resources such as (shared) system memory, registers and peripherals would

lead to the co-processor moving closer and closer to the CPU, until the overhead

of synchronising them made it more efficient to integrate them into a single device.

More commonly, the co-processors would adopt features locally, until they became

computers in their own right. This led to the need to design subsequent co-processors

for the co-processor in order to drive the display, and the cycle repeated. It was

referred to, in some frustration, as the “wheel of reincarnation” [152].

2.3.3.1 Parallelism in GPUs

The architectures of modern GPUs include multiple levels of parallelism. They

include virtual parallelism, where hardware is timeshared by multiple threads and

controlled by a scheduler, and true parallelism, where hardware executes multiple

operations simultaneously. GPUs also include a measure of dataflow processing

where operations are laid out in space. GPUs present a task-parallel pipeline at a high

level to the user, and implement a data parallel pipeline at a low level. GPUs will

implement some functions in dedicated hardware. For example fragments can
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be generated from primitives in image space or texture look ups can be completed

outside of the shader programs. The majority of the functionality though is performed

by one or more large computational engines. These consist of many SIMD cores,

which are vector processors. That is, they perform the same instruction on multiple

vector elements simultaneously. The computational engine includes functionality for

allocating these cores depending on the load [80, 163].

The architecture of a GeForce 9800 GTX is shown in Figure 2.153. Its computa-

tional engine has 16 cores each with 8 data paths. Vector elements will flow through

these data paths, with the same instruction being executed on each by the core.

Within the data paths long instructions will be pipelined so that the output of one

stage of the instruction flows directly into the next. GPU shader programs do support

branching, so different sets of cores may process different sets of vectors/vector

elements, and the distribution of these sets may change as the shader(s) execute.

Managing the allocation of the cores is the responsibility of the Work Queueing and

Distribution block (Figure 2.15) [80].

There is considerable data coherency that can be relied in the execution of

the painter’s algorithm. For example, multiple primitives with the same material

properties will be executed in parallel. This is due to the design of graphics APIs,

where primitives are split into sets. The programmer will instruct the GPU to draw a

set of primitives together, and typically will define the things such as the parameters

to the shaders for the set before giving this command. It would take considerable

effort on the programmers part to confound this coherency. There are multiple levels

of caching in the GPU to take advantage of the coherency, and it further allows some

resources such as Texture Units to be shared [163].

As GPUs have advanced, more of the responsibilities of what were dedicated

units have been subsumed by the programmable cores. This flexibility along with the

independence of each stage of rasterization allows increased efficiency, as multiple

pipeline stages can now execute in parallel. For example vertex shaders can execute

at the same time as fragment shaders. Subsequent microarchitectures have been

3Note that Nvidia’s website lists the 9800 GTX as having 128 cores, the 9400 GT has 16. They
were both of the microarchitecture family known as Tesla [156].
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Figure 2.15: Block diagram of the architecture of an NVidia GPU from the family known
as Tesla [80]

designed to improve the efficiency with which compute cores are allocated [163].

In Nvidia’s Fermi architecture (Figure 2.16), the individual cores were segmented

into Streaming Multiprocessors, each with 32 cores and a total of 512 cores between

them. Individual threads are combined into a group of 32 threads and executed

concurrently by a Streaming Multiprocessor. The Streaming Multiprocessors have

their own schedulers which attempt to interleave instructions from multiple thread

groups to maximise use of their resources [157, 71, 158].
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Figure 2.16: Microarchitecture of an NVidia GPU from the family known as Fermi [157]

2.3.3.2 Rasterization and GPUs

As can be seen from Figure 2.15, the rasterization pipeline shown at the beginning of

this section maps well to the GPU, with some stages having dedicated circuitry and

the interleaving stages being implemented by the main computational engine. Due to

the high coherency of the painters algorithm the probability of a set of cores within a

streaming multiprocessor executing the same instructions, with the same accesses

to external memory is high. Different stages of the algorithm may be executed

simultaneously depending on load. For example, if a single triangle took up a large

portion of image space, the GPU may execute both fragment shader operations and

vertex shader operations simultaneously. The coherency of the painters algorithm is

not only important for optimal use of the vector processors, but critical for optimal

use of memory. The large DRAM on GPUs has a high latency, in the order of 10s of

cycles per access. The closer that data is in cache memory, the longer threads can

execute without pre-emption.

There are two main limitations of the painters algorithm. The most important for
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VR is that it must assemble the scene representation into a discrete frame. Latency

can never be lower then than the interval of a single frame, and “chasing the beam”

techniques are not possible. Chasing the beam refers to computing pixel values

right before they are required to be transmitted to the display. This is not due to the

architectural limitations of GPUs (although they do make implementing alternative

algorithms more difficult), but rather the that there is no way to know where in the

final frame a primitive will be until it is rasterized. The second limitation is that

the scene primitives do not interact. This makes second order effects impossible to

approximate in a physically correct manner. Shadows, ambient occlusion and alpha

blending must all be explicitly implemented using very different approaches, all of

which extend the time it takes to finalise a frame.

Rendering for computer graphics has been refined in a number of respects over

time, including the development of highly efficient algorithms and corresponding

dedicated hardware. In many respects the characteristics optimised for, such as

throughput and dynamism, have overlaps with those required for realistic stimuli

for VR. These capabilities have come at the expense of latency however, which is

more tolerable in typical systems than it is in VR. The most obvious example of

this is the latency introduced during v-sync. V-sync refers to the synchronisation

of display scan-out with the updating of the frame-buffer driving it. For example,

swapping between back buffers in a double buffered system. This prevents tearing

but introduces additional delays before the latest computations become visible to the

user. The frame-based nature of the rendering techniques used is the most obvious

place to start optimising for latency. As many of the techniques should be re-used as

possible though as there are overlaps with the requirements for VR, and ultimately

the same problems are being solved for both applications.

2.3.4 Image Warping

A post-rendering technique that has been of interest in computer graphics for some

time is image warping. Its applications are varied, including image transitions,

stereo view synthesis and temporal up-sampling. It has held particular interest in

VR however, due to its potential for latency compensation [132]. Image warping
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could be seen as a subset of image morphing. Image morphing is the process of

metamorphosing between two images using a mapping function that defines the

spatial relationship between the points in the images [250]. For latency compensation,

the morph is between a rendered image, and an image of the same scene but with a

different viewpoint. Essentially, image warping is used to generate a novel view of a

scene from a previous render in order to compensate for changes occurring during

the rendering process itself. Image warping is currently used this way in commercial

VR systems [159].

Image warping is attractive for latency compensation because the mapping

functions can be simple and highly parallel. For example, Yanagida et al. [256] used

a 2D image shift, suggesting it may be suitable for local compensations and could

be implemented on the HMD itself. As illustrated by Wolberg [250], the mapping

function itself is typically independent of the scene content. However, it is generated

based on image primitives and features. Image warping algorithms therefore have

various levels of coupling to scene content and scene representation.

A dominant challenge for image warping is disocclusion. For novel view

synthesis or re-projection with non-linear mapping functions, there is the potential

that not be enough data will be present in the source image to sample for a given

destination point [190]. This can be illustrated by imagining a camera moving around

a large item such as a desk or cupboard, revealing more of the environment behind

it. The content just come into view will not exist in the source image because this

location was not visible before. A simple bijective warp such as Yanagida et al.’s

image shift would not require this data, but would instead introduce distortions in

perspective cues [256].

To handle these artefacts, some authors use selective-rendering. For example

Widmer et al. [244] use depth-peeling to render a set of planar approximations of the

scene geometry. These could be used for screen-space ray tracing for fast in-painting,

but also other effects such as multi-bounce specular and glossy reflections. The issue

with using these approaches for latency compensation is that it further reduces the

determinism of the rendering process. As such, authors have attempted synthesis
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using only existing samples, either by optimistically rendering additional samples,

or using additional data about them.

For example, Reinert et al. [182] presented a pipeline for low-power applications

such as phone-powered VR. They transmitted a remotely rendered environment as an

overscanned hemispherical environment map. This supported straightforward image

warping for changes in rotation. However, they also transmitted a lower resolution

alternative view of the scene. This was designed to maximise visibility of surfaces

occluded in the primary view. This could provide samples in cases of disocclusion

during translation warps of the primary view.

Nehab et al. [154] presented a caching system to allow re-use of shading

calculations between frames. This system is based on reverse re-projection, in which

fragments in a current frame are re-projected into a previous frame to determine if

there is an existing sample available. This saves time for all shading calculations, but

may be particularly beneficial for techniques such as expensive global illumination

approximations.

Yang et al. [257] stored multiple adjacent frames with depth information. In

the case of missing pixels, they used an iterative search for the sample with the

nearest depth value out of a set of adjacent frames. This search was facilitated using

motion flow fields. These define the linear motion of each pixel in the re-projection.

This could be used to direct the search through the adjacent frames’ depth buffers.

Bowles et al. [25] also used motion flow fields to generate an image warp. In Bowles

et al.’s implementation, disoccluded areas were in-painted using the surrounding

background. How well this works depends on the background itself.

Didyk et al. [46] performed image warping for stereo view interpolation.

They used disparity information across the frame to generate the warp. Their

implementation represented the source image as a set of textured quads - areas

rather than pixels. These were then transformed into the warped image. Doing so

automatically handled disocclusion by stretching the quads to cover missing areas

of the frame. Didyk et al. [45] also applied the technique to image warping for

temporal up-sampling, but using motion flow instead of disparity maps. They used
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selective blurring to hide potentially salient artefacts, taking advantage of the natural

de-blurring behaviour of the human visual system during motion tracking to create

the perception of sharp, high quality images. The authors demonstrated the utility

of their implementation by showing significantly improved user performance in an

moving object classification task.

Image warping has been explored for temporal up-sampling for some time, and

has potential for latency compensation. The advantages of image warping are that the

warping function itself is usually decoupled from the scene geometry. This makes

the technique amenable to parallelisation and even hardware implementation [235].

The potential for disocclusion and perspective cue distortions in simple warping

functions however mean many such algorithms are not truly independent of the scene

content and must rely on, for example, iterative searching for suitable samples.

The larger the distortion the higher the probability of salient artefacts. For this

reason image warping for VR has been applied so far in narrow applications close

to the display, where the times compensated for are low (< 10ms). An example

is Oculus’ predictive warping functionality, which predictively warps an image

to compensate for both rendering and scan-out delays reducing the perception of

latency [16].

2.4 Alternative Rendering Solutions

2.4.1 Ray Tracing

2.4.1.1 Why Ray Tracing and Path Tracing?

Ray Tracing is an algorithm that models the transport of light through a 3D scene.

The painters algorithm computes the appearance of each object, and projects this

into the camera. Conversely, a ray tracer samples the scene by looking out of the

camera, identifying what points are in front of the viewer, and computing their colour

based on the interactions between light emitters and other objects. Ray Tracing is

a very popular rendering technique in a variety of applications. This is because it

is conceptually simple, and provides considerable flexibility in the implementation.

Yet while simple, ray tracing is based on modelling a physical phenomena, and
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if the mathematical models employed by the ray tracer are sufficiently advanced

the results will be very high quality. Ray Tracing is the technique of choice for

commercial rendering engines such as mental ray4 and VRay5, and in-house tools

such as Renderman6. It is also employed in some real-time graphics solutions as

a part of pre-processing stages such as light mapping [229]. Ray Tracing has been

suggested as the next stage of computer graphics and some companies are developing

real-time ray tracers7 [111].

In the next section we discuss ray tracing, path tracing and optimisations of

these techniques, such as the use of acceleration structures. Ray Tracing principles

such as the basic mechanics of casting a ray are used in a number of computer

graphics algorithms, especially in various image-based rendering techniques. When

we use the term ray tracer however we refer to an implementation that computes the

colour by modelling light transport in real-time.

2.4.1.2 Principles of ray tracing & scene sampling

Ray Tracing works by numerically solving the rendering equation. It samples the

radiance at discrete points in the scene, by using rays between surfels to compute

visibility, and, along with the BRDF of the surfaces, the transport of light between

the surfels.

A frame is rendered by defining a viewing plane in 3D space based on the

viewpoint. From each pixel on this plane, a ray is cast into the scene and is tested for

intersections with the scene geometry. When an intersection is found the colour of

that point is computed based on the geometry surface’s BRDF and irradiance.

How the irradiance is approximated is one of the biggest design decisions in

implementing a ray tracer. There are various ways to approximate the irradiance.

For example, in Monte Carlo Ray Tracing the irradiance is computed by sampling

the environment. For each intersection of a primary ray, a number of secondary rays

are cast to sample the surrounding environment and compute the most statistically

4http://www.autodesk.com/products/mental-ray-standalone/overview
5http://www.chaosgroup.com/
6http://renderman.pixar.com
7http://http://www.render.otoy.com
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Figure 2.17: Illustration of Monte Carlo Ray Tracing [40]

probable contribution of light. The rays are selected so as to distribute the sample

points uniformly above the sample. That is, the sample points are distributed evenly,

but not repeatedly. This is because repeated patterns in sampling can result in aliasing

or other artefacts. Figure 2.17 illustrates how the colour of a pixel is computed using

this method.

In the simplest implementation, irradiance is not calculated at all. The (assumed

un-occluded) ray between a sample point and each light source in the scene is com-

puted and used to solve the BRDF, just like it is in the painters algorithm. It is a

misconception that ray tracing includes second order effects ‘for free’. Second order

effects such as shadows are included ‘for free’ depending on the implementation. For

example, Monte Carlo Ray Tracing involves a large number of samples per point, and

the differences in colour between these based on the interactions it models will natu-

rally approximate shadows and global illumination. The more deterministic alterna-

tive is to produce these second order effects explicitly. For example, instead of assum-

ing the ray between the sample point and the light is un-occluded, this could be tested

by looking for intersections with occluders in the scene along the ray. This will in-

crease the computational load however, as it goes from scenecomplexity∗ f ramesize

to scenecomplexity ∗ f ramesize ∗ numbero f lights. Similar approximations can be

made for ambient occlusion. For example by sampling a number of rays about a
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point. Again it is clear that the time per sample will increase dramatically as this is

carried out.

2.4.1.3 Computational requirements of ray tracing

The main operations involved in ray tracing are intersection tests and solving

the BRDF. An example of a plane intersection test for a ray is shown in Equa-

tion 2.6 [193]:

t =
N(A,B,C) ·O+D

N(A,B,C) ·D
(2.6)

Where the ray is expressed as

R = O+ t ·D

O is the origin in 3D space, D is the direction vector and t is the intersection point

along D. From Equation 2.6 it can be seen that these tests are solved analytically,

not numerically, and so are deterministic. t is computed for every primitive in the

scene, and the lowest value of t defines the closest (and therefore valid) intersection

point [219]. The BRDF is of arbitrary complexity depending on how accurate the

developer wishes it to be.

The computational load is linearly dependent on the number of rays cast, the

complexity of the BRDF, and the number of primitives in a scene. The number of

rays cast is proportional to the frame size, and quality. Quality in this case refers to

the minimisation of artefacts, and the inclusion of second order effects. Both of these

are typically solved by casting more rays. The number of rays can increase laterally

or depth-wise (that is, multiple parallel samples, or multiple levels of recursion).

This decision will alter not just the performance but also the kind of effects that the

ray tracer will support. For example, caustics can only be modelled with path tracing

(multiple levels of recursion). Path Tracing also shows fewer artefacts than radiosity-

based implementations. The two techniques are different enough to be referred to

by different names [40, 93]. Ray Tracing is highly parallel with high data locality,

but very high memory access requirements. Individual rays do not need access to
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each other but need repeated access to the representation of the scene. Control flow

requirements are high although how much so is implementation dependent. Some

implementations, such as packet tracing, create groups of spatially coherent rays to

be traced together, while others allow the rays to diverge quickly [228, 238].

2.4.1.4 Optimising for ray tracing

Acceleration Structures

As scenes grow in complexity, acceleration structures are practically pre-

requisites for ray tracer implementations. Acceleration structures are entirely con-

cerned with reducing the number of intersection tests. Most acceleration structures

reduce rendering time by culling primitives from the list of potential intersections, but

do not remove the requirement to loop over a great number of primitives or traverse

the structure in a non-deterministic manner. Acceleration structures are typically

implemented as a tree or grid, and the scene primitives partitioned into these so the

intersection tests are performed with subsets of the scene. That is, the acceleration

structure is used to cull scene geometry before intersection tests are performed [238].

Since the type of acceleration structure will depend on application requirements, e.g.

static vs. dynamic geometry, and we are most interested in deterministic algorithms

which map well to our dataflow platform (Chapter 3), we do not discuss these in

further detail.

Ray Coherency

Along with acceleration structures, many ray tracing implementations use ray

coherency to reduce the total number of operations required to render a scene. This

is especially common in ray tracers implemented for SIMD architectures such as

GPUs. Ray coherency refers to the fact that many rays are likely to follow the same

path in space. Based on this knowledge, ray tracers can aggregate rays into a packet.

Operations including intersection tests and memory accesses can be performed for

the packet instead of each ray individually [24]. Alternatively, the same operations

can be performed for each ray in the packet but on a SIMD architecture. The results

of the operations on all rays are available but the execution time remains the same.

The high data locality between the rays in the packet also enables optimal use of local
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caches [239]. Considering a set of rays as a packet also provides the opportunity

to use operations that do not apply to rays. For example, a ray tracer could use

interval arithmetic to perform intersection tests with an acceleration structure, or

even primitives themselves. Interval arithmetic involves performing basic numerical

operations, but with intervals (in R) instead of real numbers. The intervals in this

case would be the bounds of the ray packet. Alternatively the area of the packet

could be described as a primitive, and things like geometric intersection tests used in

the place of ray intersection tests [107, 65].

Another optimisation which utilises spatial coherence is beam tracing. This

was introduced by Heckbert & Hanrahan in [74]. Instead of casting rays in world

space, the beam tracer transforms the world geometry into beam space, then uses the

volume of the beam to find intersecting polygons (in the same way they would be

projected into image space). The polygons are then ordered by depth to find the first

intersections with the beam. As in ray tracing, the beam tracer proceeds recursively

from these intersection points. This is analogous to placing a camera at the beam

origin and projecting the polygons of the world into this. The viewing frustum being

the same as the beam geometry. The authors used a modified painters algorithm to

compute the irradiance at specific points in the scene. The irradiance was used with

the BRDF of the polygons to compute the final colour of those points to render the

scene in a similar manner to a ray tracer. They also suggest inverting their beam

tracer to bake illumination, by projecting beams outwards from light sources.

Photon mapping and other effect-specific pre-computation techniques

As explained at the start of the section, the use of ray tracing does not imply

support of second order effects. Where shadows and ambient occlusion are required,

they can be approximated by casting extra rays. Alternatively, there are acceleration

techniques dedicated to these. One such technique is photon mapping. A good

overview of photon mapping is available in [93].

Photon maps are structures describing the distribution of light in a 3D scene.

They are produced by emitting rays from the light sources in the scene, much like

rays are cast from the camera when the scene is rendered. Where these rays intersect
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geometry, a photon is stored in the structure describing in the irradiance from the

light source at that point. A probability distribution along with BRDF of the surfel

the ray intersected with, is used to produce a set of rays which are emitted from

this point, and subsequently model the irradiance to other parts of the scene. This

process is repeated recursively for as long as the photon mapping algorithm dictates.

Photons are stored in structures such as KD-Trees.

The photon map stores the irradiance at all points throughout the scene. A

traditional ray tracing algorithm then, when resolving the rendering equation could

look up from the photon map the irradiance term. (Lookup, or resample based on

surrounding photons.) Further, photon maps can be used to guide the distribution

of further rays. A photon map can store an arbitrary number of properties for each

photon, depending on available memory of the computer. It could store then, for

example, the direction of the incoming rays and use these to compute areas of high

interest for extra attention by the rendering ray tracer. Photon maps are created in a

pre-processing step and can be parameterised for specific purposes. For example,

photon maps could be created, but by sampling only those paths which intersect

objects that cast caustics. This effect requires a high number of rays to achieve good

quality.

Dynamic Scenes

Ray Tracing is no more or less amenable to dynamic scenes than the painters

algorithm. A naı̈ve implementation of a ray tracer supports as much variation in the

geometric structure of the scene as the painters algorithm. For rigid transformations,

the impact on efficiency is even less than that it is for the painters algorithm. This

is because performing an intersection test between a ray and an object rigidly

transformed, is equivalent to performing an intersection between the untransformed

object and the ray transformed by the inverse transform. The vertex shader in the

painters algorithm can be provided with a transform to apply to each vertex. In the

same manner, each primitive in a ray traced scene can be provided with a transform

for a ray before any intersection tests take place. This also makes instancing in ray

tracers very efficient.
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When animation and other dynamics in the scene are included, the application

of acceleration structures is complicated. Some acceleration structures have been

designed with animated geometry in mind, and are fast to update. Typically though

the best performing acceleration structures such as KD-Trees take a considerable

time to update. A further issue with acceleration structures which is exasperated

by animation, is their dependence on scene structure. Grids, for example, have set

cell sizes. If the cells are too large, then the number of intersection tests will be

non-optimal. If they are too small update times will become impractical. Selecting

the most efficient acceleration structure for a scene is difficult, but even more so

when the scene content may change at any time [238].

2.4.2 Image-Based Rendering

Recall the rendering continuum from Section 2.3.1.1. The next stage along this

from geometry-based rendering is image-based rendering. Unlike the techniques

considered until now, image-based renderers store only minimal, if any, information

about the geometric content of a scene. Image-based rendering is the construction

of novel view of a scene, not by modelling the transport of light, but by sampling

it. One advantage of image-based rendering is speed. In image-based renderers

samples of the lighting in a scene are pre-computed outside the critical rendering

loop. During rendering these samples are combined to approximate the lighting

from a given perspective. They are either sampled from the real world with cameras

or calculated from virtual worlds with techniques similar to ray tracing [200]. A

simple but practical example of an image-based renderer would be an environment

map applied to a sphere. The texture on the sphere would be sampled based on a

viewpoint inside it, by casting a ray out towards the sphere surface. If the degrees of

freedom of the viewpoint were limited to orientation only, all possible views of the

environment would be contained within the map. Pre-computing samples reduces

the computational load during rendering, but limits the dynamism of the scene. Any

parameter of the scene which contributes to the appearance of the pre-computed

effects cannot be changed without a possibly expensive re-computation stage, or the

risk of introducing artefacts.
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Figure 2.18: An environment map which can be applied to a sphere - it contains a full 360◦

view of the scene [124]

Image-based rendering exists on a spectrum with solutions trading off memory

and on-line computational load for flexibility and quality. One of the purest imple-

mentations of an image-based renderer, meaning an implementation using little to

no geometric information, is a light field renderer.

Figure 2.19: The continuum of image-based rendering [200]

2.4.3 Light Field Rendering

Light fields were introduced by Levoy & Hanrahan [114] who described them as

samples of the plenoptic function. The plenoptic function [3] defines the radiance

through a specific point in space. The solution is the total radiance of all the rays

passing through this point, which may also be parametrised in terms of wavelength,

time, and other factors.

Light fields are collections of samples of the solution to this function at discrete

parametrisations. The goal of a light field renderer is to use these discrete samples to



2.4. Alternative Rendering Solutions 75

compute the continuous solution. As described by Slater [204], ‘objects illuminate

rays, and the rays are rendered’.

2.4.3.1 Parametrising light fields

The parametrisation of the light field defines the data structure in which the field

is stored, and how samples are combined into novel viewpoints. For example, a

renderer may be biased towards selecting samples with high spatial coherence or

high angular coherence. This choice will affect the quality of the render and the

artefacts that are introduced [87].

Light Slabs

The first parametrisation was introduced by Levoy & Hanrahan [114]. They

noted that for many applications there are no occluders, and so the 6d plenoptic

function can reduce to 4d. They parametrised rays using locations on two 2D planes,

as shown in Figure 2.20.

Figure 2.20: Illustration of a single ray in a light slab [114]

Schirmacher & Vogelgsang [191] created a generalised implementation of the

light slab, with the near plane being a free-form surface. Gortler et al. [67] extended

the parametrisation, providing each point on the near plane a basis function to create

the Lumigraph. The function defines the contribution of that grid point, abstracting

the integration from the rendering process.

Focal Stacks

Isaksen et al. [87] considered each location on the near plane a pinhole camera,

containing samples at different directions. From the camera parameters, a mapping

can be constructed allowing the correct sample from each camera to be identified

for an arbitrary focal plane (Figure 2.21). This parametrisation allows a renderer

to easily alter the focal depth of the rendered image, allowing for attractive visual
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effects such as in Figure 2.22.

Figure 2.21: Given an arbitrary focal plane, and a location on this plane, the camera param-
eters can be used to identify the ray which intersects this point for each camera
on the near plane [87]

Figure 2.22: With a sufficiently large range of cameras on the near plane, a renderer can
see through objects. No single camera in the light field will see the entire cliff
face [87]

Spherical Light Fields

Ihm et al [82] introduced the spherical light field. It describes all the rays

passing through a spherical hull bounding an object or scene (Figure 2.23).

Figure 2.23: Illustration of a spherical light field expressed in 2D [227]

Concentric Mosaics

Shum & He [201] introduced the concentric mosaics parametrisation for inside-

out and walkthrough applications. A concentric mosaic is constructed from multiple

panoramas, captured in such a way that each vertical line provides a unique view
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of the scene. This is done using a linescan camera moving in a circle, but pointing

tangential to it. The samples can then be rendered into a novel view as shown in

Figure 2.24. The parametrisation was extended in [115] to include vertical line scans

from different elevations, supporting vertical parallax. Birklbauer et al. [20] also used

a cylindrical parametrisation but where the samples were normal to the concentric

circles. Each location contained a number of samples of different orientations

corresponding to different focal depths.

Figure 2.24: Rendering novel viewpoints with rays from concentric mosaics [201]

2.4.3.2 Virtual Light Fields

The light field parametrisations so far have assumed that light fields are captured

from the real world. A number of light field cameras are available, from companies

such as Lytro8 and Raytrix9. Capturing light fields is not necessarily straightforward

however. Rendering techniques assume a particular parametrisation, requiring poten-

tial transcoding of the field. Capturing uniformly spaced samples over a large area is

logistically hard, especially with large rigs that may be required by, e.g. concentric

mosaics.

Slater [204] introduced the Virtual Light Field (VLF), noting that light fields for

VEs do not need to be constructed from a set of intermediate 2D images. A naive way

to synthesize a VLF would be to simply move a camera through a scene rendered

in real-time. This has a low barrier to entry, but would have the same limitations as

the painters algorithm with regards to second order effects. High quality rendering

8https://www.lytro.com
9http://www.raytrix.de
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techniques can be used in place of the real-time renderer but since each viewpoint

must be rendered from scratch the time costs are prohibitive [144]. Slater’s VLF is a

data structure made up of multiple Parallel Sub-Fields (PSFs). A PSF is an array of

NxN parallel rays, the rays all at some arbitrary but identical orientation around the

center of an object or scene, analogous to an orthographic projection of the scene but

with multiple intersection points for each ray. Khanna et al. [104], and Mortensen

et al. [150], present a method for constructing virtual light fields by building an

illumination network using a method similar to depth peeling.

2.4.3.3 Rendering Light Fields

The exact operations required to sample and render a light field depend upon the

parametrisation. The first stage is identifying the parameters for the plenoptic

function to solve. The parameters for a sample point on the image plane are computed

analytically from the viewer position, perspective transform and position, just like in

ray tracing [114].

This was described by Slater [204] as placing an eye into the scene. The eye,

for example, could be a rectangular polygon within the volume of the light field,

acting as a lens to focus and refract intersecting rays onto an image plane in order to

support things like perspective projections. These rays would then be parametrised

in terms of the light field and the continuous parameters for the plenoptic function

computed for each texel on the image plane.

The second stage identifies the discrete samples with which to form the ap-

proximations of these continuous parameters. The approximations are formed by

combining samples ‘near’ the discrete parametrisation.

Artefacts and Depth Corrected Rendering

The creators of the first light field renderer noted the requirement of very high

sampling densities to avoid excessive blurriness [114]. While they describe it as a

limitation of their method, this blurriness is a consequence of the smoothing process

light field data undergoes as it is sampled from the real world by the camera, and then

again as it is rendered from multiple samples. A more extreme artefact is ghosting

which occurs due to low sampling densities and inappropriate focal planes. A good
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explanation of these artefacts is available in [118].

Assuming an arbitrary constant focal depth can result in severe artefacts [118].

A number of authors have used depth information, approximated from visual flow or

available as a by-product of synthesis, to alleviate these.

Gortler et al. [67] combined a geometric proxy with their light slab. They

use this proxy to compute the 3D location all sample points should pass through,

and therefore new sampling locations on the near and far planes for each ray. In

the original implementation the depth correction was performed dynamically, with

the sampling rays being cast against proxy geometry. This means the light field

renderer loses its deterministic characteristics. It should also be noted, as in [27],

that a process which entails only looking for rays which intersect the same point can

only approximate Lambertian surfaces with reasonable accuracy.

Buehler et al. [27] introduced a technique to render unstructured lumigraphs.

They create a camera blending field which defines coefficients for each of the cameras

in the lumigraph. This allows higher significance to be given to samples with smaller

angular or Euclidean distances, for example.

Schirmacher & Vogelgsang had a similar approach in [191]. They created a

surface, onto which the images from a set of unstructured cameras could be projected.

By incorporating depth information from the original images into this mesh, they

could subdivide & weight the source images and combine them appropriately.

The depth correction techniques considered so far have used geometric proxies

in one way or another. While improving rendering quality, these make the rendering

techniques non-deterministic and coupled to the complexity of the proxies.

Todt et al. [227] presented a depth-correct light field renderer using only the

depth values for individual sample rays. They did this by estimating the depth of the

rendering rays performing multiple iterative sampling stages per pixel. Each stage

improved the depth estimation of the rendering ray leading to the selection of better

sampling rays. They presented two depth estimation methods. The first used iterative

depth refinement based on the depth values from the surrounding rays (Figure 2.25).

The second used a ray-marching approach to search until the integrated depth value
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closely matched that of the sample rays (Figure 2.26).

Figure 2.25: Iterative depth refinement [227]

Figure 2.26: Ray marching depth estimation [227]

Light field density requirements

There is little discussion in the original light field publications, of how large

or dense a light field should be for optimal rendering quality. Gortler et al. [67]

suggested that since the object is assumed to lie near to the far plane, that this

plane should match the final image resolution. Recall that in this parametrisation

the closer the object is to the far plane, the fewer depth discrepancies there are

(Figure 2.27). The resolution of the near plane in this case defines the angular

resolution. For diffuse objects a low near plane resolution will be satisfactory while

highly anisotropic surfaces will require a high resolution. Gortler et al. set the

resolution of their near plane to ∼1/8th of the far plane (512/64 & 128/16).

Lin & Shum [118] determined analytically the minimum number of images

required for both the concentric mosaic and light slab parametrisations. They did
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Figure 2.27: When the far plane and the surface of an object are spatially coherent, a grid
point on this plane will always sample the same location on the object, with
the near plane defining the perspective [67]

this by modelling the cause of the double image artefact and deriving expressions

relating sample depth discrepancies to the sampling camera density.

2.4.4 Frameless Rendering

Rendering a frame typically takes longer than to draw it. Most renderers therefore

compute an entire frame, calculating sets of pixels in sequence while writing the

colour values to one of a set of frame buffers. Swapping between these frame

buffers prevents the user seeing discontinuities as the image is rendered. Some

renderers however break the traditional concept of a frame in order to achieve higher

performance.

In Section 2.4.1.4 it was seen how ray-tracer implementations would distribute

processing of rays, either in hardware or software, to take advantage of cache

coherency. This involves collating computations that are likely to require access to

the same areas of memory, so that this data can be cached and served locally, for

example from the CPU cache. This cuts down on memory accesses which take time

and lock out access to other threads.

Tile-based rendering involves splitting the frame into tiles such as was done in

Odom et al.’s ray-traced CAVE [160]. However tile based renderers will typically

exist on a single chip and break the frame in an effort to minimise expensive off-chip

accesses. This removes the bottleneck introduced by the memory channel, which can

be especially important in systems which share graphics memory, such as mobile

phones.
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Figure 2.28: Tile based renderers attempt to remove the bottleneck of memory access by
subdiving the frame into chunks manageable by a single chip’s cache [29]

Figure 2.28 shows the data flow for a tile based renderer during rendering.

Display Lists are constructed by identifying in which regions each primitive is

present in. This is a relatively cheap operation compared to colour computation

for each pixel. The display lists are used to cache locally the pertinent information

required to render each primitive in the display list, such as vertex location and

material properties. These local caches can then be used to render the tile quickly

and update the shared frame buffer [29].

Tile-based rendering does lend itself to parallelism, though it is more commonly

used to optimise memory access. Simply rendering tiles in sequence does not allow

the frame buffer to be dispensed with as discontinuities may be noticeable along

the large borders of the tiles. In [41], Dayal et al., present a frameless tile-based

ray-tracing renderer which dynamically controls the tiling in order to target the

ray-sampling into regions of high importance. In their implementation, an adaptive

sampler identifies regions of the frame with large spatio and temporal colour changes.

They cache samples over a period of time allowing the identification of regions with

high detail such as edges, but also those in motion. The sampler directs the adaptive

re-constructor, which uses ray-tracing and the cache of previous samples to compute

new samples. It does this by tracing new rays, and re-projecting existing samples as

a further optimisation.
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Figure 2.29: Dayal et al. intelligently directed a ray-tracer to re-sample tiles with high detail,
in space or time [41]

Figure 2.30: An example of the tile based segmentation performed by the adaptive sampler
[41]

Figures 2.29 shows the structure of Dayal et al.’s renderer. Figure 2.30 shows

an example of the frame segmented into tiles. The segmentation in Figure 2.30 is

achieved by merging and segmenting tiles within the frame. This is done based on

the information (amount of variation in colour) in samples contained within that tile.

The adapative sampler will segment the frame so that the variations within each tile

are roughly equal over the whole image. This results in tiles over areas of high detail

tending to be smaller. The tiles to sample next are selected randomly. The areas with

high detail or velocity have a higher change of being re-constructed as they have a

higher tile count.

Dayal et al. implemented their adaptive frameless renderer on an NVidia

6800 Ultra GPU and acheived a “framerate” of 20 Hz at a resolution of 256×256.

The figure of 20 Hz refers to the rate at which the renderer could re-construct

approximately 400,000 samples. This figure has little meaning though as there is no

reason to assume that higher sample rates will result in lower latency or better image
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quality as this is highly dependent on the scene. The authors instead pre-render a

short animation to use as the ground-truth. They then have other renders attempt to

re-produce this in real-time. The resulting error rates provide a good characterisation

of the renderers in terms of image quality and latency & jitter. The adaptive frameless

renderer presented shows error rates considerably lower than other frameless and

frame based renderers.

Bergman et al. [19] were one of the first to describe an adaptive refinement

algorithm. They introduced the concept of a ‘golden thread’. The golden thread

is a single step that as it is executed results in an ever higher fidelity image. Of

course spatio-temporal driven sampling such as Dayal et al.’s is not the only option

for adaptive refinement. Qu et al. [179] detected missing fragments in images after

warps of voxel renders. Debattista et al. [42] and Chalmers et al. [35] used models of

human perception to selectively guide rendering resources to the most impactful areas

of the image, enabling high fidelity rendering for virtual reality at rates otherwise

unachievable.

There are a number of alternative algorithms to solve the rendering equation.

Ray-tracing typically has higher quality than the painters algorithm as more complex

second-order effects can be simulated with it. It is in theory frame-less but in

practice is far slower than existing pipelines due to the computational requirements

of exploring the scene. The biggest impediment of these for real-time rendering is

their non-deterministic nature. From the above previous works, it is clear image-

based implementations typically have higher determinism and simpler local loops.

Combining these approaches is a promising start for building low latency renderers,

and we explore this in Chapter 4.

2.5 Specialised Rendering Hardware

2.5.1 Hardware Accelerated Light Field Renderers

Hardware accelerated light field renderers have been implemented, using both GPUs

and bespoke hardware. In [150], Mortensen et al continued the work of Khanna

et al and implemented a VLF synthesizer & renderer on a GPU. The authors used
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the same data structure and propagation process as described in Section 2.4.3.2.

Rendering was done by re-sampling the directionally dependent radiance stored in

the PSF tiles. To do this, the camera is placed within a unit sphere and the sphere

rendered in false colour. This sphere is the same one used to describe the directions

of each PSF. That is, each vertex defines a PSF direction. When triangles of this

sphere are projected onto the image plane, they can be used to define the closest

PSFs (direction wise) for each pixel. This is because each vertex describes a discrete

direction, and during rasterisation the direction identifiers from the three corners

of the triangle are interpolated across an area of the image plane. The value at any

pixel then determines the weights for the PSFs surrounding it. Recall that each PSF

contains sets of surfaces which intersect its various rays. Before interpolation can

take place, the correct surfaces from the PSFs must be identified. To do this, the

scene is rendered in false colour again, this time returning surface identifiers for

each pixel. Another false colour pass identifies the position of each pixel in world

coordinates. These coordinates are used to identify the exact rays in each PSFs with

which to look up the luminances. The luminances can then be interpolated using the

coefficients computed in the first pass.

For this implementation the rendering time is not independent of total scene

geometry, but unlike other real time global illumination approximations it is indepen-

dent of the viewpoint. The frame rates achieved were all between 121 and 124 fps for

scenes with between 19 and ∼9k faces. Mortensen et al also noted that their method

of propagation outperformed many off-line ray-casting based global illumination

techniques.



2.5. Specialised Rendering Hardware 86

Figure 2.31: Comparison of the quality of a real-time hardware accelerated VLF renderer
with an offline ray tracing algorithm [150]

Regan et al. [181] constructed a hardware accelerated lightfield renderer with

the explicit goal of achieving low latency. Their system was designed for “fish tank”

VR. That is, the user observes the virtual world via a display, but receives motion

parallax cues, as if they are looking into a true 3D volume.

Figure 2.32: An example of fish-tank VR [181]

The authors did not state whether they captured the light fields or rendered them.

They did however use Levoy & Hanrahans light slab representation. Their light slabs

were assembled from 128 512x512 gray-scale images. The light field renderer only

supported 1 degree of freedom, that of position in the horizontal axis. That is there

were no vertical parallax cues. This is due to the memory limitations of the hardware

(32 MB). The architecture of their renderer is shown in Figure 2.33.

The Raster Generator is responsible for maintaining the point in the frame and
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Figure 2.33: Block diagram of the architecture of a real-time light field renderer imple-
mented on an FPGA [181]

runs continuously. The host computer forwards tracker data to the renderer in the

form of the horizontal axis position change δ s. On each clock cycle this is integrated

with s and the current position is maintained within the renderer itself. The current

position in image space is used to sample the light field in the Light Field Buffer.

Two samples are returned, at s and s+1, and then these are blended depending on

how far between them the user is in the Blend function. The tracker in this case

is a rotary encoder which can be sampled at very high rates by the renderer and

so position samples are very likely to have higher resolution than the light field

sample intervals. Regan et al implemented their renderer on an Programmable And

Reconfigurable Tool Set (PARTS) board. This was to avoid the output buffer of

existing graphics systems and keep latency low. The PARTS board is somewhat

like a precursor to a Dataflow Engine (DFE). It is an FPGA development platform

consisting of Virtex 4028 FPGAs running at 15MHz which could be placed in a PCI

slot.

The authors measured the latency of their system at 200us. They used it to

investigate thresholds of latency perception. They found that users could begin to

detect latencies around 15 ms.

2.5.2 Address Recalculation Pipeline

Regan & Pose created the Address Recalculation Pipeline, which decoupled the

user’s head orientation from the rendering process [180]. It did this by continually

rendering a scene into a cubic environment map. This was then sampled at a high rate,
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each sample using the latest orientation tracking data. By decoupling the generation

of the final image from the slower traditional rendering process, Regan & Pose could

minimise apparent latency. Using image composition, they could also combine

parts of the scene rendered at different rates, or using different techniques or even

hardware. Regan & Pose’s implementation was designed to run with a pixel clock of

25.2 MHz, each of the five pipeline stages executing within 40 ns. If each reported

stage was atomic, the total latency would be 200 ns.

2.5.3 Warper Board

Vicenzi et al. [235] used a warper board to compensate for latency in HMDs. This

was a dedicated device with a hardware implementation of a set of static and dynamic

image warping algorithms. The board would perform image distortion for the HMD

geometry, in addition to extrapolating the image to create a new view based on the

latest tracking data.

By using a predictive filter such as a Kalman Filter, the authors could reduce

the apparent latency of their HMD. They tested a number of predictors, with and

without the warper board and found that the warper board combined with a Kalman

Filter provided the best performance - a visual registration error of ∼0.26◦.

2.5.4 Warp Engine

Popescu et al. [178] created the WarpEngine. This is similar to Vicenzi et al.’s

WarperBoard but operates on images with depth information. Reference images are

subdivided into tiles which form the basic rendering primitives. The tiles are then

warped and interpolated into screen space. The interpolation is performed using a

warp buffer - an oversampling of the screen space with 2x2 depth pixels interpolated

per pixel in the final frame.

Popescu et al. use multiple ASICs running in parallel to perform tile based ren-

dering. This was originally because a single ASIC did not have sufficient processing

power or memory. However, it has the side effect of reducing latency should the

regions visited later in the scan-out be able to be fed with updated tracker data, or,

ideally drive display like a Digital Micro-mirror Device (DMD) that is not line-scan



2.5. Specialised Rendering Hardware 89

based. As the same operations are performed on each tile primitive, the WarpEngine

design maps well to SIMD based architectures so may now work well on a GPU

(GPUs at the time were not powerful enough to support the implementation).

The authors did not measure the motion to photon latency of their system,

however they did estimate it took approximately 1872 cycles to perform a 3D image

warp for all samples in a tile. With a hardware implementation running at 300 MHz,

the rendering latency would be on the order of microseconds [133].

2.5.5 High Performance Touch Prototype

Jota et al. [98] and Ng et al. [155] created the ‘High Performance Touch’ prototype.

This apparatus was designed to facilitate experiments with direct touch interfaces.

The apparatus approximated a hardware accelerated pathway proposed by the authors

that could be incorporated into devices such as smartphones. This channel would

receive user input and drive the GUI of the device independently of the application

that created the control. The application would process the input in the background

and update the GUI a few ms later, but the user would have the perception that the

device is responding instantly.

The apparatus is based on a low-latency touchscreen connected directly to

a DMD projector. An Field Programmable Gate Array (FPGA) development kit

receives input directly from the touch panel. A number of basic controls, such as

sliders, are implemented in the FPGA hardware design, allowing it to respond as the

proposed parallel channel above would. The system is managed at a high level by a

separate PC. The latency of the system is configurable, with a base latency of 1 ms.

Jota et al. [99] used this apparatus to perform investigations into user interaction

using Fitts’ Law-style tests. A linear regression showed a significant effect of latency

on throughput (i.e. user performance), though a pair-wise comparison showed no

significant affect of latency between the 1ms and 10ms conditions. The authors

also investigated the consciously perceptible latency, and found users could perceive

as little as 20ms of latency between them placing their finger on the touch panel

and the system responding. During direct interaction tasks participants can ‘detect’

as little as 2-3ms, though this is believed by the authors to be them detecting the
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disparity/registration error of the display, rather than the latency itself.

2.5.6 DMD Optical See Through Display

Lincoln et al. [119] used a DMD to create a prototype AR system. Their implementa-

tion contained the start of what should become a system of cascaded image warping

functions, each running at a higher rate. The design is based on the observation

that the magnitude of the error introduced in a warping stage, corresponds to the

magnitude of the warp. Starting with a frame rendered from a traditional GPU, they

chain multiple warping stages, each one simpler than the one before it, but operating

at a higher rate. The higher speeds mean the corrections applied by the cruder stages

are less significant and therefore less visible, but the perceptual latency is still only

as high as the final stage [263]. The system uses dithering to create grayscale images

from the monochrome DMD. The image warping functionality is embedded in the

control loop that drives the dithering. The warping functionality supports accounting

for rotations in two axis. It does this by moving a sliding window across the image.

Monochrome frames are displayed at 16 kHz allowing the system to produce a

visible response to user input within 80 microseconds.

In the current implementation, the authors precompute a frame and write it into

the FPGA, rather than feed it a stream of semi-distorted images as would be the case

in the final implementation. To reduce the latency as much as possible, they use a

mechanical tracking system.

There have been a number of specialised rendering systems built to optimise

for latency. It is clear from these that the constraints required to achieve the high

performance of the local rendering loop make them unsuitable for shouldering the

entire rendering problem. Most augment existing systems or otherwise accept severe

constraints as part of their nature as proof-of-concepts. We also note that a number

of these systems such as Regan et al.’s were limited only by the hardware of the time

and that we are able to re-use their principles directly, removing constraints solely

with our more capable hardware.
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Chapter 3

Dataflow Computing and Rendering

To prototype the alternative dataflow rendering algorithms we used a Maxeler DFE,

a spatial computing platform. This section provides a review of spatial computing,

and the capabilities of the platform. We focus on the characteristics of dataflow

computing that are advantageous to fast rendering local loops, specifically its de-

terminism. Likewise, we review the characteristics of the Maxeler platforms which

have the most influence on the implementations, such as memory and IO. Finally,

we review a proof-of-concept just-in-time renderer that draws 2D sprites.

3.1 Spatial Computing
In traditional CPU architectures, a single piece of multifunctional silicon executes all

of the operations in an algorithm. It executes the algorithm on one unit of data, with

the operations being laid out in time. Subsequent units of data wait until the processor

has executed all operations, before they are processed in turn. In dataflow computing,

the algorithms are laid out in space. Algorithms are expressed as a sequence of

operations which are arranged into dataflow graphs. Data to be transformed by

the algorithm is streamed into the graph and moves between the operations being

transformed at each stage until the algorithm is complete. Each operation has

a dedicated piece of silicon. All operations execute with true parallelism. The

computation time of the dataflow graph for a single unit of data then is the same as

that on a CPU, but the dataflow graph is executing the algorithm on many units of

data simultaneously. The throughput then is far higher than a time-shared processor
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Figure 3.1: Illustration of how true-parallel processors achieve higher throughput than time-
shared processors

[170]. This is illustrated in Figure 3.1.

All common architectures can execute dataflow graphs, including CPUs and

GPUs, as they are simply a sequence of operations. To get the benefit of expressing

the algorithm in this way though, a spatial computing platform is required which

allows for true-parallelism.

3.2 Maxeler Dataflow Engines

Maxeler DFEs are processing cards which execute dataflow computations. Users

describe their dataflow graph in Java using Maxeler’s toolchain (MaxCompiler). The

toolchain compiles the algorithm into a form which can be loaded onto a DFE. When

the design is loaded, the DFE is a computer dedicated to executing that algorithm.

MaxCompiler & the runtime services (MaxelerOS) abstract away the implementation

details of the DFE. For example a user can compile their design and then run it on a

card installed locally, or a set of cards installed remotely in a data centre, with only

slight modifications to the application running on the host PC, and no modification to

the dataflow graph [138]. The current technology that DFEs are based on are FPGAs.

Any spatial computing technology could be used in future generations however. In

this section we review design considerations and DFE resources that are relevant

to any dataflow algorithm designer. We also review how the current generation of

DFEs are constructed. This is relevant, as to minimise latency a rendering algorithm
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must be tightly coupled to the hardware driving the display. This is because the

current generation of displays operate at fixed frame rates, and display data which

is computed at a rate which leads or lags that of the display will introduce artefacts

and additional latency. This has been recognised by industry and standards have

been announced for variable rate displays, but they have not yet achieved widespread

adoption [233].

The computational power of a DFE is derived from an FPGA. It is expected

the reader has some awareness of what FPGAs are and where they are used. FPGAs

are ICs, which can be reconfigured to implement any arbitrary logic circuit that

fits within the device. Circuits are formed in the FPGA fabric, which is where

the combinatorial logic is implemented, and interconnections between this and the

resources of the chip are formed. In addition to the components that form the fabric,

modern FPGAs include hardware dedicated to specific functionality. The structure of

such an FPGA, the Altera Stratix V, is shown in Figure 3.2. The fabric is where the

user design is implemented. Interspersed throughout this is dedicated hardware. The

DSP Blocks, for example, implement common digital signal processing functions

such as fixed point multipliers and accumulators. The M20K Blocks are memories.

The blocks to the left and right edges are hardware implementations of the lower

layers of common communication protocols such as PCIe and 10G Ethernet. The

blocks at the top and bottom implement circuitry for communicating with DRAM

memories and general purpose IOs [8].

The dataflow graph constructed by Maxeler’s toolchain shall have to be con-

nected to the resources described, to form the physical layer of a channel which will

drive a display. To minimise latency, this channel should be directly between the

dataflow graph and the display. We will not discuss the implementation of FPGAs

further, other than to say that FPGA fabrics do have maximum supported clock rates.

These are a function of device design and are specified by the manufacturer. They

are typically lower than CPUs, even low power CPUs in microcontrollers, and ASIC

implementations of the same design. For example, the Stratix V core fabric can

theoretically run at ∼800 MHz; the actual speed depending on limiting factors, such
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Figure 3.2: Diagram of the physical layout of a Stratix V FPGA [8]

as the length of individual routes, within a design [8]. A detailed review of FPGA

technology is available in [139].

Within the dataflow graph, MaxCompiler supports common logical operators

and control flow mechanisms such as ternary operators and switch statements. There

is extensive support for mathematical operations on arbitrary precision numerical

types, from simple operations to numerical methods such as finite difference for

approximating derivatives [138, 171].

To be of any use, the edges of a dataflow graph must communicate with external

devices to send and receive data. What forms of communication are available depend

on the resources of the DFE. Some DFEs support specialised data sources such as

GPS and high precision clocks, but the most common interconnects are MaxRing,

Ethernet and PCIe. In addition we have implemented a display interconnect allowing

us to drive any DVI receiver. These resources are implemented using a combination

of Hard IP on the FPGA, physical resources on the DFE, and Soft IP provided by

the Maxeler toolchain, which also provides an interface to the dataflow graph.
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3.2.1 Maxeler DFE Interconnects

3.2.1.1 MaxRing and Ethernet

MaxRing and Ethernet are high speed serial interconnects which allow DFEs to

connect to other devices. Unlike PCIe which connects only to the host, MaxRing

and Ethernet allow a DFE to operate autonomously - receiving, processing and

transmitting data independently once the dataflow algorithm has been loaded. The

hardware implementation of the communication stack for both MaxRing and Ethernet

make transmission between devices deterministic as long as the channel is not

interrupted. These connections can be used to spread a design across multiple

devices, increasing memory size and bandwidth, or computational power [136]. The

latency through the stack on the DFE is also very small, in the order of nanoseconds.

When using these interconnects there are two considerations. The first is

straightforward, and that is that the bandwidth of the links are limited, and the

designed data rate including overhead must not exceed this. The second is less

obvious but significant for our application. Modern high bandwidth connections

such as these are based on high-speed serial protocols which are asynchronous or

plesiochronous. With these channels, the clocks at the transmitter and receiver are

expected to differ. This is due to the practicalities of transmitting such a high speed

clock between devices. The clocks for the channel are synthesized independently

at each device, with the receiver attempting to match its clock to that recovered

from the data. PCIe for example expects the clocks at the transmitter and receiver

to differ by up to 600 ppm [202]. These differences require control symbols to

be inserted into the data stream for clock detection & phase alignment. Protocols

also include space or idle symbols which are dropped by the receiver. These are

used in rate matching implementations where the transmitter and receiver should

operate at nominally the same rate, but the transmitter may be operating slightly

faster [70, 7]. Ethernet, for example, uses this approach. These channels typically

support packet based transmission protocols such as Ethernet, USB and DisplayPort,

which by nature support discontinuities in the data stream. In our application though

an image generator must maintain synchronization between data sources, and must
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operate continuously, indefinitely. As a result data sources external to our rendering

algorithm must operate at a higher rate than our pixel pipeline. This is to prevent the

pipeline being starved, since it cannot be halted to wait for data without introducing

visual artefacts. High level flow control will be required as well, to prevent overflow

due to the higher rate of the data sources. The responsiveness of the flow control

implementation will determine how much data must be pre-computed, and therefore

the additional latency in our pipeline.

MaxRing uses the Aurora protocol [255]. This is a high speed serial simplex

or full duplex protocol designed and made open by Xilinx. Being open, it is one of

the few protocols that can be used for chip-to-chip communication between FPGA

vendors. Aurora is a frame-based protocol with control messages and frames existing

at the same level. These control messages include native flow control messages

which can be used to pause a transmitter indefinitely or for a fixed number of cycles.

When paused, the transmitter sends idle messages instead of frame data [183, 255].

Ethernet defines spacing symbols (known as IDLE as well), but not for-rate matching.

This function is fulfilled by the Inter-Packet Gap. This is the time that transmitters

must remain idle between frames, and originates from when Ethernet was a bus-

based protocol and transmitters needed to remain idle for a proportion of the time to

allow others the chance to transmit. The Inter-Packet Gap does however provide an

opportunity for a receiver to process the last received frame [203]. The IDLE symbol

in Ethernet is used instead to keep the signalling system alive when there is no data

to transmit. Ethernet also includes flow control in the form of PAUSE frames [101].

3.2.1.2 PCIe

PCIe is a high speed point-to-point based interconnection fabric. Current generation

DFEs have PCIe connections through which they communicate with a host. Max-

elerOS provides a low latency API. This uses polling to minimise the latency when

communicating with a DFE [136].

Typical interconnect latencies are in the order of hundreds of nanoseconds, so

PCIe latency should be relatively inconsequential [177]. We verified the total end-

to-end latency of the system regardless. Using high speed cameras and a modified
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keyboard, we show the latency through the OS input system, PCIe and DFE is under

1 ms.

3.3 Control Flow in Spatial Computers

Control flow for branching is supported in dataflow graphs. Much like in early

GPUs though it can be inefficient since both pathways are executed but only one

result is used. Control flow is more common in the form of controlling access

to resources. For example, disabling transmission of network data while frames

are assembled. In addition to comparison operators, spatial computers provide the

concept of time in the form of counters [138]. Looping and recursion are possible in

dataflow computing and can be implemented very efficiently in terms of hardware

resources, but they can impact the data rate severely. Recursion is implemented in

much the same way as looping; one edge of the data flow graph is attached further

up the graph forming a feedback loop, known as a cycle. In a dataflow graph the

operations are not implemented as a continuous network of combinatorial logic. On

each clock tick the data progresses through the pipeline one stage at a time. So, for

example, an algorithm consisting of 8 operations would take 8 ticks to complete.

Knowing the distance in operations between two edges of the graph, allows a stage

to incorporate previous results into its operations. Figure 3.3 illustrates this concept

for the row sum problem, where each new data value is added to the sum of those

before it.

It is important to remember that what appear to be atomic operations such as

additions and multiplications may be implemented in multiple stages. This has two

implications, the first is that pipeline must be tapped at the correct point, and where

this is may not be obvious. The second is that the result of this operation will be

delayed by the number of stages in time. Consider Figure 3.4, which is a more

detailed illustration of the row sum problem. The addition operation is split into four

pipelined stages. As can be seen though, on each clock cycle a new value is read from

the input stream, even when the result of the previous operation as not reached the

end of pipeline. It can be seen that due to pipeline delay, by the time N1 reaches the
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Figure 3.3: Illustration of how cycles may be used to implement loops in dataflow
graphs [135]
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Figure 3.4: Illustration of how ostensibly atomic operations may be split up in practice,
confounding the design of a dataflow cycle

input again, three other values have already been read, meaning N1 will be summed

with N6, N2 with N7 and so on. For the result to be mathematically correct, N1 should

be summed with N2. For this to happen, the input stream must be disabled after every

new read, until the addition pipeline is flushed. This destroys the true-parallelism

of the pipeline and reduces the throughput by a factor of four. Similar issues will

be encountered with recursive algorithms, where data is passed through the same

pipeline stages repeatedly. So long as there is no cyclic data flow however the loops

may be unrolled, using more logic but dispensing with flow control [135].
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3.4 Memory in a DFE

The main memory resources of a DFE are in the form of DRAM, specifically DDR3.

DRAM modules are connected to the FPGA, and memory controllers are instantiated

by MaxCompiler within the design to drive these. Currently, the memory controller

concatenates all the DRAM modules, and so they appear as one very wide memory.

The address width depends on the number of modules. The interface that is presented

to the dataflow graph supports many streams of commands and data, operating in

parallel. Internally access to the memory is multiplexed between these. The memory

controller has advanced arbitration abilities which select which stream receives

control of the memory, based on rates the various streams are operating at [247].

The controller is designed to prevent data starvation, but makes individual access

non-deterministic.

The memory controller operates in burst mode, reading multiple words per

access. Burst accesses provide high efficiency, but further, they allow the memory to

operate at much higher rates than the FPGA fabric supports. For example, the FPGA

fabric may run at 200 MHz and the DRAMs at 400 MHz. Externally four words

would be read from a 64 bit DIMM, but internally these would appear as two words

of 128 bits each; two sequential accesses to the memory being concatenated into

one long word on the FPGA, halving the speed of the bus. The current generation of

DFEs have 6 DIMMs which are presented as a single memory with a width of 1536

bits. That is 256 bits per DIMM per internal cycle. The memory may operate with a

burst size of four (4 external cycles, 1 internal cycle, 1536 bits) or eight (8 external

cycles, 2 internal cycles, 3072 bits between two words) [137, 247].

In theory, a burst size of four would result in one internal cycle per operation.

In practice the latency of the memory controller is relatively high, up to 60 cycles

from transmitting the command to actually receiving data (personal communication).

Further, it cannot be predicted with perfect accuracy due to the DRAM requirement

for refresh cycles and its non-trivial addressing. DRAM is addressed by banks, rows

and columns. These three components together identify a unique bit. Internally

DRAM memories are partitioned into arrays. The bits from each array (addressed
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by the same bank, row and column numbers) are concatenated to form the data

word. These addressing elements are set independently in distinct cycles. This is a

consequence of the addressing circuitry. It does allow the elements to share physical

pins, but means it takes longer to access a series of sparse addresses than sequential

ones. Pipelining in DRAM memories can alleviate some of the performance loss,

but cannot avoid the necessity of setting multiple address elements [103]. When an

algorithm will make many small random accesses to a smaller dataset, there is a way

to improve performance further. This involves duplicating the dataset in each bank

of a memory, and then distributing individual random accesses to each bank in turn.

This takes advantage of the fact that each bank in a memory has its own addressing

circuitry. If enough addresses can be computed ahead of time to feed all the banks,

one bank can be preparing access to one address, while the other prepares access to

the second address, and so on. This way, a new word can be received on every tick.

If an algorithm requires a uninterrupted stream of random access data then,

there are two considerations. The addresses must be computed a sufficient number of

cycles in advance to overcome the latency of the memory controller or the reads will

stall and the memory will not operate at maximum efficiency. The memory controller

must also operate at a sufficiently higher rate than the algorithm, in order to complete

the addressing procedure, receive a full burst of data, and perform any refresh cycles,

all within one tick of the receiving algorithm. It is possible to trade-off memory

space for speed by duplicating data.

MaxCompiler provides functionality beyond driving the memory. For example

it is capable of determining when multiple parts of a design read the same address,

and fan-out the data from one read to these. It can also generate logic to ensure

predictable behaviour when, for example, reading and writing a single address

within one cycle. In addition to the large DRAM memories, MaxCompiler provides

access to FMEM (Fast Memory). FMEM is on-chip memory, and a few MBytes are

available. FMEM is implemented using discrete and independent resources spread

over the physical surface of the chip (the M20K blocks in Figure 1). Therefore

FMEM has truly parallel access, so long as the accesses are not to the same location
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in memory. The FMEM is implemented as SRAM; this has a much lower latency

than DRAM, making FMEM suitable for local caching [138].

3.5 Real-time Rendering on a DFE
In this section we review a number of algorithms presented in Section 2.3 from the

point of view of implementation on a dataflow computer.

3.5.1 Painters algorithm

The painters algorithm maps very well to dataflow processing, for the same reasons

it maps well to stream processing. Dataflow architectures will not however help it

overcome its biggest limitation in VR - that of the inability to update mid-frame.

The ability for a DFE to perform computations on incoming memory streams ‘for

free’ does offer some opportunities for improving how this algorithm has been im-

plemented in hardware. For example, an acceleration structure could be constructed

as the scene geometry is loaded, allowing culling to be performed on the DFE. The

DFE could contain scenes much larger than current GPUs. Effects such as shadows

could be implemented with true parallelism. Much more complex BRDFs could be

supported, and they could support more lights than are typically available, with only

a trivial increase in rendering time (although at a significant cost in FPGA fabric

space). Translucent fragments could be blended efficiently with dedicated hardware,

or this could be brute forced with a 3D colour buffer in the very large LMem. Further,

image filters could be applied at scan-out for free. It is unlikely these gains are worth

more than the flexibility that GPU computational engines provide however. In every

new generation of GPUs more and more dedicated functions are subsumed by the

multiprocessor cores.

3.5.2 Ray tracing

Ray tracing is not the most amenable method for real-time rendering to begin

with. The computational requirements increase with both scene complexity, image

quality and final frame size. The render times also change depending on where

in the scene the viewpoint is at any given time. The increase in throughput is the

most attractive feature of a dataflow based ray-tracer. The quality of ray traced
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images, both in terms of artefacts and supported effects is typically determined by

the number of rays cast. The advantage of using a dataflow architecture is that,

like ray packets on a SIMD architecture, the additional cost in time of performing

operations on multiple rays in parallel is nil. Unlike SIMD architectures however the

dataflow units can differ significantly in what operations they perform making ray

divergence less of an issue. The control flow requirements of ray tracing however

are significant, as individual rays begin to take different paths through the scene

geometry or acceleration structures, resulting in accesses to more disparate addresses.

This is the biggest hurdle to a dataflow implementation, at least for real-time ray

tracing. Much of the previous work on real-time ray tracers or ray tracers in general

does not apply to implementation on a dataflow architecture. The mapping to GPUs

is of little use since dataflow graphs have different capabilities to SIMD units. While

tree structures may help reduce the total number of operations required to trace a ray,

none of those examined so far make this number deterministic.

Dataflow computers are not suitable for implementing an entire ray tracer.

This is because ray tracing algorithms make random memory accesses and parallel

executions always diverge. However, dataflow computers could contribute to stages

of the algorithm that could make use of the large amounts of localised memory.

Caustic Professional built a ray-tracing accelerator card by reformulating the ray-

tracing problem as a database problem [78, 39]. Noting that the majority of the

algorithm’s time is consumed performing intersection tests, they designed hardware

to take advantage of a bespoke acceleration structure to trace rays at high speed. The

complex lighting calculations were then offloaded to the CPU. In [106], Kim et al

demonstrated a bespoke collision detection engine based on a Virtex II which could

perform ray-triangle intersection tests. It outperformed both a GPU and CPU, the

CPU by a factor of 70.

Consider Figure 3.5, which is the design for a naı̈ve ray-intersection accelerator.

This accelerator could perform f ·n ·m intersection tests per second. Assume we are

operating on a MAX4 DFE, we could say n is 5, as this DFE has a memory width

of 1536 bit and a single precision triangle is 288 bit. Assume also that the memory
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runs at 433 MHz. Discounting 0.64% of the bandwidth for refresh cycles, we could

clock the fabric of the FPGA at 215 MHz. Take m to be 256, based on the number of

DSP multipliers available in the Stratix V, and required by the Moller’s ray-triangle

intersection algorithm [8, 106]. This design could then in theory execute 275 billion

intersection tests per second. Clearly this design is not practical. Triangles for testing

are assumed to be contiguous and where the sets begin are controlled at a coarse

level by the CPU. It assumes the rays are coherent, or the CPU is taking a brute

force approach by cycling through all the scene geometry on each iteration. It does

serve to illustrate where spatial computing could benefit this problem however. The

large memory bandwidth supplies triangles for testing in high volumes, with fan-out

occurring for free in terms of time. The true-parallel nature of the implementation

allows multiple intersection tests, on multiple rays, to take place simultaneously.

Dataflow graphs could also implement some acceleration structures for free, for

example partitioning triangles into a uniform quadtree could be done as triangles are

loaded.
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Figure 3.5: Architecture of a hypothetical ray tracing accelerator on a spatial computing
platform
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This would not be the first hardware accelerated ray-tracer. For example, Woop

et al. [252] presented the design for a hardware accelerated ray-tracer prototyped on

an FPGA. In 2013, Caustics Professional released a ray-tracing accelerator card [78].

Yongsheng et al. [258] also describe a hardware ray-tracer, but built with dataflow

computing. Like Woop et al, theirs performs both intersection tests and shading in

hardware.

3.5.3 Light field rendering

Light field rendering with its deterministic critical rendering loop and large memory

requirements is well suited to implementation on our dataflow platform. That the

rendering time is independent of scene complexity makes it especially suitable for

VR. One of the big advantages of a DFE over a GPU or other co-processor is not

only that there is a large amount of memory available, but that the dataflow graph

has the opportunity to perform compression/decompression between the algorithm

and the memory transparently. Decompressing light maps on the fly on a CPU or

GPU would increase rendering time. It should be considered however that light

field samples do not necessarily have high coherence. Selecting a data structure and

compression technique which work well together and allow low latency random

accesses would not be trivial. Once the samples have been retrieved though rendering

process consists of a number of interpolation and filtering stages, all of which have

very high locality and independence. The image quality is highly dependent on these

operations, but selecting computationally intensive operations will not significantly

increase rendering time as it would on a time-shared processor, but merely consume

more space on the FPGA.

Being an entirely sample-based representation, one of the biggest issues with

light fields for VR is the time it would take to update them. A high level of agency,

or the sense of the user that they are affecting the world, is required for effective

VR. The illumination in a light field rendered scene would be more realistic and

reactive than one with baked maps. For example, the reflections and specular

highlights would change immediately and realistically with the changing viewpoint.

The increase in presence due the ability to alter ones own perception of the world
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may be significant owing to the more realistic response and reduced latency. The

applications would be limited to those where interaction with the world beyond this

is not important however. It would be impossible to present highly dynamic scenes

unless some method of updating the light field in near real-time could be devised.

Light field renderers do have the advantage the rendering process is independent

of this. Birklbauer et al in [20] demonstrated such a system for rendering image

stacks produced by scanning microscopes. It takes considerable time to render a

perspective from these volumes, while rendering from a light field can be done very

quickly. Birklbauer et al.’s implementation would render a new frame from a light

field cache immediately on a change in perspective. The remaining time between

perspective changes would be dedicated to updating this cache in the background.

3.5.3.1 Light field sizing and sampling

Current generation DFEs have 48 GB of memory available. It is prudent to calculate

how much of this may be used by a typical light field for a VR experiment, as this

will have implications for the design of an algorithm, such as the possibilities of

memory space/bandwidth trade-offs. Lin & Shum presented a way to estimate the

required number of samples for two common light-field parametrisations, and we

begin with this. Lin & Shum’s expression for the requisite camera spacing on the uv

plane of a light slab is repeated in Equation 3.1 ([118]), along with an illustration of

its parameters in Figure 3.6.

Dmax = δ (R+d) ·min{A+d
R−A

,
B+d
B−R

} (3.1)

We consider an environment that could be used to perform basic balance and

locomotion tests. A cube with a volume 4 m3, viewed via an HD HMD with a

resolution of 1080 pixels and an FOV of 100o. For simplicity we perform our

calculations for one dimension and multiply it appropriately. If this scene had

minimal depth discrepancies, e.g. 5cm, based on Lin & Shum’s expression 30

camera positions would be required per dimension. We assume a camera resolution

of 1080 to match the display, as per [67]. This results in a total light field size of 19
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Figure 3.6: Illustration of the parameters of Lin & Shum’s expression for the camera res-
olution requirements of the light slab parametrisation. This parametrisation
assumes a constant focal depth across the entire object or scene, indicated by
the constant depth plane.

GB for all six slabs making up the cube.

From Equation 3.1 we can see that increasing the variation in sample depth will

increase the size of the light field. Increasing the depth variation to as little as 10 cm

in either direction quadruples the light field size to 72 GB in the case above. Lin &

Shum stated that they derived their expression based on minimising ghosting, and

did not consider other artefacts. It can also be seen that the light field size decreases

as angular resolution, given in degrees per pixel, increases. While minimising light

field size, this will result in increased low pass sampling and therefore blurriness.

The implications of considering only artefacts due to geometry can be seen when

there is no variation in depth, and A & B in Equation 3.1 tend to zero. In this case

Dmax tends to infinity, i.e. the entire field can be expressed with a single camera

position, completely removing any anisotropic features. Given the impact of depth

variations on the light field size, it would be worth extending Lin & Shum’s approach

to calculate requisite resolutions for depth correct rendering techniques. If these

techniques alleviate the need for such high sample densities, we could base the

densities on the spatial frequencies of anisotropic surface features instead.
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3.5.3.2 Non-uniform sampling

So far the light fields considered have been uniformly sampled. This is true even of

Slater’s Virtual Light Fields [204]. Non-uniform light fields have typically been sam-

pled with a smaller number of moving cameras, using techniques such as structure-

from-motion to compute the parameters of the samples [27, 113]. This approach

reduces the expense of light field capture in terms of apparatus cost and time. Non-

uniform sampling however can also reduce the light field size, as sample densities can

be increased or decreased depending on the complexity of the scene. Purely diffuse

surfaces for example require far fewer samples than glossy surfaces. Khanna et al

demonstrated some of their highest quality renders when augmenting a traditional

rasterizer with a light field [104].

A non-uniform light field would not necessarily require novel parameterisations,

but the bandwidth requirements would be considerable as each rendering ray would

require a searching algorithm to identify appropriate samples. The large-word

architecture used by current generation DFEs does not lend itself well to this type

of algorithm. However, non-uniform sampling may be possible if an acceleration

structure could be found that took advantage of the true-parallel access of the FPGAs

local FMem.

3.5.3.3 Depth Correct Rendering

Double image artefacts due to depth discrepancies are the most significant artefacts of

a light field renderer. This makes depth correct rendering an important feature [118].

There are depth correct rendering techniques using only highly localised data, making

them ideal for implementation in a dataflow graph. Todt et al’s approaches are not

truly deterministic as they all involve some form of iterative search [227]. The loops

could be unrolled into hardware, with the length placing an upper limit on rendering

quality. The technique would still work even if the search were not allowed to run to

its optimal conclusion. The issue with these searches is memory bandwidth. The

depth value of a light field sample is required to estimate the rendering ray depth

at each iteration, so no acceleration structure can substitute for accessing the light

field itself every time. The number of accesses on a MAX4 DFE is at most 3-4 for
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each pixel in a pipeline driving a typical HD monitor, where the pixel rate is between

100-150 MHz. It is worth considering what modifications could be made to this

approach to keep the design within one DFE.

3.6 Prototype 2D Renderer

The advantages of dataflow computing over traditional GPU implementations, is

in their throughput and determinism. The algorithms towards the image-based end

of the spectrum are those best suited to dataflow implementation. While dataflow

graphs do not have the overhead of CPUs, the latency of the graph itself will not

be much lower than the time it would take to execute an equivalent algorithm on

a CPU. By levering the deterministic nature of the graph however we can apply it

in such a way to bypass the sources of latency in a traditional display system, that

of frame buffering. The high throughput and determinism allows us to compute

pixels just-in-time, transmitting them as required at line rate, also known as racing

the beam. This allows the system to respond visibly to user input much faster than

traditional frame-based systems, as the user does not have to wait for the subsequent

scan-out to see the consequences of their actions. To prove the feasibility of this

design, we created a simple 2D image generator that computed pixels ‘just-in-time’

and drove a traditional LCD display without buffering a complete frame.

This is not the first dataflow renderer implementation of course. Ten Hagen

et al. [222] presented one of the first practical examples of an image generator

utilising dataflow computing in their Dataflow Graphics Workstation. The dataflow

co-processor in their system did not drive a display directly, but performed pre-

processing on 3D data, a function not dissimilar to modern day vertex or geometry

shaders. Voitsechov & Etsion [236] present an alternative architecture for GPGPUs

based on dataflow computing. In their architecture instructions from CUDA kernels

are mapped to a dataflow graph. Their architecture supports multiple concurrent

threads, using input token buffers at each node, which dynamically select which

tokens to execute at any time based on available input parameters from the various

tokens. This allows out-of-order execution at each node, maximising usage of the
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entire graph when some nodes (e.g. memory access nodes) have non-deterministic

latencies.

FPGAs have also been applied to the specific problem of low-latency image

synthesis. As seen in Section 2.5.1, Regan et al. [181] constructed a very low-latency

3D light field renderer. The architecture of their renderer was similar to ours. They

achieved a latency of only 200µs, though the memory limitations of their platform

permitted parallax in only one dimension. The closest example to our 2D prototype

is that of Ng et al [155], who built a low latency direct touch interaction interface

(described in Section 2.5.5).

Another popular application of dataflow computing in graphics is data visuali-

sation. These applications take advantage of another benefit of dataflow computing -

the ease and flexibility with which it allows the expression of complex series of data

transformations, typically in a platform agnostic way. Dataflow computing is an ideal

abstraction of the process of visualising large and heterogeneous datasets [215, 192].

Optimising flexibility and simplicity however are not priorities for the rendering

applications we consider. The rendering implementations we consider are highly

application specific and can be much more narrow in the type of data they operate

on, and must meet far more stringent performance requirements. Our dataflow

graph for example makes assumptions about characteristics such as the number of

primitives, texture resolutions and colour representations. If these characteristics

change, the graph is rebuilt and hardware re-programmed. By specifying these in

advance however, we can minimise logic utilisation and latency.

3.6.1 Architecture

We constructed our renderer using a Maxeler Dataflow Engine (DFE). This is a

computing platform for executing dataflow graphs described in Maxeler’s high level

language MaxJ. The architecture of our renderer is shown in Figure 3.7. The renderer

computes pixel values by combining a set of sprites (2D images) of different sizes

and locations. The DFE has two types of memory, 48GB of DRAM (off-chip) and

∼5MB of SRAM (on-chip). The smaller sprites are stored in SRAM and the larger

background maps in DRAM. The pixel colour values are computed by the Rendering
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Figure 3.7: High level architecture of our dataflow renderer

Kernel. The current location on the display is tracked by row and column counters

outside the kernel. For each pixel the Rendering Kernel samples colour values

from the memories and combines them using a set of functional blocks operating in

parallel. The final colour values are transferred to the Video Signal Generator, which

generates timing signals such as HSync, VSync and DE. The combined colour and

timing data is transferred to the video core, which performs 8b/10b encoding, and

then line level encoding and output from the DFE using high-speed transceivers. The

output is logically compliant DVI. A simple adapter board implements the physical

interconnect. By synthesising the DVI signals and driving the display directly from

the FPGA, we can ensure no additional latency is introduced and minimise the

complexity of our apparatus.

Most functionality is implemented within the dataflow graph, in kernels running

at ∼200 MHz. The video signal generator runs at 152 MHz, the pixel clock rate of

the 144 Hz display. MaxCompiler, Maxeler’s toolchain, handles the transfer of data

between kernels in different clock domains, as well as buffering and backpressure

signalling between them. By controlling the size of the buffer between the Rendering

Kernel and the Video Signal Generator Kernel, we can control how many pixels are

rendered in advance. The buffer only has to be large enough to account for pauses in
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the data stream due to non-deterministic operations such as DRAM memory accesses.

Pixel values are computed continuously. The only communication from the CPU is

to update the algorithm parameters asynchronously. The parameters include which

background map to use, and the location and content of the sprites.

3.6.2 Image Composition

The background map is sampled using burst reads into multiple DRAM modules

simultaneously, with the reads being concatenated into a single 3072 bit word.

Each word contains pixels within a segment of a line. The aspect ratio of these

words are changed to form a stream of pixels. At the start of each new line in the

frame, commands to read the next line in full are issued to memory. At the same

time individual pixels from the previous reads are read from the input buffer. The

commands to sample the first line of a frame are sent during the synchronization

period, when nothing is drawn. For line widths that are not multiples of the memory

width, the remaining data is discarded during the synchronization period.

Sprites representing buttons and cursors were so small they could be stored

in SRAM, which supports fast random access. The address to sample is computed

based on the offset into the sprite of the current pixel being computed. This is a

function of the sprites location. The location and content of the sprites are updated

via PCIe streams. If the offset is outside the bounds of the sprite, the sample is set

to transparent. In most modules colours are represented as 32 bit RGBA allowing

alpha blending. The sprites are composited in a fixed order obscuring or blending

with the background map or those below them based on their alpha component. The

alpha channel is discarded when the final colour samples are transmitted to the Video

Signal Generator.

3.6.3 Display Interface

One of the biggest complications of the implementation was that the DFE was never

designed to support a display interface. One option was to re-purpose an existing

interconnect on the DFE such as Ethernet. The design of Ethernet however limits

the available bandwidth, due to maximum frame sizes and header overhead. Further,
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a bespoke external device would be required to receive the Ethernet frames and drive

the display. The DFE and this device would need to communicate to avoid buffer

under or over-run. The DFE would need to respond very quickly to stall or resume

requests, which implies a very shallow data graph. Otherwise, a large amount of

buffering is required at the bespoke repeater, increasing the latency and possibly jitter.

Given these complications, it was decided instead to re-purpose the physical layer

of another interconnect and drive display data directly. The resulting infrastructure

would only be of use to the specific model of DFE but it would allow development

to begin sooner.

We re-purposed the MaxRing connectors on the DFE. These were connected

directly to a set of high-speed transceivers on the FPGA. These transceivers incor-

porate generic Serialisation-Deserialisation (SERDES) [11] functionality, and can

drive, within certain limits, any serial data. We re-purposed them to create a DVI dis-

play controller. Our display controller utilised eight high-speed transceivers present

on the Stratix V powering a Coria DFE to transmit dual-channel DVI compliant data.

DVI is a simple uncompressed digital display specification, which transmits 24 bit

RGB colours across three synchronized physical channels. The DVI specification

does not specify upper and lower limits for display data rates, but rather specifies

that the signal must comply with the VESA timing standards [47, 234]. To give

an example however, 60 Hz VGA has a data rate of 750 Mbit/s while WUXGA

has a rate of 4620 Mbit/s. The Stratix V transceivers support differential signals

at frequencies in the low GHz range. Signal amplifiers with output stages which

were compliant with the DVI electrical specification were placed between these

transceiver outputs and the DVI receiver. Custom logic was designed which received

pixel values from a dataflow graph, formatted them into DVI compliant logical data,

and transmitted them via the transceivers. MaxCompiler was modified to insert this

logic into the design, and route the display data from the dataflow graph, through this,

to the transceivers. We re-verified the end-to-end latency using the same technique

as in Section 3.2.1.2, and confirmed the end-to-end latency of the system including

our display driving infrastructure was under 1 ms.
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3.6.3.1 Logical Display Interface

The colour and timing data is encoded into logically compliant DVI in the Video

Core. DVI is a fully digital protocol which transmits 24 bit RGB data over three

serial channels, with a fourth transmitting the pixel clock. The 8 bit colour words are

converted to 10 bit words with a specialised version of 8b/10b encoding, ensuring

each channel remains DC balanced [47]. During the blanking periods of the frame,

the RGB data is substituted for control data, which includes the HSync and VSync

signals.

The Data Enable (DE) signal from the Video Signal Generator determines

whether the colour or control data (Hsync & Vsync - also from the Video Signal

Generator) should be transmitted on a given clock cycle. The colour or control

words are routed to an 8b/10b encoder and then into the serialiser of the high-speed

transceivers on the FPGA of the DFE. The words pass through a shallow FIFO buffer

used to transfer the words between the clock domains of the Video Signal Generator

and the transceiver Physical Media Access (PMA), which run at the same rate but

may be out of phase.

Maxeler’s toolchain does not currently support direct access to the transceivers,

however with Maxeler’s assistance a small modification was made to the toolchain to

give access to our dataflow graph. The Physical Coding Sublayers (PCSs) within the

transceiver blocks were configured to provide direct PMA access to the transceivers.

The serialiser is present within the PMA of the transceivers, and was configured

with a serialisation factor of 10. The transceivers were bonded together and driven

by a single external serial clock, produced by a fractional-PLL placed within the

transceiver bank. A fourth transceiver was used to transmit the pixel clock. To do

this a constant pattern of 0x1Fh was written to the parallel data port. The driver

output stage is shown in Figure 3.8.

3.6.3.2 Physical Display Interface

The transceivers on the DFE use Pseudo Current Mode Logic (PCML) and are AC

coupled. DVI specifies DC coupled CML, with the common-mode voltage set by

the receiver. To make the output DVI compliant, a board was constructed which



3.6. Prototype 2D Renderer 115

Figure 3.8: Diagram of the data transfer and clocking of our DVI driver output stage, and at
what level each component exists

routed the serial data through a TI DS34RT5110. This is an HDMI re-timer IC which

implements Transition Minimized Differential Signalling (TMDS) [100] outputs,

the signalling technology specified by DVI. The board attaches to proprietary gold

finger connectors on the DFE, and presents a standard DVI female connector. Its

design and layout was based on the reference provided by Texas Instruments [224].

An image of a second-generation apparatus is shown in Figure 3.9.

3.6.4 Latency

Figure 3.10 shows our prototype renderer driving a typical LCD display with a solid

column. The column is being moved to the left and right by the user with the mouse.

As can be seen the ‘frame’ is being updated during scan-out as the latest position

of the sprite is being updated on the DFE repeatedly by the CPU. The approximate

sampling rate of the mouse can be determined by the number of lines scanned out

between sprite updates. A ghost of the previous frame (when the mouse was static)

can still be seen due to the high persistence of the LCD panel.

We measured the end-to-end latency of our apparatus at ∼6 ms, using the cross-
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Figure 3.9: Maxeler Isca DFE with DVI interface board attached above

Figure 3.10: Photograph of our 2D prototype renderer driving a sprite moving back and
forth on a typical LCD
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correlation variant of Steed’s Method [62]. This was predominantly the scan-out

time of the display. In addition, we connected LEDs to a specially designed output

of the DFE, and the parallel port of the host PC. On receipt of a specific input the

CPU application would signal the parallel port and the DFE to illuminate these. High

speed video (1000 fps) from a Casio Exilim ZR1000 digital camera monitored the

input devices and the LEDs. High speed video was used rather than an oscilloscope

because it could monitor the input device and scan-out in addition to the LEDs,

without additional instrumentation. The delay between each stage was determined

by counting the number of frames between the occurrence of each event. The high

speed video showed the first LED activating within ∼1 ms of the input device being

triggered. The delay between the first and second LED was so low it could not be

discerned from the video. This is summarised in Figure 3.11.

Figure 3.11: Total observed delay of each stage of our apparatus

3.6.4.1 Comparison with GPU

We rebuilt our apparatus with a GPU (an NVidia Quadro NVS 290) in place of the

dataflow renderer in order to measure the latency a traditional GPU would provide.

The system remained otherwise unchanged. A small program was written which drew

three textured squares, one controlled by the mouse. The program used the GLUT

toolkit to draw quad primitives specified directly in normalised device coordinates.

The latency was measured under two conditions using the cross-correlation variant

of Steed’s Method [62], that uses the relative sub-sampled motion of two tracked

points to estimate the latency between them. The results are shown in Table 3.1. We

used a swap chain of length 2. With no swap chain the tearing artefacts were so

severe measurements could not be taken.
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Table 3.1: Average and Standard Deviation of the latency of our stimuli when rendered with
a GPU

Condition Average (ms) Std.
Dev.
(ms)

Repeats

VSync On 26.17 2.79 6
VSync Off 19.86 4.16 7

3.6.5 Summary

Reconfigurable hardware has been used previously for low-latency image synthesis.

These are typically low level implementations with tight vertical integration. For

example the apparatus of both Regan et al. [181] and Ng et al. [155] had the tracker

driven by the same device performing the rendering. Reconfigurable hardware

combined with the dataflow programming model can make application specific

rendering hardware cost effective. Our sprite renderer has comparable scope to both

prior examples, but our dataflow graph can be adapted to other use cases with an

effort comparable to GPU shader programming.

Dataflow computers could be an ideal platform to create new renderers without

the limits of the painter’s algorithm. Our renderer avoided the buffering inherent in

that algorithm, and ran asynchronously of the CPU. Its architecture allowed us to

race the beam, minimising the delay between user input and what is being drawn to

the screen. For the renderer itself, this was less than 1 ms.

Our implementation currently requires a modified toolchain to drive the display.

An alternative would be to use a standard platform interface such as Ethernet to route

display data to another device. So long as the chosen protocol included backpressure

functionality the design would remain conceptually the same, but with the Video

Core and display driver implemented externally. The design would be more complex

however, with far more buffering and therefore higher latency.

In the next section we discuss how this architecture was extended to support

frameless rendering of 3D primitives in order to create immersive virtual worlds.



Chapter 4

Real-time Ray Caster

In this section we describe the implementation of an ultra-low latency 3D renderer

using the same just-in-time technique as employed in Section 3.6. The purpose of this

prototype was to lay the foundations for a purely image-based renderer. Out of the

approaches to rendering considered, this the technique that maps best to the dataflow

concept when just-in-time rendering is used. As described in Section 2.4, image-

based rendering is not inherently deterministic, but implementations are typically

more so than other techniques. This is because the sampling operations are more

constrained and are localised to smaller areas of the screen. Combined with an

implementation in which the sampling is deterministic, such techniques will bypass

one of the largest sources of latency - the scanout synchronisation as described in

Section 5.3.2.

4.1 Frame-less Rendering in Virtual Reality
Latency cannot be removed given current technology, so a number of authors have

designed methods to compensate for it. We have already reviewed Regan & Pose’s

Address Recalculation Pipeline in Section 2.5.2. Their implementation allowed

rendering from environment maps at very high rate, creating the illusion of low

latency for orientations. This is not dissimilar from the architecture proposed by

Lincoln et al. [119] and Zheng et al. [263] - that of a cascade of increasingly simple

but fast image warps. Regan & Pose’s implementation however is one of a cascade of

renderers, moving towards the image-based end of the continuum as they go. Other
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authors have taken this approach as well.

Mark et al. [133] created an architecture performing 3D post-rendering warping.

In this system, a traditional renderer created a set of reference frames containing

depth information. One of two possible reconstruction techniques (planar-to-planar

warps defining per pixel disparities, or a deformed mesh imposter) could then be

used to composit these reference frames into a new image. The reconstruction stage

is computationally far simpler than rendering the entire scene, so it allows the system

to appear to respond more quickly. Mark et al.’s system through the use of depth

information supports changes in both orientation and translation. An exact latency

was not reported but Mark et al. state it would be only the time required to perform a

3D warp. Smit et al. [212] pursued this image warping architecture. Their system

created a mesh - a grid of vertices with a count equivalent to the reference image

resolution. A typical GPU was then used to deform this mesh with a vertex shader

implementation of an image warping algorithm. The fragment parameters of the

resulting frame could then be used to sample the original image. The image could

be reconstructed in a number of ways, however Smit et al. found that treating each

vertex as a point and performing screen space point-splatting, with the point size

dependent on the depth, provided the best trade-off of speed and quality. They

measured the latency of a single-GPU implementation (rendering and then warping

on the same device) as 15.7-17.1 ms, depending on scene complexity. The latency of

a multi-GPU implementation (one rendering, one warping) was higher at 50.8-57.4

ms, but much less sensitive (lower standard deviation) to scene complexity.

Li et al. performed full depth image warping on an FPGA [116]. They did

not report a latency but determined their circuit could run at up to 88.152 MHz.

Yanagida et al. [256] proposed using a rate gyro to determine the corrections required

for a latent image from the point at which rendering began to right before it was

displayed to the user. The image underwent a simple shift and rotation to account for

the change in orientation detected by the gyro (similar to Lincoln et al.). The authors

used a gyro as it was faster than the absolute magnetic trackers used to render the

reference frame. The authors simulated the effect of their system on image quality
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but did not build the entire system so the latency is unavailable. Our design is a

ray-caster, and it does make use of techniques such as mip-mapping and caching

to exploit ray-coherence, however it has more in common with the designs of Li

et al. and Regan & Pose, than hardware-accelerated ray-casters. This is because

our design performs no shading and limits the traversal depth to minimise latency,

making it more like a lumigraph renderer than a ray-tracer.

One issue with compensating for latency with image warping is that typical

techniques use a short history of one or two reference frames with which to compute

new images. If the user moves too quickly, or the rate of reference image generation

is too low, missing information will result in holes in the warped image. The concept

of the golden thread introduced by Bergman et al. [19] (Section 2.4.4) is compelling

due to its mapping to parallel hardware. Their implementation however approximated

this with multiple rendering modes that operated on a frame-by-frame basis, which

is not appropriate here. Qu et al. [179] had an interesting interpretation of this

concept. They combined 3D warping and ray-tracing in their voxel renderer. The

authors’ cascaded system performed a 3D warp of a keyframe, and would then fill in

any missing information by ray-tracing those specific pixels. The latency was not

reported, as the authors’ test implementation was designed evaluate quality rather

then speed.

4.2 Design of a real-time Ray Caster

We chose to implement a real-time ray caster that would draw an environment

map. The scene geometry would be defined ahead of time and the detail would

come from the texture maps, as in Regan & Pose’s implementation. We chose this

implementation as the development time for a more advanced renderer, such as a

light field renderer, would be considerably longer. The concepts are well defined and

researched, but there are few working examples. Further, environment maps were

good enough to support the immediate experimental use cases. It was expected that

the working ray-caster could be extended in one of two ways. It could be refined

to be entirely image-based, creating a light field renderer. Alternatively, it could
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be augmented with the ability to receive streamed environment maps from a GPU,

perhaps with depth information, turning it into a 3D warper stage.

Figure 4.1: Diagram of the ray-caster renderer architecture

We implemented our 3D renderer on a Maxeler ISCA DFE. Our algorithm

begins with a set of counters which identify the location on the physical display to

be rendered. The Raycaster kernel receives the viewport locations, and computes

the parameters of sampling rays in the traditional way using the camera properties

sent asynchronously over PCIe. It then performs intersection tests between these

rays and a set of planes. Each intersection test is a separate series of operations in

hardware and the plane parameters are defined at design time. The result of each

intersection test is compared with that of the one before it, and the result of the

closest intersection is propagated to the next test. Once the closest plane has been

identified, the intersection point on its surface, and then a set of UV coordinates are

computed. The UV coordinates are converted into a memory address by the Ray

Sampler Kernel. This address is sampled by the Ray Sample Reader Kernel. The

resulting colour value is combined with timing signals in the Video Signal Generator

Kernel and transmitted via DVI to the HMD. A diagram of the dataflow graph is

shown in Figure 4.1.

In newer COTS HMDs such as the Oculus Rift DK2 (the one used in this

prototype apparatus), the virtual world is rendered with a wide field-of-view (FOV)

and then distorted - compressing it so that it will fit on a typical form-factor display.

Lenses in the headset undo this compression making the scene again appear to wrap

around the users entire FOV. This distortion is typically done in a post-processing
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stage on a typical GPU. As the distortion consists of a per-pixel mapping between a

location on the real display and a location on the virtual viewport however, it is trivial

to incorporate equivalent functionality into our design. The Raycaster Kernel takes in

arbitrary positions on the virtual viewport, and outputs a stream of pixels. Therefore

we can define a map, which maps real screen locations (identified by the counters) to

distorted locations on the virtual viewport, and feed these distorted locations into the

Raycaster, receiving distorted samples at the real locations at the output. The Ray

Distortion Sampler Kernel and the Ray Distortion Reader Kernel are responsible for

reading the per-pixel disparities from a distortion map, and feeding the locations on

the virtual viewport onto the Raycaster Kernel.

Both the distortion map and the environment map are stored in DRAM (LMEM).

On a DFE multiple DRAM modules are concatenated to form one very wide (1536

bit) address space (LMEM). DRAM is low cost but has high latency and so caching

is used to maximise bandwidth utilisation. Both the distortion map and environment

map are split into tiles and these are read from DRAM using burst accesses. When

LMEM is accessed, upstream kernels generate read commands and downstream

kernels read the resulting data. The addressing logic is duplicated in both, so

downstream kernels can predict what commands the upstream kernels will send

and therefore whether their current cache is valid, and what tiles they can expect to

receive subsequently. In a dataflow graph all tokens are executed and transmitted in

order. Kernels only run when tokens are available at all inputs and space is available

at the output. By duplicating the addressing logic, the upstream and downstream

kernels do not have to be explicitly synchronized around the non-deterministic

accesses into LMEM. Similarly, because pixels are generated in the same order as

they are scanned out to the display, the Video Signal Generator kernel can maintain

the current location on the physical display using its own counters, without any direct

connection to the first kernel.

The distance across the surface of a plane between two subsequent ray intersec-

tion points depends on parameters such as field of view, and distance between the

camera and the plane. These cannot be assumed ahead of time and so mip-mapping
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is used to ensure that for each memory read, on average, 8 subsequent samples can

be read from cache. Due to the high latency of DRAM if this were not done the

memory would not be able to keep up with the sample requests and the display would

be starved of data. The mip level is recomputed for each pixel based on the distance

of the current intersection point on the plane, from the previous intersection point.

If we were to extend this design to be a 3D warper, it would be best to move

to faster off-chip memory such as QDR, or even SRAM. This would be much more

expensive than DRAM, but the exact memory requirements for an environment map

would be known ahead of time. These faster memory technologies would somewhat

relieve the bandwidth constraints, allowing enough to stream in and out as the map is

updated. For light fields, a very large amount of memory1 is required, and so DRAM

with an effective caching scheme would be most suitable.

The design uses a cascade of clocks which decrease in frequency further down

the graph. This ensures that data such as memory read or write commands are always

produced faster than they are consumed. This serves two purposes (1) the buffers are

always full ready to smooth out interruptions in the data and (2) when a section of

the graph is required to stop or resume, the time it is down for is minimised (as the

higher clock speeds propagate the stall signal faster) reducing the loss of bandwidth

due to stalls. On FPGAs, there are a smaller number of logic element configurations

that will work correctly, the higher the speed of the clock driving them, making it

‘harder’ for the toolchain to fit the design into the device. It is convenient in the

case of our algorithm that the upstream functions, such as the display counters and

distortion map sampler, are simpler and therefore easier to fit. In the ray caster kernel,

serialising the primitive intersection tests (rather than laying them out in parallel and

accumulating the results in one stage) also reduces the distance a given signal will

have to traverse unbuffered and therefore improves fitting time. The final stage in

the graph, the data sink, is the DVI transmitter, which runs at the display standard

line rate (165 MHz for the Oculus DK2 display). Most other functions are run at

200-210 MHz.

1Tens to hundreds of Gigabytes, for a small room, following the guidelines of Gortler et al. [67]
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4.3 Virtual Worlds

Currently, the design uses a series of planes as the primitives. As each plane test

has its own hardware intersection test resources it can be augmented with different

functionality. For example some planes support visibility maps. These are stored as

low resolution 1 bit maps in SRAM (on-chip) and can mask a plane’s visibility based

on its UV coordinates. Alternatively planes can respond differently if a ray is cast

from the front or back. The primitives do not have to be planes either. Any simple

primitive, such as a sphere, can be easily represented, so long as the ray-intersection

test can be described in a deterministic set of operations. The primitives can also be

updated via the CPU in the same way as the camera parameters allowing them to

move. These sort of features can be used to create more dynamic VEs (for example

the Pit Room shown in Figure 4.3. The renderer is not intended for arbitrary scenes

however. Ray-intersection tests are expensive and logic is limited on the FPGA. The

best use case is to keep the detail in the maps, which are more easily updated.

We implemented a basic cubic environment map to begin with using six planes

(see Figure 4.2). A spherical environment map may appear to be simpler, but

implementing the transcedental functions in hardware is non-trivial. The typical

way to do this is with look up tables, that would have to be considerable in size to

support high resolution maps. We also implemented a pit room environment (see

Figure 4.3). Recall that the ray-caster is not a ray-caster in the traditional sense and

does no lighting calculations. Therefore any light modelling should be baked into

the maps, such as shown in Figure 4.4 for the pit room environment.

4.4 CPU Application

One of the advantages of the renderer is that unlike GPUs it runs asynchronously to

the CPU. As the scene composition is complete and persistent, the CPU only needs to

communicate when this or the viewing parameters change. Still the CPU application

communicates with the renderer at a very low level. For example, when the camera

parameters are updated the CPU will transmit an update command consisting of

a set of basis vectors, rather than a position & direction. The CPU application
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Figure 4.2: Scene geometry proxy used in the environment map real-time ray caster renderer

Figure 4.3: Images of two virtual environments designed for the DFE frameless renderer,
along with photos of the right eye region of the display showing them being
drawn in real-time. The Pit Room (left) is a synthetic environment made up
of nine alpha-mapped planes. When it is complete, global illumination and
shadows will be baked into the textures, as shown in the leftmost image. The
Lazarus environment (right) is a six sided cube map captured from the real
world, and is the one used in the current experiment.

(a) (b)

Figure 4.4: Pit-room environment with baked texture maps
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has an abstraction layer approximating a primitive graphics API, which transcodes

geometry, textures and rendering parameters into structures suitable for writing

directly to the renderer. Communication is via a set of low latency PCIe streams.

That is, the CPU application transmits words over PCIe as required. These streams

connect to specific locations in the dataflow graph, where their parameters replace

registered values used to compute the pixels.

The PCIe channels are configured to use polling to reduce the latency as far

as possible. There is little to no buffering within the renderer itself and so almost

all the latency is in the CPU application. As the CPU application needs only to be

concerned with updating the tracking data as fast as possible, one real-time priority

thread is created for sampling to the tracking system (the mouse, or the Oculus DK2

Inertial Measurement Unit (IMU)) and updating the renderer. The loop in this thread

is carefully written to avoid any blocking calls, or those that result in yielding (e.g.

terminal IOs). The tracking systems are polled, like the PCIe interface, to avoid OS

event handling overhead. This effectively gives control of one core of the multicore

processor in the PC over to the thread. This can be verified by repeatedly polling the

systems high performance timer and checking the period between queries.

4.5 Summary

In this section we described local extension of the 2D renderer described in Sec-

tion 3.6 to 3D. Ideally we would build an image-based renderer, in which any

geometric information is implicitly defined. This is because the sampling can be

performed with a smaller number of more highly predictable operations. Reducing

uncertainty in how the algorithm will execute increases determinism and predictabil-

ity of performance. This leads to a more efficient use of FPGA resources. It also

allows techniques such as racing-the-beam which bypass one of the largest sources

of latency in current graphics systems.

The ray-intersection test used here is an implicit surface definition, and does

begin to approximate an ideal image-based renderer to an extent. The way they are

combined however is not ideal. This is because the plane itself is not an appropriate
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primitive to use to represent generalise worlds. For the time being however, this

design allows the system to meet its other objectives. In Chapter 5 we describe an

evaluation of this system, from the perspectives of latency and quality.



Chapter 5

Evaluation of Low Latency Renderer

In Chapter 4 we described the design of a real-time ray-caster. In Chapter 5 we

describe the evaluation of this renderer in terms of latency and visual fidelity. The

purpose was to understand quantitatively the effects on what the user perceives. The

motivation was both to gain understanding of this, since it is not a well-studied area,

but also so we could better understand any effects observed during our immersive

user study described in Chapter 7. The latency was measured using high speed

cameras, while the fidelity was measured using algorithms known as image quality

measures.

5.1 Quantifying Visual Quality
When building systems that trade-off spatial quality for speed, authors need a way

to quantify the performance of their renderer. As discussed by Ferwerda [54], there

are a number of ways to define quality or realism when discussing synthetic images

and virtual reality. VR attempts to substitute virtual stimuli for real, and therefore

one metric would be sensory believability [105]. Current technology does not have

the ability to re-create the full range of visual stimuli that would be required if we

were to compare a render to the ‘real world’ however. Most authors of frameless

rendering techniques compare the performance of their renderers to ground truth

renders - images produced off-line, simulating an ideal renderer with zero latency.

Various metrics are used to describe the fidelity of the first image to the latter, for

example Mean-Squared Error (MSE) for static images (e.g. [241]) or Fast Fourier
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Transforms in the spatial domain for dynamic images (e.g. [260]).

As illustrated by McNamara [141], objective Image Quality Measures (IQMs),

like MSE, can deviate significantly from what a user would consider to be a correct

characterisation. Accordingly, a number of authors have proposed measures which

are based on the operation of the human visual system. These are intended to give

more weight to salient artefacts while minimising the influence of less significant

ones. Wajid et al. [237] compared a number of these measures to determine which

could most accurately predict the Image Quality Assessments (IQAs) performed by

human participants. They found that MSE & Peak Signal to Noise Ratio (PSNR)

were acceptable but Visual Information Fidelity (VIF) ([196]) performed best. How-

ever, by considering only those artefacts which are subjectively most significant, we

risk missing an unexpected interaction or misrepresenting the fidelity of the image.

For example, motion blur is a rendering artefact that reduces image quality

when compared with a ground truth render, but it is also a good visual cue that

improves user experience when it stops animation being seen as jerky or strobing

[153]. Čadı́k et al. [31] performed a similar study to Wajid et al. but focusing on the

performance of Image Quality Measures (IQMs) in assessing artefacts common in

synthetic CG imagery, noting that traditional IQMs are often tuned for compression

and transmission artefacts. They confirm that no single metric performs steadily for

all tested stimuli, though sCorrel (Spearman’s Rank Correlation Coefficient over 8x8

pixel blocks) performs relatively well. Zhang & Wandell [262] performed a similar

study comparing the simpler Root Mean Squared (RMS), CIELAB and their own

spatial-CIELAB ([261]) metrics. They found that the sCIELAB predictions were

significantly better than RMS. It is important to consider that various IQMs will

have inbuilt biases, and to select a range of measures.

5.2 Apparatus

In order to evaluate the renderer, it had to be integrated into an apparatus approximat-

ing a virtual environment. The renderer was connected to an HMD and software was

written to display a virtual world. The system was instrumented so that its internal
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state and the display the user would see could be recorded. It also required a system

to compare with.

5.2.1 GPU Renderer

In order to compare how the behaviour of our frameless renderer deviated from a

typical VE, we constructed an equivalent system, but using a GPU in place of the

DFE. Our GPU system consisted of a typical PC running Windows 7 with an NVidia

GTX 680 GPU. The CPU application was a modified version of OculusRoomTiny, a

reference design included in version 0.4.4 of the SDK for our HMD. We modified

this application to remove the input processing stages and have it draw a cube made

up of six planes surrounding the user’s viewpoint. We also removed a feature which

used the latest tracking data to adjust the mesh used to apply the lens distortion

before post-rendering warping. This was because these types of warps may introduce

unpredictable spatial distortions as they do not take into account the relative depth of

the warped points in the scene. Further this functionality gives it some features of a

3D warping architecture, and our aim was to make a comparison with a typical GPU

system. The use of techniques such as View Bypass and Time Warping which are

supported by the SDK can be very effective at reducing apparent latency however.

This is discussed in the conclusion.

5.2.2 HMD and Tracker

The HMD we used was an Oculus Rift DK2. For capturing head motion, we used

only orientation data. It was captured from the on-board IMU, which connects via

USB and updates at a rate of 1 kHz. To perform the head motion captures we used

the same GPU system described in Section 5.2.1, however it was modified so that

tracker was read in a separate thread not restricted by the GPU. The timestamp of

each sample was considered to be the timestamp already assigned by the SDK when

it was read in. The mean interval over the entire capture was 1.5 ms, though 22% of

the samples had an interval of 1 ms or less. The tracker then is capable of running at

1 kHz, though some variance is introduced between the device and our code. As a

result an 18 second sequence is covered by approximately 12100 samples.
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The DK2 features a 1920×1080 portrait display orientated on its side connected

via HDMI. HDMI is backwards compatible with DVI using a passive physical adapter.

The screen is split so that each eye sees 960×1080. The screen is a low-persistence

OLED display. The display has a typical sequential scan-out but the pixels are only

illuminated for a short period, resulting in a ‘rolling band’ of illuminated pixels.

This can be seen in Figure 5.3. Note that the width of the band in an image such

as 5.3 depends on the exposure time of the camera as well, so the true width may

be narrower. For our experiment, once the head motion had been captured we

dismantled the HMD and secured the display to a camera rig (Figure 5.1). At this

point tracker data was provided from the logs and only the display was used.

5.2.3 Synchronisation LED

To measure the latency of the rendering stages of our systems, and to synchronise the

video captures of the HMD with the tracking data, we needed to be able to instrument

the CPU code. To do this we used an Arduino Uno, a micro-controller development

board, to toggle an LED on command via serial link over USB. To ensure that the

latency of the serial link, and rise & fall times of the LED were trivial (∼10ns), we

configured the Arduino to loopback all commands, and the CPU code to block until

receipt of these echos. The CPU then cycled the LED as fast as it could, while it was

monitored with a 1000 fps camera. The total round trip time for two commands was

∼3 ms on both Windows and Linux, much shorter than the frame period of rendering

captures. The loopback was disabled during captures of the renderers running in

real-time.

5.2.4 Cameras

To measure the latency and confirm correct operation of our apparatus we used a

Casio EX-ZR1000 consumer digital camera. This camera is capable of capturing

224x64 video at 1000 fps with a rolling shutter. To capture the rendering systems

in operation for image quality analysis we used a PixeLink DL-D722CU-T USB3

camera. This camera had a configurable exposure time down to 1 ms, a global shutter

and could capture at up to 257.7 fps. The screen, camera rig and synchronisation
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LED are shown in Figure 5.1.

Figure 5.1: Image of the apparatus showing the low speed camera, Arduino and DK2 screen

5.3 Results

5.3.1 Latency

We measured the latency of the rendering stages of both GPU and DFE systems.

To do this we configured the CPU application to cycle between two viewport orien-

tations values, at a rate of 1 Hz. When changing the orientation, the CPU cycled

the synchronisation LED to indicate exactly when it had updated the state of the

rendering system. 1000 fps video was taken, with both the display and the LED

in view. The latency was measured by counting the number of frames between the

transition of the LED and the first change in the content of the display (the ‘tracker

to beam’ latency, or, the latency of the rendering stage not including the scan-out

time). The technique is similar to those described by He et al. [73] and Di Luca [44].

The GPU system had a latency of 25.7±0.4 ms. This is not unexpected. The

display refresh rate is 75 Hz and the CPU application we based our system on syncs

its main loop to this. One frame period is 13.2 ms. It will take the CPU one cycle
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to issue the commands to render, and once complete the GPU will wait for VSync

before the frame is swapped to the display. In addition no less than 13.2 ms of

latency will be added as the scan moves across the screen. This is because the GPU

system scans out a single frame at a time.

The DFE system had a latency typically lower than the the temporal resolution

of the video. At this level the synchronisation LED latency becomes non-trivial,

so we cannot say the latency of the rendering stage is less than 1 ms. It takes the

frameless renderer less time to read a tracker value and update its state than it does

to scan out, therefore the latency will be 1 ms at the location of the scan-beam, and

13.2 ms at the location about be overwritten by it.

5.3.2 Rendering

To better illustrate the differences resulting from the alternate rendering techniques,

we applied a simple grid as the texture of our six-sided environment. The CPU was

then configured to pitch the camera up and down through 180°at 2-17 Hz, while the

display was captured. The DFE system continually updates the tracking data every

few lines. The latency is therefore lowest at the point the ‘beam’ is scanning across

the display, and highest at the oldest visible pixel. The frame-based GPU system

draws a static image produced for some previous tracking sample. The latency is

therefore lowest at the point that scan-out begins (the shortest time between the

production of the frame and it beginning to be visible), and increases as the beam

moves across the display, as the frame being scanned is ageing while the scan-out

proceeds.

If we look at a 13.2 ms exposure capture, we can see clearly the differences

in the approaches. The DFE system results in a skewed image under high velocity,

never displaying a whole frame for a single tracking sample. The GPU does not

have these skewing features, but at the cost of a much greater time between, and

therefore difference in, subsequent frames. This is shown in Figure 5.2. Figure 5.2

has been annotated showing the latency between regions of the display and the

current tracking data (i.e. the ideal tracking data at the time the capture was taken).

C The current location of the scan-out. The latency of the DFE is ∼1ms. At 144
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Figure 5.2: Captures of the DK2 screen with a 13.2 ms exposure, drawn by the DFE and
GPU while in motion, annotated with the latencies at four different locations
(A,B,C,D & E,F,G,H) on each frame for an arbitrary point in time during scan-
out (at line 1600)

lines per ms the vertical region around C has the lowest latency of any on the

display. This is because pixels drawn around region D, for example, were

computed for older tracking samples than those at C.

D The start of the scan-out for the display. This has less meaning for a frameless
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renderer than a frame-based renderer since the sampling of the tracker is

independent of where the scan-out begins.

B,A The scan loops round immediately from A to D, so region B is the oldest

region on the frame, last drawn 13.2 ms before the latest tracking data.

H This is where a new frame from the GPU begins. The GPU has a latency of

25.7 ms, so when a scan-out begins the frame is already 25.7 ms old. If we

were to capture when the scan was at H, the latency at H would be 25.7 ms.

G As the scan moves across the screen, the 25.7 ms old frame is ageing as it goes.

By the time the scan reaches region G, the frame has aged an additional 11

ms. Any part of the display showing the content of that frame (between and

including regions H and G) is therefore showing data 36.7 ms old (25.7 + 11),

and this latter number will increase as the scan proceeds through F and H. On

a V-Synced frame-based system, scan-out always begins at the same place, so

these delays across the display will be the same for every frame.

E,F These show the previously rendered frame as they have not yet been overwrit-

ten. The previous frame continues to age while the new one is being scanned

out, so the latency of any region showing this content is the latency required

to complete and draw the previous frame (25.7 + 13.2) plus the time to reach

the region in order to overwrite it with the new one (11): (25.7 + 13.2 + 11 =

49.9).

The DK2 uses an Organic Light-Emitting Diode (OLED) display. As an OLED

display, the individual pixels have transition times much faster than those of LCDs,

closer to that of CRTs. The low persistence of the display is facilitated by rolling

scans, in which the screen scans from top to bottom like a CRT, illuminating a narrow

moving band of lines as it does so [88]. A 1 ms capture of this is shown in Figure 5.3.

The DFE system should have a visible latency equivalent to the maximum width (in

time) of the rolling band, while that for the GPU system will be the time it takes the

band to traverse the screen. Since the age of the oldest visible pixel is limited, the
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skewing features are not so pronounced in the 1 ms capture, although they can be

seen with the help of grid-lines.

Figure 5.3: Captures of the DK2 screen with a 1 ms exposure, with grid lines to help
delineate the skew in the DFE render due to motion

5.3.3 Image Fidelity Analysis

We use IQMs to measure the abilities of our rendering systems, comparing their

true output with what they would ideally display, if we could build a system with

zero latency. The expectation is that the measures will differ between the systems,

showing that the rendering technique has a significant effect on what is perceived by

the user.

5.3.3.1 Procedure

While previous studies have incorporated animation ([260]), none compared renders

with moving viewpoints. With our renderers however, differences will only be

apparent under motion. To create a suitable set of renders, we tracked the head

motion of a human participant. We then selected a segment of the capture which

had a range of angular velocities consistent with previously observed maximums

under voluntary head motions [68]. With this tracking data we were able to produce

a set of reference images, and drive the rendering systems in real-time with the same

motion.

To measure the quality of the rendering systems’ output, we required a set of

ground truth reference images. These images are what would be displayed by an

‘ideal’ VE with zero latency. We produced a set of 18,000 images spaced 1 ms apart
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in time. Since an ideal system would update the entire display instantly, there was

no point in producing images with a temporal resolution beyond that of the captured

tracker data. For each image, its timestamp was determined and used to sample the

tracker data by retrieving the nearest sample. This sample was used to configure the

pose of the camera, then the frame was rendered on the GPU as if it were driving the

HMD. Instead of being drawn to the display however the frame was read back from

the GPU and written to disk. The result is a sequence of images showing what the

HMD should display, if the system had an end-to-end latency of zero and was run at

1 kHz.

The tracking data was then used to drive both rendering systems in real-time,

drawing to the screen of the DK2 while it was captured with a camera. The synchro-

nisation LED was used to indicate when in the capture the first tracking data was

read into memory. The frame at which the LED transition occurs is considered the

epoch, and the timestamp of future frames relative to the first tracking sample are

calculated based on the framerate of the capture. The synchronisation LED is cycled

by the CPU at 1 Hz to ensure the clocks of the camera and the CPU were matched.

Each rendering system was captured twice, once with a 1 ms exposure at a framerate

of 257.7 fps, and once with a 13.2 ms exposure at a rate of 75 fps. This is equivalent

to the framerate of the DK2 display and approximates a high persistence equivalent

of the display. When in focus the DK2 screen and Arduino consumed an area of the

frame 1280x600 and the display area of the DK2 screen was 874x491. Examples of

the real-time captures are in Figure 5.4 and an example of a ground truth frame is in

Figure 5.5.

Once the captures had been taken and synchronised, the area outside of the eye

view-ports (which is invisible to the wearer of the HMD) was masked and set to

black to avoid any luminance changes within it skewing the IQMs. For each tracking

sample, the closest (in time) images were selected from the ground truth sequence

and real-time capture and these images were compared with a number of IQMs. This

was done for all 12,100 tracker samples, and repeated for all four captures (the DFE

& GPU with 1 ms exposures (low-persistence) & 13 ms exposures (high-persistence).
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The IQMs always operate on the entire image. This means the masked area outside

of the view-ports will influence the measures but this influence will be constant

across all the captures. For the pixels outside of the rolling-band, what is compared

with the reference depends on the exposure time. For the 13 ms captures it will be

the older pixels which were driven by the band previously, for the 1 ms captures it

will be colour of the pixels when they are not being driven.

Figure 5.4: Example frames from two of the captures of the HMD screen (13 ms exposure)

5.3.3.2 Metrics

We cannot compare our stimuli with a real-world ground truth, because we do

not have the ability to recreate the full dynamic range that the eye is sensitive to.

However, we cannot assume either that the Image Quality Measures (IQMs) designed

to mimic human IQAs can identify the optimal stimuli either. We therefore select a

range of IQMs, of varying levels of complexity.

• RMSE is a measure of the absolute pixel-by-pixel difference of two frames.
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Figure 5.5: Example frame from the ground truth renders

It is a noisy measure, but simple and fast, and used in a number of previous

works.

• sCorrel (SCOR) ([31]) performs a Spearmans Rank-Order Correlation on 8x8

pixel blocks. It is a more complex measure than RMSE, but is still not percep-

tually based. It has the advantage of being less sensitive to brightness changes

and low frequency noise, both of which we can expect when comparing images

captured with a camera to an offline render.

• VIF ([196]) compares the information available in an image to that in its

reference. The information is extracted by passing the images through a

‘distortion channel’ approximating the Human Visual System (HVS).

We pick the above structural metrics because our investigation is geared towards

spatial differences caused by scan-out and latency, whereas we can expect large

colour discrepencies simply due to differences in the response of the rendering

systems, the DK2 screen and the camera. Other frameless renders may pick different

metrics that best reveal their differences. Another metric we would have preferred

is sCIELAB [261], based on the CIELAB standard (Euclidean distance in L*a*b

space). This metric is relatively simple and effective at attenuating low spatial

frequency variations [31]. However it requires a mapping of RGB data to real-world

wavelengths and dimensions of each pixel. We did not have this calibration for the

DK2, nor the inverse through the camera, and so were unable to use it in this study.
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5.3.3.3 Results

From the ground truth to the capture the renders were distorted considerably: by

spatial distortions of the lens of the camera, differences between the FOV of the two

rendering systems, luminance responses between the two systems and the colour

responses of both the display & the camera. How significantly these differences

affected the fidelity metrics was dependent on the content of the part of the scene

that was visible, and therefore the orientation of the viewport.

This means that the absolute measures are not comparable between two systems,

and the effects due to latency will be masked by the effects due to simply pointing

the virtual camera in another direction. To ameliorate this, we normalised the error

metrics and performed a multiple linear regression on the roll, pitch, yaw and average

velocity values of the orientation (predictors) for the measures (responses). The

intent being that the velocity coefficient would be mostly free of the influence of the

changes due to orientation alone. This is as the velocity correlation will be performed

on the residuals after these effects have already been accounted for by the model.

The velocity predictor was derived by computing the average of the orientation

component angles for each sample, taking the derivative, and then passing through a

10 sample wide smoothing filter.

We performed the linear regression for all captures at both exposures, and the

results are shown in Table 5.1. Only significant predictors (p < 0.05) are shown.

Each measure was computed for all tracker samples and so each model has 12100

observations and 12095 degrees of freedom.

An implication of considering each angle element individually for the absolute

value, but averaged for velocity, is that the magnitude of the velocity coefficient

cannot be compared with that of the angles, as the influence due to orientation will

be distributed between these. The purpose of the models are to remove the influence

of orientation however, not to examine it. More revealing are the changes in the

velocity estimate between the conditions. Considering what we know about how the

systems render, we can make four observations that are supported by Table 5.1.

1. The system with higher latency (GPU), should be more sensitive to velocity,
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Coefficient Estimates and R2 values for three IMQ multilple linear regression
models (p < 0.05)

Exposure
Time

1 ms 13 ms

Predictor DFE GPU DFE GPU
Normalised Root Mean Square Error

Roll 0.060 0.063 0.045
Pitch 0.404 0.430 0.210 0.295
Yaw 0.055 0.058 0.031 0.055
Velocity 1.010 1.089 1.008 1.531
R2 0.434 0.449 0.296 0.383

Spearman’s Rank Correlation Coefficient
Roll -0.015 0.009 0.084 0.134
Pitch 0.034 0.044 -0.170 -0.201
Yaw 0.010 0.010 0.010 0.021
Velocity 0.039 -0.144 -0.490 -0.802
R2 0.192 0.215 0.436 0.481

Visual Information Fidelity
Roll -0.006 0.058 0.037
Pitch 0.012 0.004 0.031 0.012
Yaw 0.003 0.001 0.022 0.010
Velocity -0.033 -0.715 -0.410
R2 0.155 0.142 0.236 0.108

Table 5.1: Parameters for three multiple linear regression models for the RMSE, SCOR and
VIF IQMs, showing only coefficient estimates with p < 0.05.

and we see this for almost all cases. The exception is the 1 ms RMSE model,

in which we expect the difference in effect is hidden by the noise in the metric.

2. The more complex and sensitive to structure the IQM, the more it should

reflect the differences in rendering approach. This is because they should be

less sensitive to colour and luminance responses of the screen and camera,

which we do not account for. We see this as SCOR and VIF have better fits

than RMSE, and larger differences in the coefficients between the GPU and

DFE, and 13 ms and 1 ms captures.

3. As the exposure time increases, there will be a higher number of ‘older’ pixels

visible, which will result in a higher average error across the whole screen.

This will be exacerbated by high velocities, where the discrepancy of these
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older pixels will become more egregious. This is the case regardless of the

underlying ‘tracker to beam’ latency, and is reflected in the 13 ms captures

having larger coefficients than the 1 ms captures, for both the DFE and GPU.

The DFE should have an advantage in the 13 ms captures however. This is

part due to the lower system latency, limiting the age of the oldest pixel, but

also because the frameless nature of the display means the age of the oldest

visible pixel increases at a constant rate equal to the scan-out time, whereas

for the frame-based GPU it increases faster (scan-out time + time since the

frame was rendered). The DFE typically has a smaller coefficient for the 13

ms captures, although to what degree this is due to the frameless nature, and

what due to the lower average latency, we cannot say.

4. With a 1 ms exposure time, there will be fewer older pixels visible. As a result

the error should be less dependent on the average latency across the entire

frame, and more dependent on the ‘tracker to beam’ latency at any given time.

This is what we see, with the SCOR and VIF coefficients being smaller for

the DFE than the GPU - so far as to be statistically insignificant for the VIF

measure.

The results show then that the stimuli produced by systems rendering the same

VE, can vary significantly depending on which rendering approach was used under

certain conditions (in this case high viewport velocity). IQMs attempt to quantify the

perceived difference between two images. The coefficients of velocity are typically

smaller for the DFE and low-persistance captures. This implies lower latencies result

in higher fidelity VEs under user motion, and that the highest fidelity is provided

by the DFE. While the IQMs are perceptually based, it cannot be said that the DFE

provides a better experience in absolute terms. To begin with, the comparisons above

are done at single points in time, with no consideration of the stimuli before or after.

There may be significant temporal interactions with the HVS, which our experiment

will not detect. Since measures are not directly comparable between the systems, we

also cannot say that one system has generally higher fidelity than the other, only that
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one is better at approximating the ideal under motion. Further some artefacts may be

desirable, such as blurring to reduce the perception of jitter during object movement.

5.3.3.4 Outliers

There is one outlier, and that is the velocity predictor shows a positive correlation

with image fidelity for the SCOR metric. Even in a 1 ms capture, where the age of

the oldest pixel will be no more than a few milliseconds, the correlation should at

best be insignificant. The effect is very small (0.039), but significant (p = 0.0057)

and the R2 is low (0.192). We have no explanation for this result, and can only

theorize that it is due to covariance with the orientation. For completeness, the mean

covariance for all conditions was < 1e−4 for SCOR & VIF, and < 1e−3 for RMS.

The DFE estimate for the VIF 13 ms capture is also smaller than that for the

GPU, which may on first glance be surprising but should not be considered an outlier.

The DFE system maintains its low latency at a cost of image distortion, as it is

skewed during scan-out under motion. VIF is the most complex measure and may

consider this distortion more egregious than the discrepancies in orientation due to

time. When the number of visible (older and distorted) pixels is reduced (in the 1 ms

capture) this effect disappears. Future studies may be improved by designing new

metrics specifically for frameless renderers, or constraining existing ones only to

operate on the visible regions of low persistence displays at a given point in time.

5.4 Discussion
Ray casting is a highly constrained subset of ray-tracing, making it amenable for

hardware acceleration such as we have done. The configuration is similar to that

of Regan & Pose’s Address Recalculation Pipeline, where the light transport is

simulated externally and the device computes novel views at a high rate, in an

operation analogous to image warping. Unlike the Address Recalculation Pipeline

however, we use ray-casting with simple geometric proxies. This allows our renderer

to operate standalone while still permitting users to translate, as well as rotate,

in the virtual world. A 2D image warper in this case would introduce spatial

distortions. Users will still not see correct view-dependent visual effects such as
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specular highlights however - for this our system would need to be coupled to

a renderer re-generating the maps in real-time. In this case there would be two

latencies, for different visual effects, to consider. This is a similar situation to that

encountered with dynamic objects, the behaviour of which may be computed by a

loop with latency characteristics quite different to that of the rendering loop.

We proved the latency of our system is no more than ∼1 ms, although the latency

of the rendering stage itself is likely much lower. Typically, latency is considered as

a discrete characterisation of a constant delay between user input and the response

of the display - but this is not complete. Latency changes across the display during

scan-out, and is a function of a number of things, including the time to render a single

frame, the pipeline depth between the renderer and the display, and the scan-out

period itself. Different renderers do not have equal latency responses, and changing

the rendering approach can significantly alter this response. For example, we show

how the profile of the frameless render is very different to that of a GPU. The latency

of the frameless renderer being lowest at the location of the scan-beam, instead of

increasing with it from the top of the screen, as with a frame-based system. This is

because the frameless system has a ‘tracker to beam’ latency lower than the frame

period, so the more time elapsed since a pixel was driven, the higher the latency of

that pixel. Conversely frame-based systems scan out discrete frames, synchronised to

the top of the display. As soon as a frame is finished, it is ageing even before scan-out

begins, therefore the delay increases as the scan-out proceeds. This difference is

manifested as a skew feature under motion on the frameless renderer, as a single

scan-out is an amalgamation of multiple tracker samples. Using objective IQMs, we

assessed abilities of each system to faithfully recreate a virtual world. Unsurprisingly

we found the system with the lowest latency performs better than the high latency

system. Further though, we show how the rolling scan approach to low persistence

on the DK2’s OLED screen reduces the effect of velocity on fidelity. The effect is

reduced for both the GPU and the DFE, but on the DFE it is reduced to practical

insignificance. We have shown that the frameless renderer has a higher fidelity under

motion than traditional approaches. However, how this affects participants in a real
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VE system is not obvious. For example, one implication of the different rendering

techniques is the relative latency of the eyes. In the DK2, the screen is mounted

horizontally, so when driven by a frame-based system one eye will always have a

higher latency than the other. On a frameless system the point of lowest latency is

constantly changing, meaning that on average the eyes could have an equal latency.

In order to perform the evaluation we disabled the timewarp functionality of the

GPU apparatus’ CPU application. In other VEs cases though the Oculus SDK can

combine two features to reduce apparent latency significantly. The first, View Bypass,

compensates for the rendering latency. The GPU compensates for lens distortion

by rendering the scene to a typical (i.e. planar) viewport, then texture mapping the

render to a mesh which counteracts the distortion of the lenses. The GPU renders this

mesh to the viewport displayed to the user and in doing so applies a post-rendering

warp. View Bypass involves re-sampling the tracker right before performing this

second render, identifying the change in tracker state since the original frame was

rendered, and compensating for it by warping the 2D image and/or the distortion

mesh itself. Regardless of the complexity of the original render, the distortion process

remains the same for each frame, making the time to complete it highly predictable.

This facilitates the second technique, Time Warping, in which the post-rendering

warp is left as late as possible so it completes just in time for the next scan-out to

begin. The intent is to reduce perceptible latency. It has the disadvantage though

of introducing unpredictable spatial distortions. Further, while the perspective may

change, dynamic scene content cannot be warped in such a manner. With View

Bypass and Time Warping, it is in theory possible to warp on a line by line basis,

essentially implementing a frameless renderer. A naive implementation on a GPU

however would issue thousands of draw calls per frame (one per line) and the drop

in frame rate on any typical PC due to CPU overhead would likely negate any gains.

Such a solution is also restricted to per-line warping, whereas a frameless renderer

such as ours can update on a per-pixel basis.

Our results were supportive of our observations of the behaviour of the systems,

but our experiment had a number of limitations. First, we did not account for the
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colour responses of the screen or the camera. This lead to high noise floors for

the simpler measures such as RMS. Perniciously though, it also meant that the

magnitude of the reported errors were dependent on absolute orientation. We used

multiple linear regression to minimise this influence, before examining how the

render fidelity varied with velocity, although there is no escaping that velocity is in

part a function of the orientation.

We did confirm that the covariance of the predictors was minimal for our models,

but are still unable to explain the outlier described in Section 5.3.3.4. In expectation

of such outliers, and in recognition that the response of participants to visual stimuli

is not entirely understood, we chose to use multiple inherently different IQMs. The

more sensitive to structure the IQM, the more sensitive to velocity it appeared to

be. However this also revealed that in the case of high persistence displays, that

for frameless renderers such as ours the skew feature may be more egregious to a

participant than the discrepancy due to latency. In the future, a better way to perform

such assessments may be to capture the ground truth from the camera and screen. To

do this, the CPU application could be modified to draw a static image (pertaining to

one tracker sample) to the screen. After enough time for all the pixels to transition

has passed, that frame could be captured and considered as what an ideal, in terms

of zero latency everywhere, display would show. Capturing the ground truth in

such a way would reduce the noise floor to that inherent in the sensor and display

itself, removing discrepancies due to colour and slight differences in the geometry

transforms.

5.5 Summary

We evaluated the performance of our low latency real-time ray caster, while interop-

erating with an existing, readily available HMD. Using a series of high and low speed

video captures, and objective IQMs, we investigated the implications of combining a

frameless renderer with a sequential scan-out OLED display, and compare this with

an equivalent system, but built with a GPU. The results were generally as expected,

with the apparatus capable of perceptibly responding to user input more quickly
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showing higher fidelity. We chose a range of IQMs because there is still ambiguity

in how to judge the perceived similarity of two images by a person. It may be that

there is no correct model as the measure depends too much on the level of perception

being examined and the context in which it is done so. IQMs however have proven

to be versatile and practical measures for comparing two systems however. Further

many more IQMs are available, as well as analogous techniques such as fidelity

metrics based on user perception, that could be used in future studies.

The use of ray casting, rather than simpler affine transforms, allows our renderer

to draw relatively complex virtual environments. The next step will be to put users

in a system built with the frameless render to see what effects, if any, there are on

presence or other performance measures of a VE.

This is as far as the rendering system was developed. For the experiment

described in Chapter 7 the renderer was integrated with an advanced tracking system,

and additional worlds were created for it to drive. The architecture and capabilities

however remained unchanged. In Part II, user studies into the effects of latency at

high and low levels using the novel renderer are reviewed.
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Chapter 6

The Effects of Latency on Physical

Interaction

Advanced graphical interfaces are commonly used to facilitate intuitive visualisation

and manipulation of data as efficiently as possible. Some do this with abstractions

such as widgets or manipulators. Others, such as pseudo-physical or skeuomorphic

interfaces, exploit knowledge about natural object behaviour to allow more intuitive

interaction techniques. For example, by constraining the behaviour of virtual objects

so they obey the laws of physics [89]. Such approaches are often used in synthetic

environments, with the explicit goal of establishing the sensorimotor loop.

In Section 2.2.2, we reviewed previous studies of the effects of latency on a

number of sensory modalities, from latency detection in immersive virtual envi-

ronments, to its effects on indirect physical interaction. The latter received con-

siderable attention due to its ubiquity and importance, with many previous stud-

ies using motion primitives such as pointing tasks to investigate the effects of la-

tency [129, 240, 36, 221, 168]. Only recently though has it become practical to build

apparatus with latencies low enough that the limits of its effects may be found [99].

In Part II, we present two studies of the effects of latency. The first is concerned

with the effects on low latency physical interaction.

The human motor system has been modelled as a control loop, with inherent

delays that place natural limitations on performance; movement cannot be coordi-

nated on time-scales smaller than the inherent delay [15]. We therefore hypothesized
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that there may be a non-zero external latency which has no perceptible effect on the

sensorimotor loop. Latency cannot be removed given current technology, but we can

compensate for it. By understanding how latency affects the different modalities that

create an effective user interface, we can distribute resources of computer systems to

minimize negative effects and create a better user experience.

We investigated the modality of indirect physical interaction, using familiar

desktop based pointing and steering tasks. We used our prototype 2D sprite renderer

to create an apparatus similar to previous studies [129, 221, 168] but capable of much

lower latencies. Our results were unexpected and have significant implications for

future studies using physical tasks to investigate latency, as we show that considering

only total movement time and not its constituent parts may result in inconclusive

measurements which hide the effects of latency.

6.1 Survey of works on physical interaction
The chief concern in facilitating natural physical interaction in synthetic environ-

ments is enabling the formation of the sensorimotor loop. As we have seen, this

underlies presence and the ability to induce experiences. As important as enabling

the sensorimotor loop is, natural physical interaction has been of interest in many

aspects of Human-Computer Interaction, both inside and outside of the synthetic en-

vironments. This interest is partly is due to the importance of improved performance

to justify the interface. For example, Smith et al. [213] applied real world physical

constraints to the objects in a 3D editor, decreasing the degrees of freedom of the

objects in a familiar way. Users showed improved performance when interacting

with the editor using 2D interaction techniques. The interest is also partly due to the

ubiquity of such interfaces. Even when abstractions are present, actions are still pre-

dominantly basic motion primitives such as reaching and pointing [89]. Accordingly,

there are many works in this area which can be applied to synthetic environments.

6.1.1 Models of the Motor System

A number of authors have constructed theoretical models to explain the operation

of the visuomotor system. One such model is that of Botzer & Karniel [23]. The
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authors derived their model from observations of delay compensation behaviours.

Participants performed Fitts’s law style tests [56]. They were allowed to adapt to

different latency conditions, and then the visual feedback was removed and at the

same time the latency changed. By observing how user motion changed under

this new condition, the authors tested where in the hypothesized control loop delay

compensation was performed. Whether in the feedforward model, which plans

the trajectory, or the feedback loop, where correction commands are issued based

on visual feedback. Overshoot and undershoot were present in reaching tasks in

unexpected delay conditions. This demonstrated dominance of an adapted visual

feedback stage over the feedforward planning stage. They also found that while

discrete reaching movements returned to baseline conditions (that is, the users no

longer overshoot or undershoot), rhythmic ones do not. This suggests there is

adaption in the forward model, but it is dependent on movement type, leading to

their model incorporating multiple pathways.

Beamish et al. [15] considered the motor system as a Vector Integration to

Endpoint (VITE) circuit. In the VITE circuit a continuous outflow of commands

to the muscles are a result of the motor system attempting to reduce the difference

vector between the intended target position and the present position. The commands

are generated by the neuron population calculating the difference vector, based on the

present position estimation from a population which integrates all previous movement

commands. They note the VITE circuit as one of the earliest models to suggest

how the movement characteristics described by Fitts’s law are a result of underlying

neurobiological mechanisms. The authors introduce time delay between the two

populations into this model. By drawing comparisons with a servomechanism model,

they show that for a system to be stable, the gain (magnitude) of the movement

commands must be below a value which is a function of delay. It should be noted

that the model described above does not take into account visual feedback - or indeed

any external delays. That is, even considering a system based only on proprioceptive

cues the authors demonstrate a hard upper limit on performance.

Beamish et al. [14] pursued this model, using it to estimate the inherent
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effective feedback delays in the motor system based on the results of previous

Fitts’s law style experiments. They expressed the performance of the VITE circuit

(movement time) in terms of difference vector neuron population time constant, and

feedback delay. They could then relate these parameters to the observed Fitts’s law

constants a & b. Using the measurements available from over 25 previous Fitts’s

law style studies, they found feedback delays between 0-112 ms, generally below

60 ms. They also found that the nature of the VITE circuit imposes a limit on the

performance of unidirectional movement. When this limit is expressed as a Fitts’s

law Index of Difficulty (ID), it happens to be the typical range employed by previous

experimenters.

6.1.2 Fitts’s law

Most studies on physical interaction, such as that of Jay et al. [91], use Fitts’s law

style tests. A good review of Fitts’s law is by Seow [194]. Fitts’s law is an emergent

property rather than a description of the motor system operation. This is discussed

by Bootsma et al. [22] and Huys et al [81]. Both sets of authors demonstrate that by

observing the patterns of motion directly under different conditions, Fitts’s law is a

good summary of complex motor processes. However there is increased asymmetry

in the amount of time spent in the acceleration stage compared to the deceleration

stage as latency increases. The pattern of movement is significantly different between

rhythmic and non-rhythmic movement, and as ID increases rhythmic pattern becomes

more like the discrete pattern. This suggests multiple functionalities acting in parallel,

such as in the model proposed by Botzer & Karniel [23]. Botzer & Karniel referred

to Rythmic/Non-Rythmic as Slicing and Reaching respectively.

As a characterisation of the motor performance, Fitts’s law has been observed a

number of times under a range of conditions. Its repeatability and invariance make it

valuable for testing the effects of various factors on user interaction. For example,

Adam et al. measured the difference between egocentric guided movement and

allocentric guided movement [2]. This was expanded on by Blinch et al., who found

that the most significant effects occurred between the presence of allocentric markers

and the preparation stage of movement [21]. Perrault et al. tested the scale effect
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using Fitts’s law [161]. Jax et al. tested the effects of obstacles in the movement

path [90].

6.1.2.1 Fitts’s law and Latency

For the same reasons described above, Fitts’s law has been used extensively to

investigate the effects of latency. MacKenzie & Ware did one of the first studies

in this area, reformulating Fitts’s law to account for additional movement time

delay [129]. They estimated the base latency at 8.3 ms, and between 16 and 225

ms of latency was added. Pavlovych & Stuerzlinger suggest that the base latency

could actually have been ∼60 ms though [168]. Performance began to decrease

significantly at the 75 ms condition. Ware & Balakrishnan used 3D reaching tasks

in order to compare the effects of hand tracking delay with head tracking delay in

an immersive Virtual Environment. They tested latencies between 87 and 337 ms.

Teather et al. measured the effect of latency and jitter on performance in Fitts’s style

2D tasks, and 3D object movement tasks, while looking for an effect of the type of

tracker used. They measured the latency of their system at 73 ms and found that

the performance degradation was equal for the tracker devices [221]. Pavlovych &

Stuerzlinger performed a Fitts’s law style test to determine the effects of jitter and

latency. They found a strong interaction with latency and jitter. Further, with low

jitter the effects of latency were dominant, but the jitter degraded performance at a

higher rate than latency. The authors measured the base latency of their system at 33

ms, and added up to 100 ms [168]. Chung & So considered that latency may affect

the stages of movement differently. They studied the effects of latency in Fitts’s law

style tests but on target width and distance separately. There was strong interaction

between latency and target width, but not target distance [36].

6.1.3 The Steering law

There is evidence ([23, 15]) that the motor control system consists of multiple

complex elements, some acting in parallel, and that the effects of latency on these

is not equivalent. Thus in our experiment, aside from a Fitts’s law-style task, we

introduce a second task based on the Steering law. It is designed to exercise the
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real-time correction functionalities predominantly and force the user to continually

change goals as they move.

The Steering law was introduced by Accot & Zhai. It was originally derived

from Fitts’s law, considering a path as a sequence of goal crossing tasks. The

completion time was the measure of performance, and was estimated to be the

sum of the time to complete the individual goal crossing tasks, that make up a

path [1]. It was extended by Kulikov et al., who used the concept of effective

width to demonstrate that the Steering law was even more accurate than originally

shown [109].

Like Fitts’s law the Steering law has been used to investigate the effect of

specific factors on user performance. Liu et al. investigated which path properties

affected user performance. The path properties considered were curvature and

width [123]. Liu & Liere continued to investigate the effect of these properties

changing within a path. In their test the path was presented as a tube. Participants

were encouraged to remain within it by pushing a ball through it with the cursor. We

model our implementation of the Steering law task on theirs. On examining the user

movements, they assert that the behaviour does not resemble a goal crossing task, as

much as a set of small ballistic movements [121].

Pavlovych & Stuerzlinger investigated the impact of latency on tracking tasks.

This task is analogous to the Steering law task. The authors point out however that

the Steering law itself does not apply. This is because there are no boundaries to

movement outside of the target area and the user is required to correct velocity as well

as direction. The experimental setup had a base latency of 20 ms, and an additional

latency of 30-150 ms. The authors observed a significant effect of latency on tracking

accuracy, and that it was not symmetric: users had a smaller error perpendicular to

the target, than tangential. The latencies tolerated before a significant interaction

became visible were higher than in previous studies (50 ms for latency and 40 ms

for jitter). Another interesting observation was that performance decreased for the

condition with the lowest additional latency (20 ms), improved between 20-50 ms,

then for latencies above 50 ms degraded again but at a slow rate [169].
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6.1.4 Investigation of very low latencies

The closest study to that described here is that of Jota et al [99]. They studied the

effects of latency on direct interaction surfaces, with their High Performance Touch

prototype - a touchscreen with a latency of less than 1 ms. A number of previous

studies have investigated the effects of latency on direct touch interaction, but none at

such low levels. Participants performed Fitts’s law style tests. Of particular interest

in this study, is that the user received visual feedback from both their non-latent hand

and the latent cursor simultaneously. How the potentially conflicting stimuli affect

performance is not clear. Participants showed a range of behaviours in response to the

latent cursor, from ignoring it completely, to leading it, to slowing their movement so

that it remained under their finger at all times. The additional latencies were between

1-50 ms. The authors reported no observable difference in performance between

latencies of 1 ms and 10 ms. A linear regression fit suggested the performance floor

may not exist. By segmenting the movement into stages, the authors demonstrated

that the effects of increasing latency on these are not symmetric, as Chung & So and

Bootsma et al. showed for increasing ID [36, 22].

6.2 Experiment
A number of studies have used performance in motor tasks to detect the effects

of latency. Few though have investigated latencies at very low levels. Jota et al.

found a potential floor for direct interaction tasks [99]. Indirect interaction tech-

niques however remain important for both 2D and 3D interfaces. They can exceed

direct interaction in both efficiency and precision [89]. We therefore continued the

investigation into indirect interaction.

6.2.1 Apparatus

To conduct the investigation an interface with very low controllable latency was

required. The indirect input Fitts’s law and Steering law tests require a 2D interface.

The participants interacted through a cursor, which had to respond to the user within

the shortest amount of time possible. We began with our prototype sprite renderer

from Section 3.6. We combined this with a high-speed (120 Hz) LCD monitor. At
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∼1 ms, the latency of our system from input to video signal output is much lower

than previous apparatus. We are limited by display technology however. The display

scan-out time increases our end-to-end latency to 6 ms. Beyond this, persistence of

the image on the monitor can cause the perception that latency is greater than the

average frame period. This is because the stimuli at any time is a blur between the

current stimuli and the previous one. We selected a highly responsive, high frame rate

monitor (an ASUS VG248QE), minimizing perceived latency due to both scan-out

delay and persistence. The limitations in available display technology are shared by

previous authors. Out of the aforementioned studies only Jota et al. secured a better

performing display than the VG248QE. They did this by building a custom display

based on a Digital Micro-mirror Device driven in a very low chromatic range [99].

6.2.1.1 Tracker

We used a number of input devices in pre-trials, including a mouse, Phantom Geo-

magic Touch (formerly Sensible Omni)1, and Wacom drawing tablet. The perfor-

mance profiles of the pre-trial participants were ostensibly consistent so we ran the

experiment with the mouse as this was the most comfortable device. The mouse

was a Kingston Mouse-in-a-Box optical mouse, with the Control-Display gain set

to 1. It was sampled at 1 KHz. To prevent conflicting visual cues, the users hand

was obscured from view using a black cloth. The complete apparatus is shown in

Figure 6.1.

6.2.1.2 Latency

Once the apparatus was integrated, we used the parallel port of the host computer

and an output from the DFE to probe the latency of the rendering stage of our system.

The DFE illuminated an LED on receipt of a specific input. High speed video

monitored the input device, and the LED. This arrangement was chosen as it allowed

us to monitor both the input device and the scan-out of the display, with no further

instrumentation. The latency between the input and the LED was below the temporal

resolution of the video (1 ms). In the best case scenario the user begins just prior to

the cursor is drawn. In this case the latency is between 1-2 ms - predominantly the
1http://www.geomagic.com/en/products/phantom-omni/overview

http://www.geomagic.com/en/products/phantom-omni/overview
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mouse sampling time. In the worst case the user moves immediately after. In this

case the latency is 8-9 ms. This is the mouse sampling time (1-2 ms), the rendering

time (<1 ms) and the period of one frame on our display (6.9 ms). We expect

the latency to be ∼5 ms on average. We measured the total end-to-end latency of

our apparatus using the cross-correlation variant of Steed’s Method [62]. Correct

operation of the apparatus was confirmed by measuring the latency throughout the

investigation, between each participant. The baseline latency was measured at 6 ms,

with the tolerances described for the measurement method [62].

6.2.1.3 Processing and Transport

With the exception of the novel renderer, our system was a typical desktop, based

around an Intel Core i7 PC and running CentOS 6. The tests were implemented

in a thread running with real-time priority, controlled by a non-realtime manager

application. The renderer was accessed using Maxeler’s low-latency API for com-

municating with the DFE via the PCIe bus. Like the mouse access, this makes use of

polling, rather than events. The real-time thread communicated with the managing

application via flags in memory. We profiled the thread to ensure that we only used

calls which would not cause it to yield unintentionally. The thread was given the

highest priority. The result was that the thread was never pre-empted, and latency

due to time-slicing of the CPU was not introduced.

Figure 6.1: Experimental apparatus that the participants interacted with

6.2.2 Participants

30 participants (19 M/11 F) with an average age of 27 (Standard Deviation: 4 years)

from within University College London were recruited for the study. Participants



6.2. Experiment 159

were paid £5 for taking part.

6.2.3 Procedure

Participants typically sat ∼0.6m in front of the display. They were invited to move

the chair, display and mouse to make themeslves comfortable. The mouse and screen

were moved between hands if requested. Once comfortable, they were shown the

two tasks and allowed to practice each for as long as they wished. All participants

were instructed to move as fast as possible. The participants spent 20-30 minutes

completing the actual tests. The time to complete the whole experiment was 30-50

minutes. Our experimental design is very similar to the one-directional tapping task

described in ISO9241-9 [84]. We deviated by having users make discrete movements,

rather than repeated rhythmic movements. This is because the motor system behaves

differently during these two types of motion [81, 23]. Further, the seminal works

using Fitts’s law to investigate latency, such as that of MacKenzie & Ware [129], use

discrete tasks.

6.2.4 Tasks

6.2.4.1 Fitts’s law

For the Fitts’s law style tests, participants saw a box on the screen ∼2cm x 2cm,

which remained throughout all the tests (the staging area). Clicking on this box

would start the test, and a target would become visible to the right. Participants were

instructed to click on the target as fast as possible, then in their own time move back

to the staging area. Clicking the staging area a second time would begin the second

test, and they were to repeat this until all tests were complete.

6.2.4.2 Steering law

For the Steering law tests, users were presented immediately with a 2D path, and

at the start of the path, a green ball. They were instructed to push the ball through

the path, by placing the cursor behind the ball and moving it forward through the

path. Users were again told to maximise speed, and were told that keeping the cursor

within the path would be the fastest way to complete the tests.

Examples of the stimuli seen by the users are in Figure 6.2.
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Figure 6.2: Images of the stimuli the participants were exposed to

6.2.5 Design

The experiments had three independent variables: Latency, Width and Distance

(Fitts’s)/Curvature (Steering). For both Fitts’s law and the Steering law there were

four conditions of spatial difficulty, summarised in Table 6.1. For each condition

there were six additional latencies (0, 10, 20, 30, 50, 80) for a total of 2x2x6 (24)

unique conditions. Unique Fitts’s law conditions were repeated 8 times, and Steering

law conditions 5 times. The repetitions were averaged for each participant, resulting

in 720 data points for the Fitts’s law tests and 720 for the Steering law tests. The

tasks had low entertainment value, and fatigue was a concern. Since we expected

the effect to be small, we optimised for a high number of latencies and repeats at

the expense of spatial difficulty range. The widths and distances were informed by

pre-trials. The range of IDs found by these matched those of MacKenzie & Ware,

and those estimated by Beamish et al. [129, 15]. The IDs were calculated using

MacKenzie’s method [127].

The Steering law paths were manually created, with one designed to emphasize

sharper higher rate turns (predominantly exercising the wrist) and the other sweeping

turns to exercise the upper arm (classed as curvatures 2 & 1 respectively). The

IDs were calculated with Accot & Zhai’s method [1]. The curves are not produced

from any predicable function. This was deliberate, to prevent any unanticipated

motor process (such as that used for reciprocal movement) from hiding the effect of

latency on the on-line correction processes. Conditions were distributed to maximize

the difference between sequential latencies. Within this constraint the widths and

distances/curvatures were distributed randomly. All participants received the same
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conditions in the same order.

Condition Index of Difficulty

Fitts’s law
Width (cm) Distance (cm)

1 0.25 4 4.09
2 0.25 11 5.49
3 0.9 4 2.44
4 0.9 11 3.72

Steering law
Width (cm) Curvature

1 0.4 1 45.37
2 0.4 2 50.63
3 0.7 1 25.92
4 0.7 2 28.92

Table 6.1: Spatial Difficulty Conditions for both types of task

6.3 Results

6.3.1 Pointing Tasks

We measure Movement Time (MT) to be from the time the user clicks the staging

area, to the time they click the target. Figure 6.3 shows MT for each of the latencies.

As expected MT increases with ID, with a jagged appearance due to the small number

of spatial (Width & Distance) conditions that do not have overlapping IDs [168]. We

clearly see an increase in MT with high latencies, but not for low latencies. This is

better illustrated in Figure 6.4 which shows how MT changes with latency for each

condition.

6.3.1.1 Comparison with Previous Works

Studies conducting experiments most comparable with ours include [129, 221, 168].

All studies included Fitts’s law style tests using mice, with latency as the independent

variable.

• MacKenzie & Ware [129] investigated latencies estimated to be between 68 -

315 ms [168].

• Teather, et al. [221] investigated latencies measured at 35 - 255 ms.

• Pavlovych & Stuerzlinger [168] investigated latencies measured between 33 -

133 ms.
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Figure 6.3: Movement Time against Index of Difficulty, for all latency conditions. Error
bars indicate confidence intervals at 95%.
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Figure 6.4: Movement times for each condition against latency. Error bars indicate confi-
dence intervals at 95%.

For [221] and [168] the latencies measured are the total end-to-end system delay,

the same as measured by us. We first consider only the higher latency conditions

(36, 56, 86 ms) which are directly comparable with the previous studies above.

We fit a model using multiple linear regression and show a significant in-

teraction with width (β = −499.81, t(356) = −22.22, p < 0.001), distance (β =

37.48, t(356) = 17.95, p < 0.001) and latency (β = 4.02, t(356) = 11.30, p <
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0.001). We then fit MaxKenzie & Ware’s model to our data and show an almost

identical R2 value (0.995 (ours) vs. 0.967 (theirs)). Finally we perform a one-way

ANOVA as done by Teather, et al. and Pavlovych & Stuerzlinger showing a similarly

significant interaction F2,357 = 21.32, p < 0.001. All studies showed a significant

almost identical multiplicative effect of latency with ID. We show the same effect

for the overlapping latency conditions in our study. This is illustrated in Figure 6.5,

which compares our results with those of previous studies. At lower difficulties

our results appear slightly higher than previous works. The relationship though is

identical, and our results are well within the inter-study variance. Thus for the higher

latency conditions our experiments reproduce previous results.
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Figure 6.5: Movement time for the 36, 56 & 86 ms conditions of the current study, compared
with the overlapping conditions from Pavlovych & Stuerzlinger (PS) [168],
MacKenzie & Ware (MW) [129] and Teather, et al. (T) [221]

6.3.1.2 Deviation at Low Latency Conditions

When we consider the low latency conditions, our results begin to diverge from

the expectations of ourselves and other authors. Considering only the lower levels

of latency (6, 16, 26 ms), multiple linear regression demonstrates no significant

interaction between movement time and latency (t(356) = −0.27, P = 0.78) and

neither does ANOVA (F2,357 = 0.48, P = 0.62). We hypothesised a non-linear
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response as latency decreases. As shown in Figure 6.4 though, the linear relationship

dissolves at higher latencies than we would expect. A clear correlation between MT

and latency does not form until the latencies reach 50-80 ms, while studies have

found an effect at far lower levels [99]. Further, in some cases user performance

appears better in high latency conditions than in low latency conditions.

There have been hints of this effect in previous studies. In Fitts’s law tests by

MacKenzie & Ware [129] and Teather et al. [221] there were IDs at which users

had near identical performance at two different values of latency. The differences

were slight though and the equivalence could be argued to be measurement error. In

pointing tests by Pavlovych & Stuerzlinger [168] the effect is more pronounced, with

the 83 & 33 ms conditions appearing to alternately outperform each other depending

on the ID. In a target tracking test [169] users had a reduced tracking error at 50 ms

compared to 25 ms. Although this interaction was proved not statistically significant,

the authors suggested that it could be caused by the users overcompensating and

moving in front of the target at lower latencies. Another explanation is that users are

more familiar with computer mice having latencies around 50 ms.

Until now these anomalous results have not warranted further investigation. Our

tests however show a pronounced and repeatable effect. Observing the behaviour

of the user during the task more closely reveals a possible cause. We suggest it

is a result of the independent affects of latency on different stages of movement,

happening at levels well below those at which performance supposedly improves.

While movement time is a useful metric, it does not allow for appreciation of

the underlying processes. A number of works have hypothesised the motor system

as a feedback loop, with an initial impulse followed by some form of continuous

control. One way to characterise this has been to examine the symmetry of movement

velocity profiles around the point of peak-velocity. As task difficulty increases so

does the proportion of time spent correcting movement in the second - deceleration -

stage [51]. An example is given by Bootsma et al [22]. We show that this deceleration

stage may be further subdivided, into what we term the acquisition, and correction

stages (defined below). Further, the impact of latency on these is not symmetrical.
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Various parameters of kinematic profiles have been examined to gain insight

into motor system functionality. There are different schemes to partition kinematic

profiles. Partitioning based on peak-velocity is one example [51]. Another is that

used by Meyer et al to partition motion into a primary movement and optional

correction sub-movements for the two-component motor system model [145].

Bootsma et al previously used the peak-velocity scheme to quantify the effects

of Fitts’s law test parameters on the kinematic profile [22], and it has been used to

investigate multiple theories of motor system operation [51]. Examining the effects

of latency on the kinematic profile with respect to specific motor system models such

as Meyer et al’s however may provide new insights and is a subject for future work.

For this investigation we partition the aiming motion into three stages:

Acceleration The time between the user beginning to move, and reaching their peak

velocity.

Acquisition The time between the peak velocity and the user first reaching the

target.

Correction The time it takes the user to settle and complete the task once the target

has been reached.

Under very low latency conditions the majority of the time is spent in the

acceleration and acquisition stages, so the correction stage is typically the time it

takes the user to click the mouse button. Under high latency conditions the user

overshoots and so the time in this stage is extended. The breakdown of the total

MT into stages can be done by defining kinematic markers (e.g. the sample with

peak-velocity) and using the position and timing data in the log files. The breakdown

is shown in Figure 6.6.

As would be expected of a pre-planned impulse, multiple linear regression

shows a strong interaction between the acceleration stage and distance (β =

8.5, t(687) = 30.02, P < 0.001), but not width (t(687) = 0.97, P = 0.33) or la-

tency (t(687) = 1.27, P = 0.2). Performing multiple regression on the acquisition

and correction periods independently, show the effects of latency are strong but
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Figure 6.6: Mean time in each task stage, for each latency. Error bars indicate confidence
intervals at 95%.

asymmetric. The results are shown in Table 6.2. The R2 values for the acquisition

stage and correction stage are 0.832 and 0.682, respectively. The error degrees of

freedom for both is 687.

Variable Stage

Acquisition Correction
Coefficient P-Value Coefficient P-Value

Width -181.82 <0.001 -243.09 <0.001
Distance 41.28 <0.001 -6.06 <0.001
Latency -2.25 <0.001 3.19 <0.001

Table 6.2: Multiple linear regression results for separate stage movement times.

As latency increases, the time in the acquisition stage decreases. This is accom-

panied by an increase in average velocity for the stage. That is, the user covers the

same distance during this stage as before, but makes the motion in a shorter amount

of time. Conversely, time in the correction stage increases. Total movement time

is the sum of all three stages. Since the correction time typically increases faster

than acquisition time decreases, higher latencies generally result in higher movement

times. The effect on correction time is non-linear however, with large increases

occurring only at high latencies. Therefore there is a subset of latencies, within

which acquisition time decreases faster than correction time increases, resulting in a

lower movement time overall. This is shown in Figure 6.7.
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Figure 6.7: Mean time for the different stages of movement for condition 2 with latency.
The graph has been annotated to illustrate how movement time changes with
latency due to the differences in the response of the stages. Error bars indicate
confidence intervals at 95%.

At latencies between 26-36 ms, the user does not need to make significant

corrections once the target is reached, but neither does their deceleration profile

match the conditions between 0-26 ms. They continue their quick movements

causing them to move farther and faster than they likely intended. However, the

latency is still low enough that the overshoot, if present at all, is marginal, and

the correction stage is not significantly confounded. We cannot say with certainty

the cause of this change in profile. One possibility is the transition to a third and

unanticipated compensation process. Another is that the beginning of the deceleration

is delayed due to interference with the motor processes. The result though, is that

total movement time decreases with the decrease in acquisition time, until the point

at which the correction stage is significantly affected, negating and then eclipsing the

acquisition time gains. If this is the case, it is likely not optimal functioning of the

control loop however. Interfering with the deceleration process may prevent normal

trajectory modifications as the target is approached, benefiting only the subset of

tasks which can be completed without these. In most cases without the controlled

deceleration stage, overshoots are likely to occur and take considerable time to

correct.
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6.3.1.3 Latency Thresholds

With the movement stages split up we are in a better position to observe when la-

tency begins to impact the function of the motor system. We perform ANOVA

with the various pairs of latency for both movement stages. (Recall that the

time in the acceleration stage is independent of latency.) Pairs between which

the time in the stage differs significantly are shown in Table 6.3. For all tests

betweengroupdegreeo f f reedom = 1 and withingroupdegreeo f f reedom = 58.

From this it is clear that for these tests latency begins to have an effect at ∼16

ms, ∼6 ms larger than that found by Jota et al. for direct interaction.

Condition Latency Condition Pairs

6-16 16-26 26-36 36-56 56-86
Acquisition Stage

1 <0.05 <0.05
2 <0.05 <0.05 <0.05
3 <0.05 <0.05
4 <0.05 <0.05

Correction Stage
1 <0.05 <0.05 <0.05 <0.05
2 <0.05 <0.05
3 <0.05 <0.05
4 <0.05 <0.05

Table 6.3: P-Values for ANOVA between pairs of latencies within each condition

6.3.1.4 Effects of Target Width & Distance

From Figure 6.4 we see that the unexpected decrease in movement time is largest

for conditions 2 & 4, which have the largest target distance. This is intuitive. The

gain is a result of confounding the acquisition stage: the longer this stage lasts, the

larger the effect on total movement time. From Table 6.3 we see that correction time

begins to be affected at higher latencies than acquisition time. The velocity for the

correction stage is lower than for the acceleration or acquisition stages. This may

make the processes of this stage more tolerant to delay. Any benefits are short lived

though. When latency does begin to affect this stage, the performance degradation

is severe and increases rapidly. As shown in Table 6.2, while distance has a larger

effect on acquisition time than correction time as would be expected, neither stage is

a product only of width or distance.
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6.3.1.5 Modelling the effects of latency

MacKenzie & Ware modified Fitts’s law to account for the multiplicative affects of

latency. We used their model, while also creating an additional linear model with

predictors of width, distance and latency. The response variable is the total MT. This

model is the identical to one consisting of the sum of the linear models for each of the

movement stages. We consider how well both models fit our data. We selected three

latencies, and for each in turn, removed the conditions with those latencies from our

results. The models were fitted to the remaining data, and then used to estimate the

results of omitted conditions. The error of these estimations were averaged. The

results are shown in Table 6.4.

Latency
Condition
Predicted

Estimation Error (ms)

Our Linear Model MacKenzie & Ware’s Fitts’s law
variant

6 81.5934 78.4651
36 68.1741 68.3698
86 199.0222 201.4407

Table 6.4: Mean estimation errors of our linear model and MacKenzie & Ware’s variant of
Fitts’s law, after estimating the movement time of a specific condition, the results
of which had been removed

As the latency of the condition being predicted increases, so does the prediction

error. In both cases this error is caused by an underestimation of MT. We hypothesise

the response to latency is non-linear, and it if is, this is what would be expected.

Since the models are created from a region of the non-linear response that that has a

weaker correlation with latency, they underestimate MT as latency increases. We

do not attempt to model this non-linear relationship, as we do not have data from

a wide enough range of conditions to do so. Acquisition time is shown to decrease

with latency, though clearly this cannot continue indefinitely. We would expect it to

continue down until it reaches a floor at which it remains a constant multiple of width

and distance. Since the acceleration stage is constant, and we expect the acquisition

time to degenerate to constant, we must conclude that correction time will come to

resemble the relationship described by MacKenzie & Ware’s model. Our latency
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conditions are not extensive enough to test these hypotheses however so any model

we created would be incomplete. This is a subject for future work. The models

created if all observations are considered are shown in Equation 6.1 (MacKenzie &

Ware) and 6.2 (Ours). These models have R2 values of 0.384 and 0.685, respectively.

The error degrees of freedom of our model is 716.

MT = 296+(184+0.38LAG)ID (6.1)

MT = 941−453Width+45Distance+1.6Latency (6.2)

Two additional Fitts’s law metrics that are commonly used are throughput and

error. In our study, a trial was not complete until the target had been acquired.

Therefore error is approximated by Correction Time. Throughput (or Bandwidth)

is given as the ration between ID and MT [168]. We calculated both error and

throughput and found that they had similar profiles to the MT for each condition. It

is not clear how we could unambiguously separate these high level metrics into their

constituent parts though, so we unable to determine any more from them than we are

total MT.

6.3.2 Steering Tasks

The MT for a Steering law test is considered to be time between the cursor first

touching ball, and the ball reaching the last point on the path. Like the Fitts’s law

tests, MT increases with ID, and there is generally a multiplicative effect of latency

with ID (Figure 6.8). Although this degenerates at lower latencies (Figure 6.9). We

are not aware of any previous studies that have investigated the effect of latency

on the Steering law itself. The experiment closest to ours is that of Pavlovych &

Stuerzlinger, in which the authors investigated the effects of latency and jitter on

performance in tracking tasks [169]. As velocity was fixed in their tracking task,

the performance measure was the error rate, defined as the distance from the target.

Their participants performed best with 50 ms of latency (the lowest latency was 25

ms). We observe similar profiles for our conditions, in terms of MT (Figure 6.9)

and error rate (Figure 6.10) though our participants performed best at slightly lower

latencies.
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Figure 6.8: Movement Time against Index of Difficulty for all latencies. Error bars indicate
confidence intervals at 95%.
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Figure 6.9: Movement Time against Latency for each Steering law Condition. Error bars
indicate confidence intervals at 95%.

Path tracing is likely to require constant acceleration. Intuitively then steering

tasks could be thought of as a sequence of correction movements. However, after

comparing Fitts’s law and the Steering law, Liu et al. postulate that behaviour is more

like a series of ballistic tasks [123]. The similarity of the responses in the Steering

law & Fitts’s law tests in our experiments suggest both tasks use similar processes.

We performed the Steering law tests as it was hypothesized they would exercise

different motor processes than Fitts’s law. This could help disambiguate the Fitts’s
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law results. There is no evidence to suggest this is the case however, and segmenting

movement stages in steering tasks is not as straightforward as in discrete pointing

tasks. We are unable to offer an explanation for the apparent non-linear effects of

latency, other than it is possibly the same interaction between motor processes seen

in the discrete tests.
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Figure 6.10: Error Rate in percentage of samples that occurred outside the path, against
latency for all Steering law conditions. Error bars indicate confidence intervals
at 95%.

6.4 Discussion

6.4.1 The non-linear response of latency

Even the simplest models of the motor system consider a set of separate processes,

cooperating to execute smooth motion. So far though, the impact of latency has been

modelled as linear. It is theorized that latency interferes with the ability to make

quick corrections to motion, slowing the user down. Our results show that while this

is true, it may be obscured by the interaction of latency with a stage of movement

which we term the acquisition stage. When the user enters this stage they are moving

at their highest velocity, and during the stage begin to decelerate. Interfering with

this stage then could result in a decrease in movement time, as the user moves further

and faster than they would if they had full control of their motor system. Usually this
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results in overshoot. With certain task difficulties and low enough latencies however,

the corrections required are minimal, resulting in a lower overall movement time.

It appears as if latency is improving user performance. The reality though is just

another trade-off analogous to that between speed and accuracy - but one the user

has no control over. This explanation also implies that the motor system is naturally

conservative.

6.4.2 Thresholds of latency

Our conditions are not extensive enough to derive better models of the effects of

latency on MT than the existing linear ones. By performing ANOVA for latency

condition pairs though we can determine an initial range where latency does not

appear to have a significant effect. The value of this threshold (16-26 ms) is not as

important as the fact that such a threshold can exist. If a threshold exists for our

apparatus, one may exist for more complex installations.

We hypothesize that above specific latencies, the impact of latency on the

acquisition stage will degenerate. It will become constant, like the acceleration stage,

and the correction stage can be modelled by the original Fitts’s law with latency

introduced by MacKenzie & Ware. Fitts’s law describes an observation rather than

the operation of the underlying system, and so it transcends the revisions of motor

system models. Conversely though, it only applies to conditions within a certain

range. If predicting user performance across the full range of conditions is important,

models which describe the contribution of all movement processes will have to be

derived.

6.4.3 Investigating Latencies at Low Levels

The Steering law tests were included in order to disambiguate the results of the

Fitts’s law tests, where the effects of latency on different motor processes may

not be clear. In fact though, it was the Steering law test behaviour we could not

explain, due to the inability to quantify participant behaviour beyond MT and error

rate. The Fitts’s law test is valuable in investigating latency, so long as metrics

beyond that of MT are considered. It is not clear though, whether the floors we have
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supposedly found are functions of the motor system, or the motor system & task

difficulty & apparatus. Ideally a task would be designed, which both approximated

real interaction primitives, and exercised the motor processes in such a way that the

response to latency remained linear, or at least linear with a clearly defined floor. That

the effect of latency on the movement stages is independent is significant. If only the

sum of these stages is considered, the effect of latency may be obscured. Recall that

no interaction with latency was demonstrated when considering the total movement

time for the lowest latency conditions. What is not clear is the extent to which

each movement stage is dependent on pre-planning. In the previous tests we have

considered, the requisite movements are predictable for the user. Even in Pavlovych

& Stuerzlinger’s tracking task, Lissajous Curves were used which made the motion

of the target predictable for most of the experiment. With improved models of the

motor system it may be possible to isolate and test the processes involved with

each movement stage separately. Latency is detrimental to interfaces facilitating

continuous or pseudo-physical interaction with complex datasets or systems. This is

especially true for those affording natural interaction such as virtual environments.

If we are to continue to investigate low latency, it may be worthwhile to pursue a

new interaction benchmark.

6.5 Summary

Latency is known to impact performance in motor tasks. User performance has been

characterized by models such as Fitts’s law, which have been extended to include

the effects of latency. Authors have commented previously that Fitts’s law is likely

to degrade at extreme values. One example is the negative intercept of the linear

model, which would result in a zero or negative MT for low enough IDs. Clearly the

real response must deviate from this model. We suspected a similar deviation would

occur from the latency model for very low values, and designed an experiment to

test this.

We constructed a system with a system latency of ∼1 ms and display latency

of ∼5 ms. Informed by pre-trials, we selected conditions which matched those
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from previous works, and which happen to be those at which the motor system can

theoretically operate optimally. Where conditions overlap we compare our results

and find no significant differences. For our lower latency conditions however, we

find a significant and unexpected effect.

Our results show that for some conditions, higher latencies can result in lower

movement times. This effect has been hinted at in previous studies, though not

significantly enough to pursue. We caution that movement time is just one metric

and does not necessarily mean performance is improved. On closer inspection we

suggest that the effect may be explained by the independent, degrading effects of

latency on the processes of the motor system. While efficient user interaction is am

important part of forming the sensorimotor loop, we know that the raw ‘bandwidth’

of user interaction on its own is not a sufficient indicator of the effectiveness of a

synthetic environment. In the next chapter we describe a study that attempted to

examine a higher level perceptual skill.



Chapter 7

The Non-Existent Effects of Latency

on Distance Estimation

In Chapter 6 we reviewed a study into the effects of latency on low level interaction.

Low level interaction is key to forming the sensorimotor loop, and so is very im-

portant for effective synthetic environments. Many authors have hypothesised that

presence is not only a combination of various functionalities, but can be experienced

at different levels. Users behave as if the world is real, but intellectually they know

it is not. An example would be avoiding an obstacle or hazard they know is not

there. While a considerable amount of work has been done on lower level interaction,

these findings cannot extrapolate to higher level functionalities such as embodiment,

perception or co-presence, yet these functionalities are just as important.

In this chapter we describe a study conducted into distance estimation. Distance

estimation is an interesting skill to study because while it is higher level than pointing

and reaching tasks, there is also a clear objective benchmark for performance. It is

also highly important for many applications of synthetic environments.

7.1 Introduction
One persistent and widely observed phenomena in VR is distance compression. This

is where users in a VE underestimate distance by up to 50% [32]. This has been

measured using a variety of techniques, such as verbalisation [110], throwing tasks

[185] or - the most popular - blind walking trials [125]. Clearly, in an application
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designed to facilitate or evaluate knowledge transfer or muscle memory, this is a

significant problem.

Accordingly, many studies have attempted to elucidate the causes of the com-

pression. Authors have examined factors from the mechanics of wearing a HMD

[245], to the furniture in the virtual world [86]. Despite this, few have been able

to find even significant predictors of the effect, let alone hypothesise an underlying

cause. One of the most interesting discoveries was made by Interrante et al., who

found that the distance compression disappears when the VE is a replica of the

users concurrently occupied real-world location [85]. The phenomena was persistent

however in follow up studies, appearing under even small changes - even when

participants reported no perceptual differences [86]. Steinicke et al. showed that the

benefits of a replica environment remain after exposure to it has ended. They found

participants’ behaviour & self-reports in a synthetic VE changed significantly when

they were first exposed to a replica transitional ‘ante-room’ [218]. Steinicke et al.

later found these benefits extended to distance estimation [217]. While the benefits

have been shown to remain beyond initial exposure, the user will by necessity have

experienced the real-world equivalent of the VE. The question remains then whether

the improved accuracy is due to higher level cognitive functions or lower level cali-

brations/learning effects in the visuomotor system. So far there is little conclusive

evidence for either side.

In this study we suggested that the compression may be a consequence of

dynamic visuomotor processes, and that the interference with these by latency may

be the cause. Latency has been shown many times to interfere with VEs at many

levels, including visuomotor processes in pointing & steering tasks and presence

(e.g. [129, 143]). Latency has been shown to have an effect below the consciously

perceptible thresholds [91]. It is has been shown to be amenable to adaptation [23],

as have distance judgements [149]. As a consequence of the unavoidable processing

and transport delays in current computer systems, it will also have been present in

every virtual reality experiment performed thus far.

To investigate the effects of latency, we conducted an experiment based on that
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of Interrante et al. [85]. We constructed a VE system with a latency of 1− 4ms,

using a state-of-the-art tracking system and a bespoke graphics controller. Using this

system, we asked participants to conduct a series of blind-walking trials to gauge the

accuracy of their distance perception after exposure to the VE with different levels

of latency. In addition, we measured a number of gait parameters, reasoning that the

correlations, or lack of, between changes in latency, accuracy and gait parameters

could provide important clues as to the source of the effect.

Our findings were unexpected. We found no effect of latency on accuracy or

gait. However we did find that participants showed no greater compression in our

synthetic VE than our replica - a VE which they could not have adapted to. The most

obvious explanation is that our experiment failed in some way, however numerous

tests do not bear this out, suggesting rather that that we have found a condition

which facilitates accurate distance judgements in an entirely synthetic VE with no

real-world counterpart.

While gait measurements could not help us refine this hypothesis further as we

had hoped, this one conclusion on its own suggests it is possible to design entirely

synthetic VEs which facilitate veridical distance estimation. The implication is that

distance compression may be function of plausibility and believability, rather than

lower level physiomotor confounds. We could not have performed this study without

our high performance bespoke VE system, but now that we have, we expect our

main result to be repeatable in many off-the-shelf consumer VR systems such as the

HTC Vive. If this is the case, whether the intention is to inhibit or elicit distance

compression, the implications for the designers of VEs and their installations are

significant.

7.2 Survey of studies on distance estimation

Many applications of synthetic environments require users to perform goal directed

actions in space. Accordingly, there has been interest in how users perceive &

interact with VR, and what phenomena may affect such interaction. One of these

phenomena is the systematic underestimation of distance [189, 32].
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Users consistently underestimate distance in VR. Loomis et al. were one of the

first to demonstrate this using blind walking trials [125]. Since then, authors have

demonstrated the persistence of this phenomena in throwing tasks [185], verbal feed-

back [110], and in both speed [13] and distance [248] estimations during treadmill

walking. The effect has been repeated in numerous studies which have investigated

it since (e.g. [49, 59, 149, 175, 217, 225]), while authors also remark on participants

moving ‘slowly’ or ‘uncertainly’ (e.g. [176, 55, 85, 187]). Despite all this attention,

the underlying cause has proved elusive.

Understanding the distance compression phenomena is important, because the

natural behaviour of users is arguably a key indicator, if not a pre-requisite, for an

effective VE. As Slater et al. assert, presence is a phenomena enabled by the high

level of immersion of VEs but distinct from simpler interaction [211]. The goal of

a VE is to substitute virtual stimuli for real, and it has not successfully done this

until the user forms percepts from the virtual stimuli and responds realistically to it.

Meehan et al. consider that the effectiveness of a VE may be measured through the

user’s internal state, rather than simply application success [143]. They hypothesize

that ‘real’ physiological responses would be evoked to the degree that a VE seemed

real [142]. Usoh et al. demonstrated such an interdependence, showing the greater

the degree to which locomotion techniques approximated natural movement, the

higher the measures of presence [230]. Phillips et al. suggest that basic physiomotor

characteristics, such as gait, could themselves be used as an objective presence

measure [176, 172].

Accordingly, a number of authors have attempted to identify the factors that

underlie the phenomena. Fortenbaugh et al. suggested that visual quality may cause

users to utilise different cues during path integration [57]. Thompson et al. found no

effect of this on distance judgements [226], however in a subsequent study Phillips

et al. found that the representation of a VE does matter in some situations [174].

Kunz et al. found that graphics quality did have an effect on users’ verbalised

judgements, but not on their actions [110]. Campos et al. investigated FOV, but

found no significant interaction [32]. Interrante et al. hypothesised that users may
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take cues from landmarks such as furniture, but were unable to find any evidence to

support this when testing behaviour in VEs with and without virtual furniture [86].

Willemsen et al. did find a significant interaction with the mechanics of wearing an

HMD, but it was not strong enough to explain the phenomena on its own [245].

Other authors have looked for an explanation in the dynamics of spatial interac-

tion. Frenz et al. investigated the perception of travel distance from visual motion

and found that distance is underestimated under motion, even with improving cues

of the static layout of the scene [59]. Banton et al. found a significant interaction

between the mis-perception of speed and restrictions in visible lamellar flow [13].

Campos et al. found that FOV was a significant contributor to a number of functions,

but could not on its own explain the estimation compression of walked distances

[33]. Thompson et al. found that by deliberately mismatching the visual cues to the

users real walking speed, they could increase the accuracy of distance judgements.

They demonstrated this with blind walking trials performed after exposure to a VE

on a treadmill [225].

Mohler et al. also showed the plasticity of the effect. In their experiment

participants performed tasks similar to blind walking trials but with different levels

of feedback, before performing traditional blind walking trials to assess what effect

the feedback had on their performance. The authors found that mismatching the

coupling between visual and biomechanical speed in the adaption stage did transfer

to the real world [149]. Rieser et al. demonstrated not only the plasticity of a number

of visuomotor functionalities, but also that the re-calibration was ‘functionally based’,

rather than action or global based [184].

One of the most interesting discoveries about this phenomena was made by

Interrante et al., who found that when participants were placed into a replica of their

concurrently occupied real environment, the compression effect disappeared [85].

In a follow up study [86] they found that it returns when the scale of the replica

is altered, but that the mis-perception is not correlated with with the direction of

scale, but merely the existence of it. The authors suggested that the phenomena

could be cognitive, rather than functional. They found that participants’ behaviour
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changed over the trials, suggesting some form of adaptation does take place, but

there was no conclusive evidence that this was either functional or cognitive. Recall

that Phillips et al. did find a significant interaction between rendering style and

distance perception [174]. In another study Phillips et al. also found a significant

effect for whether or not the participant had an avatar, though again the effect was

not strong enough to completely explain the phenomena [175]. Results such as these

however could suggest a strong presence component in accurate spatial judgements.

Following from Slater et al. and Meehan et al., Phillips et al. [172, 173]

examined correlations between distance perception accuracy, presence and various

physiological cues, including gait. In an environment designed to provoke stress as

a technique to measure presence, the authors found that participants moved more

‘cautiously’ in a dangerous environment. The authors found a significant effect

between locale and gait in one experiment, and locale and distance estimation in

another. Again, the strongest results were found where a participant was in a virtual

replica of their real world location. There was surprisingly no correlation between

gait and distance estimation in the second experiment, however [173]. Steinicke et

al. [218] explored the benefits of a replica environment further, examining if using

one as a transitional ante-room could increase presence when participants moved

into a non-replica locale. They found that it did indeed increase presence. Based on

the observed change in participant behaviour, and remarks that they had a ‘better

feeling for movements’, Steinicke et al. [217] pursued this to see whether the benefits

extended to distance estimation. They found that participants had significantly higher

accuracy after exposure to the transitional environment.

Steinicke et al. [218] coded user behaviour rather than measuring gait param-

eters directly. Jones et al. [97] examined the direct relationship between gait and

distance estimation under different FOVs, but found that the relationship was am-

biguous. Using a treadmill, Hollman et al. [77] showed that in VR, stride length was

reduced, in addition to an increase in step width and stride velocity. Hollman et al.

[76] further found that kinematic parameters (e.g. push-off peak force) that reflect

gait stability were significantly affected. These findings suggest that participants
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have reduced stability. Mohler et al. [148] examined gait parameters between free

walking in an HMD and in the real world. They found a significant affect on gait.

Anecdotally, the authors observed that wearing the HMD began to approximate the

same effects as walking ‘with the eyes closed’.

So far then there is little conclusive evidence to suggest a purely functional or

purely cognitive cause. Authors such as Mohler et al. and Thompson et al. used

different forms of dynamic feedback to significantly influence participant behaviour

in the same blind walking trials used by others to investigate ‘static’ cues. In doing so

they provide compelling evidence for an interdependence between spatial perception

and spatial dynamics [149][225]. Therefore, we cannot ignore any potential factors,

even if they may appear to affect only exclusively dynamic or static cues. Specifically,

we suggest that latency may be a factor. Latency has been proven to affect visuomotor

processes (e.g. [61]) and presence (e.g. [143]). Latency is amenable to adaptation in

some functionalities (e.g. [23]), and as the unavoidable consequence of processing

and transport delays in the computer systems that make up current VEs [147], it will

have been present in every study referenced above.

The authors are aware of only one group that has examined the effects of latency

on gait or distance estimation. Samaraweera et al. [187] investigated the effect

of both latency and avatars on the gait of participants with and without mobility

impairments. They found that while only two participants consciously perceived the

latency, there was a significant effort on behalf of both populations to take a more

cautious approach to walking with increasing latency. In another study Samaraweera

et al. [186] found that latency could significantly influence the gait of participants

when it was applied asymmetrically, to only one side of an avatar seen in a self-facing

mirror.

7.3 Experiment

We designed an experiment to test the effects of latency on distance estimation in

VR, while at the same time elucidating how accuracy correlates with physiomotor

behaviour. The experiment had two independent variables, within-subjects latency
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and between-subjects room. Two virtual rooms were prepared, one replica to inhibit

compression and the other, entirely synthetic, which we presumed would elicit it.

We continued the practice of using blind walking trials as an indicator of distance

estimation in VR, following the prototype of that used by, for example, Interrante et

al. [85]. After orientation, participants entered VR and alternated between free walk-

ing periods and blind walking trials. During the free walking periods, participants

were exposed to different levels of additional latency: 0, 10 & 25ms. Participants

experienced each latency level for four consecutive trials. Participants’ head and feet

were tracked, allowing for estimation accuracy and a number of gait parameters to

be measured under the different conditions. By observing how participants’ accuracy

changed with latency, we could determine if latency was significantly affecting

distance estimation. By examining how gait parameters changed with accuracy,

with and without compression, we could determine to what extent compression is

correlated with the behaviour of the physiomotor system.

In accordance with previous works, we expected to find a distance underestima-

tion of up to 50% in our synthetic environment, compared to our replica environment.

We expected that latency would affect gait, increasing step width, while decreasing

stride length and speed. We expected similar effects in the blind trial stage (vs.

visble). For each participant we recorded Gender, Age as well as level of previous

exposure to HMDs and 3D video games. We did not expect Age, HMD or game

exposure to affect distance estimation or gait. Studies have shown that despite com-

mon perception, the effect of gender on gait remains ambiguous. However there are

suggestions men take wider steps than women, possibly due to structural differences

[60]. We therefore expected gender to be significant, but with few expectations of

effect size or direction. We expected, as our main hypothesis, that latency would be

positively correlated with distance underestimation in the synthetic room.

7.3.1 Apparatus

The design of this experiment made strenuous demands on the VE. We integrated

our real-time ray caster from Chapter 4 to form the foundation of our apparatus.
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7.3.1.1 Headset

For the display we used an Oculus Rift DK2 HMD. This headset has a FOV of ∼100

degrees and a resolution of 960×1080 in each eye. It features a 6 DOF IMU. The

DK2 was used because of its amenability to customisation for integration with our

bespoke system. It can be driven by any VESA compliant 1920x1080 HDMI signal.

Full source for version 0.4.4 of the SDK is available, and it was straightforward

to attach mounts for the tracker markers and their driver unit. The SDK uses USB

libraries that are not available on our target system - CentOS 6.7 - so we modified it

to use a different USB library. The SDK and headset were otherwise unmodified.

The HMD features a low persistence display that scans out left-to-right at 75 Hz in a

rolling band. Consequently, the display will take up to 12 ms to completely redraw,

but the user never actually sees more than a couple of hundred lines of old frame

data at any time as lines drawn previous to these are not illuminated.

7.3.1.2 Tracking

For tracking we use a PhaseSpace Impulse X2E. This is an outside-in tracking

system that uses active markers. The system uses line-scan cameras which allow it to

achieve a very high update rate (960Hz), and a very low latency (3 ms). The markers

are LEDs driven by a micro-controller, and using a time-based flashing code, can

unambiguously identify themselves. We use one marker each for the left and right

foot, recording absolute position. The HMD was outfitted with 6 markers to form a

rigid-body which supplied both absolute position and orientation data.

We found that that there was noticeable jitter in the rigid body orientation

estimation (though less in position) near the bounds of the tracking volume. We

therefore designed a very simple fusion algorithm to use the HMD’s on-board IMU to

track the orientation of the headset. At start-up the algorithm applies the orientation

estimate from the PhaseSpace to the egocentric estimate of the IMU as a fixed offset.

When the system is running, the adjusted estimate of the IMU is compared with the

allocentric estimate from the PhaseSpace. The difference is low-passed with a very

aggressive moving-average filter, inverted and applied to correct for drift.

While ideally we would minimise complexity by having only one tracking
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system, there are advantages to this configuration in addition to reducing jitter: (1)

the IMU, running at 1 KHz, reduces latency below even 3 ms and (2) the orientation

tracking will work even if the user reaches the edge of the tracking volume, reducing

the severity of the symptoms of loss of tracking1.

7.3.1.3 Audio

The ambient noise in the lab was quite sympathetic to our virtual worlds. The

investigator remained in the same room as the participant, but communicated via a

set of headphones. This was to avoid the sensation of a disembodied voice emanating

from one particular place.

7.3.1.4 Software

With the exception of the bespoke graphics controller, the VE ran on a standard mid-

range CentOS 6.7 PC. As the ray-caster implementation runs independently of the

CPU, the actual processing requirements are quite low, as described in Section 4.4.

The computer running the VE ran headless, with the VE being controlled remotely

over the network through a second, lower priority thread. To avoid ever blocking the

main thread, synchronisation was performed using boolean flags. These indicate to

the main thread when a state change was desired (e.g. blank the display), and the

main thread would routinely poll these and execute the requests. More complicated

requests such as downloading the logs would stall the main thread, but these were

completed only when the participant was finished in the VE.

7.3.1.5 Virtual Worlds

The nature of our graphics controller severely constrains what we can display. Our

current implementation supports a small number of texture & transparency mapped

planes. The procedure required one of the rooms to be a replica of the lab. We

created two cuboid rooms made of six planes. All planes were textured with maps

created from photographs.

Replica Lab The maps of the lab were modified to remove any furniture or features

large enough that the baked perspective cues would be particularly noticeable as

1But does not eliminate them - positional tracking is still lost.
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participants moved around the room. In the replica lab, we added a virtual curtain

blocking the end of the room as this area was beyond the stable tracking volume.

The visible area of the lab had a floor space of 5m×4.5m. Some of this space was

outside the tracking volume or otherwise occupied. By carefully choosing the marker

locations and instructions given to the participant, we prevented them walking into

these areas. Photos of the real lab and renders of its virtual counterpart are shown in

Figure 7.1.

Synthetic Room The maps of the synthetic location were created from an amalgama-

tion of images from various locations in our office, so that it could plausibly be a real

place, but one no participant could ever have visited. The virtual room was smaller

than the lab, with a visible floorspace of 3.5m×3m. The room was positioned in

the real lab such that its entire area was navigable. Renders of the virtual room are

shown in Figure 7.2. Both this render and that of the virtual lab were done with

an unlit shader that simply passed through the texture sample - the same operation

performed by the realtime ray-caster.

7.3.1.6 Latency

As described in Section 5.3.2, what is perceived by a user is a function of the

interaction between the rendering technique and display technology, and so latency

cannot be characterised by a single value. This is especially true in cases where

tracking systems run at different rates & latencies. We can characterise our tracking

systems, depending on the degree of freedom, by a latency of between 1 and 3 ms.

We can prove our renderer has a response time of less than 1 ms, and that the display

shows pixels with a maximum age of ∼1-2 ms - a function of the width of the rolling

band and frame period2. If we had to specify a single value however, the average

response time of the predominant vection cues is 2-3 ms.

7.3.2 Participants

31 participants (Age = 29±9,14F,17M) were recruited via an advert in a participant

pool and paid £10 each. 16 experienced the replica room and 15 the synthetic room.

2This is based on 1 ms exposure capture of the rolling band. The actual period may be less. An
accurate measurement could be performed with a photodiode and an oscilloscope.
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Figure 7.1: Images of the real (top - photo) and virtual (bottom - render) lab environment

7.3.3 Procedure

Participants were given an information sheet which outlined the experiment. They

were told it was a study on spatial perception, but latency was not mentioned.

Participants completed one practice trial outside the VE to ensure they understood

the task. Participants were then asked if they were happy to proceed, and if so asked

to sign a consent form. Velcro straps were attached just below the elbows, knees

and around the feet. Velcro backed active markers were attached to the straps on the

arms and feet, and cable slack attached to those on the knees. The markers on the

arms were a diversion and not recorded. The HMD, with the virtual world already
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Figure 7.2: Render of the synthetic environment

loaded was then provided to the participant.

With the VE visible, but the marker invisible, the investigator asked the partici-

pant to move around the room a couple of times. Examples of instructions would be

“please walk into the corner in front of you” or “please walk half way along the wall

on your left”. The investigator would choose instructions so that the participants

would end up on the opposite side of the room from where the marker was to appear.

The investigator would then cause the marker to be shown in the HMD and ask if

the participant was ready to walk. When the participant answered in the affirmative,

the HMD was blanked, and the participant instructed to walk to the marker. Once

they had indicated that they had done so, they were asked to take a few steps back

before the VE was shown again. This was to prevent them using environmental cues

as feedback about their accuracy. The procedure was then repeated for the remaining

trials.

Marker positions were precomputed ahead of time for each participant, by

selecting them at random from a list of potential locations. Every participant experi-

enced all three latency conditions. Four trials were completed for each latency, and

these were completed together in a block, though the blocks were ordered randomly

for each participant. In total each participant completed 12 trials which took them
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approximately 15-20 minutes. We strictly constrained the number of conditions and

repeats to limit the amount of time in the HMD, to avoid adaptation and the higher

latencies inducing simulator sickness.

7.4 Analysis
We used four primary response variables which are described below. Our two main

independent variables were latency and room, though four additional predictors were

provided by the questionnaire results, and the actual distance to the marker could

be computed for each blind-walking trial. Our experimental software automatically

segmented the logs based on trial and stage (blind or visible).

7.4.1 Accuracy

Our primary measure is accuracy. We compute this as a percentage/normalised

mis-estimation the same way as Interrante et al. [85]:

Accuracy = (WalkedDistance−TargetDistance)/TargetDistance

WalkedDistance & TargetDistance being the euclidean distance between the

first head-position and last head-position & first head-position and target position,

respectively. Accuracy was computed for each trial resulting in 372 data points

across both rooms.

7.4.2 Gait

Previous works have examined various gait parameters. Phillips et al. [176] used

Stride Speed (distance between footfalls divided by the time between them), Stride

Length and Stride Width. Mohler et al. [148] used Speed (trunk velocity), Stride

Length, and Head Trunk Angle. Jones et al. [97] used a variation of Step Length

(walkeddistance/numbero f stepstaken), and Speed. Hollman et al. [77] used Stride

Length, Step Width and the variability of each, while Samaraweera et al. [187]

observed a considerable number of parameters and found the most significant were

Speed, Step Length and Stride Length. Based on the most significant and popular of
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these, we opt to examine Speed, Step Length and Stride Width, defined below.

7.4.2.1 Velocity

Similar to Mohler et al. [148] we attempt to measure speed as the average velocity

of the trunk while the participant is neither accelerating or decelerating. We measure

speed by segmenting each head position log into blocks of 500 ms, and compute

the speed based on the first and last positions in these blocks. Block samples below

10cm/s are discarded. The remaining samples are averaged to provide a speed for

that trial/stage. Speeds are computed separately for both visible and blind walking

stages in each trial, resulting in 744 data points across both rooms.

7.4.2.2 Step Width

We consider Step Width to be the distance between a stationary foot and the perpen-

dicular line made by the other, based on the definition of Baker [12].

7.4.2.3 Stride Length

We consider Stride Length to be the distance between two successive footfalls of the

same foot, based on the definition of Baker [12].

7.4.2.4 Measuring Gait

Two characteristics of our experiment made it difficult to define an algorithm for

automatic gait measurement: (1) We only used one tracker per foot, and that was

sometimes occluded. (2) The user often changed direction (in the visible walking

stage). Instead, we used manual annotation to measure gait parameters. This has

the risk of introducing small errors into the measurements, but not severe outliers

as the undetected failure of an automated algorithm would. A tool was created in

Matlab allowing the investigators to mark footfalls or closest points along a path

(an example is shown in Figure 7.3. Footfalls were identified based on the density

of sample points (the sample rate was constant, so the density is an indicator of

motion). The investigators annotated as many steps & strides as could be discerned,

for both the visible and blind stages of each trial. Unlike speed these samples were

not averaged but kept as a set of arbitrary length for each condition/stage. A total of

2469 step widths and 2269 stride lengths were annotated. Annotations were done by
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one investigator over two days with no indication of which trial, stage or participant

the logs came from.

Figure 7.3: Footfall capture annotated for Step Width. The number of visible samples
has been reduced to better expose the locations of highest density indicating
footsteps. The annotator clicks on the image at the start & end of each red line
to define the width for a step.

7.5 Results
We performed a number of statistical tests of increasing power and complexity. We

examined our main hypothesis first, and then proceeded to examine interaction with

gait and the effects of other predictors. Due to the unexpected nature of our results,

we dedicate more effort than planned to verification and comparison with previous

works.

7.5.1 Effects of Latency on Accuracy

Unlike previous studies, we had multiple repeats per condition, but not enough to

do a per-participant ANOVA. We therefore perform a Friedman’s Test. Friedman’s
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Test is similar to a one-way ANOVA but is robust to nuisance effects (such as per-

participant bias). We ran a Friedman’s Test for the Accuracy measure, grouped

by Latency. We found no effect of Latency (p > 0.05) in either the Replica room

χ2(2,30) = 2.49 or Synthetic room χ2(2,28) = 4.02.

7.5.2 Effects of Latency & Room on Accuracy & Gait

We next tested for the influence of gait, performing a mixed-design 2x3 ANOVA.

We performed this test for the measures Accuracy, Speed, Step Width and Stride

Length. The three within-subjects factors were the three latency conditions and

the between-subjects factor was the room. Repetitions for each participant were

averaged for each condition (only the visible walking stage for gait parameters was

examined), resulting in a single sample per-participant per-cell for all measures.

For Accuracy there was no interaction (p> 0.05) with latency F(2,58) = 0.097

or room F(2,58) = 2.17. For Speed there was no interaction (p > 0.05) with latency

F(2,58) = 0.59 or room F(2,58) = 0.75. For Step Width there was a significant

effect (p < 0.01) of latency F(2,58) = 5.12 but not with room F(2,58) = 1.08. For

Stride Length there was no interaction (p > 0.05) with latency F(2,58) = 0.82 nor

with room F(2,58) = 2.61.

Samples were normally distributed within each cell, except for the Synthetic

Room, 10 ms condition which had a slight skew.

7.5.3 Mixed Linear Models for Accuracy & Gait

While ANOVA is a convenient test, it is not the most suitable for our experiment. It

is limited in power given the need to average out multiple samples per participant.

Further it would soon become unwieldy were we to try and examine additional factors

such as the questionnaire responses. We therefore perform a multilevel analysis

for each measure. The multilevel analysis (or mixed-effects model) is similar to a

linear regression but with support for random-effects - per-group coefficients which

can control for group level effects, such as individual biases in a repeated measures

design.

Readers should note that we are not trying to build a model of the effects of
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latency. Not only is our data insufficient, but our previous work suggests that this

may be beyond a simple linear model regardless [61]. The mixed-effects model is a

convenient way to test the significance of a number potential factors.

In a mixed-linear model the significance of the random effects can be tested by

performing a Likelihood Ratio Test, comparing a model with the predictor to one

without and determining if it is a significant improvement. We do this for all group

level predictors. Given the large number of interactions we are testing, we consider

only highly significant interactions (p < 0.01).

7.5.3.1 Accuracy

We defined a mixed-effects model for latency as:

Accuracy = 1+Latency+Age+Trial

+(1|HMD)+(1|Room)+(1|Gender)+(1|Games)

+(1|Participant)+(Latency−1|Participant) (7.1)

That is, Latency, Age and Trial ID were considered fixed effects (constant across

subjects) while Room, Gender, Participant ID and previous exposure to HMDs or

Games were considered random effects on the intercept (creating an individual bias

independent of Latency). We also include a per-participant effect of Latency.

The Accuracy model showed none of the fixed or random effects were significant

predictors, except the per-participant intercept χ2(1) = 52.13, p < 0.01. Again our

intent is not to create a model, but for completeness R2 = 0.48.

7.5.3.2 Speed

We defined the same mixed-effects model for Speed, Step Width and Stride Length,

which was the same as that for Accuracy but with an additional Visibility term to
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distinguish between the visible and blind walking stages of each trial.

Measure = 1+Latency+Age+Trial

+(1|Visibility)+(1|HMD)+(1|Room)+(1|Gender)+(1|Games)

+(1|Participant)+(Latency−1|Participant) (7.2)

When applying this model to Speed we found as expected a significant per-

participant intercept χ2(1) = 158.34, p = 0. We also found that Visibility was

significant χ2(1) = 193.34, p = 0. The direction of the BLUP (Best Linear Unbiased

Predictor) coefficient was unexpected however (βyes = 3.18cm/s,βno =−3.18cm/s)

(a change of 15% of the average) suggesting that participants walk faster in the blind

stage. This is contrary to expectations that users would walk more cautiously in

more uncertain conditions. While we cannot say for certain, we highly suspect this is

a consequence of our experimental design. Within the visible stages the participants

walked typically shorter paths in short bursts, whereas in the blind walking stages they

made one movement, typically over a much larger distance allowing them to build up

a rhythm. It is not possible to prove this, but we do show a significant correlation with

distance (Spearman : ρ = 0.27, p < 0.01), (Pearson : r = 0.25, p < 0.01). Latency,

Age, Trial, Room, Gender, HMD & Games were not significant (R2 = 0.55).

7.5.3.3 Step Width

When applying the model to Step Width, we found again the expected signifi-

cant per-participant intercept (χ2(1) = 132.35, p = 0), and also an effect of gender

in the expected direction (χ2(1) = 11.63, p < 0.01,βM = 1.9cm,βF = −1.9cm).

We found that the Visibility predictor was significant (χ2(1) = 9.29, p < 0.01),

but meaningless, with the BLUP (±0.27cm) less than both the standard error

and inconsequential compared to the mean (∼23cm) or even effect of gender

(∼4cm). The fixed effect Trial ID is also significant in the expected direction

(t(2464) =−3.60, p < 0.01,β =−0.10cm), but the effect size (< 1%mean) renders

it meaningless. Participants spent approximately the same amount of time in each

trial, so ID, which increases from 1−12 could be considered continuous and a good
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approximation of time. Latency, Age, Room, HMD & Games were not significant.

R2 = 0.36.

7.5.3.4 Stride Length

When applying the model to Stride Length the usual per-participant intercept

is significant (χ2(1) = 325.36, p = 0). Also significant are both Trial ID

(t(2265) = 9.35, p < 0.01,β = 1.25) and Visibility (χ2 = 13.72, p < 0.01,βyes =

−1.63cm,βno = 1.63cm,SE = 1.72cm)), though again the coefficients (both 1−2%)

are so small as to be meaningless. As with Speed, there is a smaller though still sig-

nificant correlation with distance (Spearman : ρ = 0.10, p < 0.01), (Pearson : r =

0.08, p < 0.01). Interestingly, the random (per-group) effect of latency is significant

χ2(1) = 28.19, p < 0.01. Latency, Age, Room, Gender, HMD & Games were not

significant (R2 = 0.38).

7.5.4 Comparison with Previous Works

Before attempting to draw any conclusions we verify that our measures are consistent

with previous studies. The most similar studies to ours which reported gait parameter

values were those of Mohler et al. [148], Phillips et al. [173] & Samaraweera et

al. [187]. A summary of overlapping conditions is shown in Table 7.1. As can be

seen, the most significant deviation is in Speed, for which we recorded much slower

values than other studies. Otherwise our measures are within intra-study variance,

and almost indistinguishable from Phillips et al.

Other studies that were similar but not directly comparable due to protocol

differences include those of Jones et al. [97] and Hollman et al. [77], who recorded

Stride Lengths, or measures analogous to stride length, of 100-130cm (similar to

those in Table 7.1).

7.5.5 Replica vs. Synthetic Environments

Our results above are consistent, at worst we can say that factors have ambiguous

significance. We have performed a number of statistical tests and none of them

can find any indication of an effect of latency on distance estimation. While we

had hoped to find an effect, the lack of one should not be that surprising, given the
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Measure Condition Mohler et al. Phillips et al. Samaraweera et al. Ours

Mean Std Mean Std Mean Std Mean Std

Speed (cm/s)

Visible Replica VE 76.00 15.00 36.75 6.09
Visible Synthetic VE 126.00 8.00 61.00 20.00 53.00 12.00 37.98 6.84

Blind Replica VE 44.57 9.55
Blind Synthetic VE 107.00 5.00 42.85 8.50

Stride Length (cm)

Visible Replica VE 94.90 12.53 93.71 24.52
Visible Synthetic VE 128.00 6.70 84.00 20.20 86.99 23.76

Blind Replica VE 94.84 25.49
Blind Synthetic VE 105.00 3.80 88.40 20.84

Stride Width (cm)

Visible Replica VE 21.10 2.51 23.71 5.68
Visible Synthetic VE 22.33 3.92 24.70 4.78

Blind Replica VE 22.88 5.05
Blind Synthetic VE 24.03 4.70

Table 7.1: Absolute measures of gait for the closest conditions to ours from previous works
[148][173][187]

number of potential factors that have been investigated previously.

What is surprising however is that there is no difference in accuracy between

the Replica VE and Synthetic VE. None of the mixed-effects models showed the

Room factor as significant. For completeness we ran a Wilcoxian Rank-Sum Test

(when all latencies are concatenated the distribution is no longer normal) between

the Rooms and found no significant difference (Z = 1.38, p = 0.16).

Interrante et al. has shown that the underestimation disappears when the VE is

a replica of the participant’s real-world location, leading us to expect a significant

difference between our two environments [85, 86]. The obvious explanation would be

our Replica environment is not high fidelity enough - except that the underestimation

in both rooms was consistently low. The mean estimation error is 7.6% with a

variance of 0.015. This error is comparable with that observed by Phillips et al’s

replica environment (5.82%). They found that this was not significantly different

from the real world error (0.11%) [173]. Interrante et al. also found errors of ∼8%

for both their real and replica environments [85]. Such errors are far lower than

the typical VE error (e.g. 17.72% [173], 16.67− 22.29% [110] & 26% [59]. The

estimation error is plotted for both rooms in Figure 7.4 and illustrates quite clearly

that even if there is some slight effect our tests are not powerful enough to detect, it

is inconsequential and significantly different from previous studies.
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Figure 7.4: Plot of the actual distance traversed compared to the actual distance to target,
for all trials of all participants

While our results were not as conclusive as we would have liked, there is no

reason to believe they are erroneous. We therefore examine if the lack of effect is

due to protocol differences. We modelled our experiment on those of, e.g. Interrante

et al. [85] & Phillips et al. [173], so for the most part the protocols were similar,

with two exceptions.

7.5.5.1 Distance

The apparent lack of underestimation may be consequence of the length and variation

in the trial distances. Due to space constraints the typical distance walked by our

participants is much lower than in previous studies (0.1−3.5m (ours) vs 2.4−4.8m

for Phillips et al. [173]). The most convincing evidence for this is the estimation

errors reported by Kunz et al. [110] which appear to show a decrease with distance. If

we extrapolate from these using a linear model3, we find that at our mean distance of

2.09m the expected error is 13%. Williams et al. [246] examined distances including

3Error =−0.053+0.089∗Distance
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those closer to our range. They found that between 2.5−3.5m the estimation error

tends towards 0. However, the relationship between error and distance is linear, and

so below this the error turns into an increasing overshoot, rather than disappears.

The absolute error of our participants with distance is shown in Figure 7.5.

There is a significant positive correlation between absolute error and distance for our

data (ρ = 0.34, p < 0.01), though it is not as strong as that of Williams et al.

Importantly, we can see that the error increases past the intercept. That many of

our samples fall within the range of which they would tend towards zero anyway is

unfortunate. It reduces the power of our statistical tests. It does not though explain

the lack of an effect between the two rooms. While distance is correlated with error,

it is not a case of there being a threshold, in general or in our experiment.
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Figure 7.5: Absolute estimation error compared to initial target distance

7.5.5.2 Adaptation

The number of repeats per-participant vary between previous studies. We minimised

the number of repeats to prevent nuisance effects of adaptation. While there is some
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suggestion from the mixed-effects models of adaptation of gait, it is weak, and there

is no such suggestion for estimation error.

7.5.5.3 Apparatus

It is difficult to say if our VE system itself is significant. In some ways it is higher

fidelity than those used in previous studies. For example, our DK2 has a higher FOV

than Phillips et al.’s or Interrante et al.’s nVisor SX. However it is slightly below

current consumer state-of-the-art in terms of FOV and resolution. Further using

an older SDK with our own image distortion algorithms there was more geometric

distortion in our headset than likely in other systems. Our tracking and rendering

systems are state-of-the-art. Though we have dismissed the effects of latency in the

range 3-28 ms, some previous works will have had latencies exceeding our highest

level. The screen is driven differently to typical GPU-based systems, as described in

Section 5.3.2. Unlike current commercial systems, we did not use any prediction or

predictive warping and the only distortion users experienced in this sense was the

‘true’ latency. It is not clear if previous investigators used prediction. The latency in

our system is also deterministic, unlike GPU based systems for which it will vary

based on the complexity of the visible scene. Considering the content of the scene,

no other authors had our limitations on geometry, so any previous study that used

photos as texture maps will have had an equivalent or higher fidelity environment.

7.6 Discussion
Our original objective was to examine the effects of latency on distance estimation

and gait. Interrante et al. have shown it is possible to build a VE which inhibits

distance compression, and Steinicke et al. showed that the benefits of exposure to

this can extend to non-replica locales. The nature of this VE - a room identical to the

co-located real world - however leaves the question whether the lack of compression

is due to a higher-level place illusion or ‘presence’ or some lower-level calibration

or learning effect. Our experiment was designed to test for the effects of latency

on compression, and the physiomotor system (signified by gait parameters) under

conditions in which we expected compression to occur, and in which we would
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expect it not to. The purpose was to test if latency is an explanatory factor for

distance compression, and add to the discussion on at what level the source of

the compression occurs. We have in some way achieved this, if it not in the way

expected.

We have not found an effect of latency on distance estimation. While this was

not entirely unexpected, to great surprise we found no compression in the condition

designed specifically to elicit it. This is significant because unlike previous cases,

our room was entirely synthetic, meaning there was no way for the user to learn or

calibrate to the room before the trials began.

This finding is interesting, but also a serious complication. We included the

condition precisely because it would guarantee an example of compression. That

we are unable to show any compression in our experiment raises the question - is

there no effect, simply because the experiment has failed? Certainly our measures

have a higher variance than Interrante et al.’s original study [85]. The range though

does not differ in magnitude from subsequent ones (e.g. [174],[86]). Ultimately this

hypothesis can be quickly dismissed with a basic correlation test between the target

and walked distance (showing a significant effect). Our results are noisy but they

appear valid.

This leaves the question, is the noise so great it is obscuring the effect? (A Type

II Error). This is harder to address, as it is no more feasible to negatively prove

an effect of room type, that is an effect of latency. None of our tests have shown a

difference of even borderline significance between the rooms. This question however

obscures the more important consideration of effect size. Even a cursory glance

at Figure 7.4 will reveal that if there was an effect, the difference between the two

populations is negligible, and quite different than that observed in previous studies.

As to whether the noise may hide the typical VE underestimation in its entirety for

both rooms, this is the same as asking, if the true population mean was 20-30% what

is the probability of our sample having a mean of 7%. An Independent Two-Sample

T-Test shows this to be < 0.05.

This in itself contributes to the discussion on the source of distance compression.



7.6. Discussion 201

As there is no way for a low-level calibration to have been performed, it is relatively

strong evidence for the ‘high-level’ explanation. Our synthetic room while having

entirely novel geometry, was made up of detailed photos taken of the environment

through which the participants passed to reach the lab. The synthetic room included

architectural details such as door furniture, carpets and even had similar lighting.

The high vs. low level explanation could be further elucidated by the effect,

or lack of, on gait, of both latency and room. Accordingly it is regrettable our gait

measurements could not contribute to this. In our analyses, there were hints of

both adaptation and the effects of latency, but they were very slight. Recall that our

intention was not to create a model, precisely because we suspect a linear model is

an insufficient characterisation of these complex interactions. It is therefore possible

the small effect size may be indicative of a more important effect, but we are unable

to make such a claim and can only suggest this as worthwhile future work.

It is possible these ambiguities are due to noise in the gait measures, of which

there are two primary sources. The most significant is the need to manually annotate

the logs. This is a consequence of tracker drop-outs for the feet and the relatively un-

predictable manoeuvring of participants, both of which make automated algorithms

unreliable. The first is a consequence of our tracking system configuration, and the

second our limited space. If we were to re-run the experiment we would increase

the tracking volume near the floor and reduce drop-outs by angling the cameras

down, relying on the IMUs in the headset to provide primary tracking for the head,

corrected with a second lower quality tracking system installed in our lab. We would

update our protocol so that the participant trajectories were much more consistent

and predictable. One way would be to actually have the participant move between a

set of visible markers. Finally, given the ambiguity in our measures it may be worth

including more parameters as per Samaraweera et al. [187]. Even if they did not

find all of them significant, other experiments may. The weak but expected effects of

gender, distance and visibility show we are characterising user behaviour correctly

in some respects. The lack of the expected effect of latency on gait makes it difficult

to draw any conclusions however. It may be the effect of latency is hidden in the
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noise, but also likely is that our latency conditions are too low to elicit an effect.

Samaraweera et al. had latencies of 75-225 ms, whereas our highest condition was

∼28 ms. Future investigators should note the importance of high quality tracking and

predictable behaviour patterns when considering gait.

Anecdotally, participants were asked during debrief if they noticed anything

about the room change (e.g. shape or size). None mentioned latency or anything that

would indicate they perceived the latency (e.g. the swimming effect). Experienced

members of our lab could distinguish between all the latency conditions with ease,

although they experienced the different conditions immediately next to each other,

whereas the participants completed a blind walking trial during the change in latency.

Fewer participants than expected remarked on the low graphical fidelity. One

mentioned that the replica room was ‘like a film set’. One participant asked directly

if the synthetic room was modelled on a real place.

Obviously we cannot completely separate cognitive vs. functional systems, any

more than we can consider only spatial or dynamic cues. All work together to form

the perception of distance. Fink et al. suggest that there could be multiple causes

[55]. These results do suggest however that distance compression may lie in the

design of the VE - i.e. place illusion and plausibility illusion [207], rather than basic

mechanical interference, regardless of how the physiomotor system is affected.

The differences between our VE, those used in previous studies, and commercial

systems are subtle, but non-trivial. For example, our system does not use prediction.

We would not have been able to run the experiment to dismiss latency without our

custom system, but if our hypothesis is correct (that the significant factor is the

design of the environment, rather than the implementation of the system) these

results should be repeatable with an off-the-shelf commercial system such as the

HTC Vive.

7.7 Summary

In the study described we examined the effects of latency on distance estimation

compression in VR. Distance compression is a well-known phenomena that has been
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thoroughly studied. Despite this no single factor or model has been found to explain

it. While some factors have been shown to be significant, they are not comprehensive.

We suggested that it is worth exploring dynamic cues, in addition to static cues,

as they are unlikely to function in isolation. Specifically, we suggest latency as a

potential explanation. Latency is known to affect visuomotor functionality, and as

an consequence of the inherent processing and transport delays in current computer

systems, will have been present in all previous studies.

We constructed a VE system around a bespoke image generator. Our image

generator was a purpose built real-time ray caster which computed pixels just-in-

time. Coupled with a state-of-the-art tracking system our VE achieved a base latency

of 1− 4ms. This the true latency, without techniques such as predictive warping.

Interrante et al. discovered that distance compression disappears when a participant

is virtually co-located in a replica of their real-world location. Based on this we

designed a protocol that would provide us with samples of distance estimation

accuracy and gait, under conditions with and without distance compression.

Our results were surprising and significant, if not as conclusive as we had

hoped. Using a series of statistical tests of increasing power, we examined partici-

pant behaviour and found no effect of latency on distance judgement or physiomotor

behaviour between 3-28 ms. However, we also failed to find any difference between

the real and replica VEs. This is significant as our results indicate distance judge-

ments are equally accurate in each. It is impossible to prove a negative, so we run our

measures through a number of tests to ensure that they are accurate characterisations

of user behaviour, and are not simply hiding the expected effect in the noise. We

confirm our results overlap with previous studies, that where there is an effect it is

plausible, and that the probability of making a Type II error is < 0.05. We are left

to conclude that the deviation is a consequence of truly novel conditions, and not a

protocol failure.

It is unfortunate our gait measures did not prove more conclusive. It is possible

that our measures simply did not vary much between conditions. The borderline

significance of some predictors, and the small effect size of others however, suggest
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that the measures contained more noise than planned. This may be alleviated in

future works by adjusting the protocol to ensure more consistent behaviour, amenable

to automated processing.

The single conclusion however is significant for two reasons. It demonstrates

that it may be possible to build an entirely synthetic VE that facilitates equivalent

distance estimation accuracy to those performed in the best conditions found so far.

It also offers potential evidence that the underlying explanation for compression

itself is a function of plausibility and believability - of the virtual environment, rather

than the virtual reality system. We could not have run this study without our very

high performance VE system. From our conclusions however we expect that these

results should be repeatable with an unmodified commercial system such as the HTC

Vive.

If they are, the implications will be of significant consequence for designers,

suggesting it is possible to facilitate accurate distance judgement by manipulating

only the content of a virtual scene.



Chapter 8

Conclusions

8.1 Overall Summary

The goal of this project was to explore the application of dataflow architectures

to rendering for virtual reality. Visual stimuli are highly significant for actively

interacting with the real-world, or even just existing within it, e.g. for balance. It is

equally so for VR. This project has been concerned specifically with VR - virtual

worlds that occlude the real world entirely. Many of the requirements of rendering for

VR however apply to any synthetic environment. The objective is to render virtual

stimuli that enables formation of the sensorimotor loop; to have users respond to

the virtual stimuli, as they would real stimuli. Characteristics that affect this include

spatial and visual qualities such as colour gamut and resolution, but also temporal

behaviour, caused by latency and jitter.

Latency is an important characteristic of any computer interface that aims to

facilitate direct interaction, but it is especially so for synthetic environments. Latency

frustrates interaction, reducing efficiency and undermining the applications for both

traditional interfaces and synthetic environments. In synthetic environments however

it results in additional second-order effects, such as physical discomfort and negative

training.

Latency was the focus of this project, because the characteristics required for

minimising latency correspond closely with the abilities of dataflow computers.

Dataflow computing has high throughput, and high determinism. It is highly inflex-
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ible however, and is limited in the computational complexity supported. That is,

it is an ideal architecture for the implementation of a highly constrained piece of

functionality that is the bottleneck in a larger system. Examples of such functions

would be the triangle rasterisers and texture samplers on traditional GPUs. The

potential to hardware accelerate a small, constrained problem has many applications

in computer graphics. Tree traversal or ray-intersection tests are obvious examples.

These are suitable for dataflow implementation, and indeed they should be investi-

gated in the future. For minimising latency however, the biggest bottlenecks are in

the end stages of the rendering pipeline - specifically the frame-based nature of the

painters algorithm and scan-out, so it is this area that received the most focus.

We explored the feasibility of applying dataflow computing to rendering by

building novel renderers. It was apparent to begin with that any renderer would

have to directly drive the display. With the very simple scenes GPUs can already

achieve a latency down to around the scan-out time of the display. Simply deriving an

architecture capable of driving a display reliably was a challenge. Dataflow graphs

are deterministic and high throughput in theory, but in practice implementation details

leave a potentially significant discrepancy between their achieved characteristics, and

the requirements of a typical ‘dumb’ line-scan display. Additional challenges arose as

the platforms on which the algorithms would be implemented did not support driving

displays, and had to be reverse engineered and modified to build this functionality

into them.

We produced two rendering prototypes, a 2D sprite renderer and a 3D texture

mapped primitive renderer. It was apparent early on that the best use of the dataflow

architecture was to produce an image-based renderer - one that relied on integration

of samples, rather than the transportation of light. This is because there is far more

data and operation coherency in implementations the former, and dataflow implemen-

tations run at peak efficiency when the algorithm and data are coherent and localised.

Authors have proposed a number of image-based architectures, with the one of

the most extreme examples being a light field renderer. As the capabilities of the

dataflow platform with respect to these algorithms was unpredictable, development
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of the prototypes were conservative, increasing complexity of the geometric proxies

involved until we ended up with an advanced version of Regan & Pose’s Address

Recalculation Pipeline [180]. Our renderers had very low latencies, matching or

exceeding any state-of-the-art. We proved motion-to-photon latencies of no more

than 1 ms, but the actual rendering time was likely far lower. Our systems were com-

parable with those of Lincoln et al. [119] and Jota et al. [98] in terms of performance,

but our implementation was far more flexible, supporting in our final experiment a

fully immersive virtual world with 1:1 locomotion.

Numerous studies have investigated latency and physical interaction. A smaller

number have investigated latency and presence or perception. That latency degrades

user experience in computer mediated systems is not controversial. What is unproven

is the levels at which it begins to have an effect. Understanding these thresholds may

have as much practical significance as understanding the effect. As performance

is pushed further and further the costs of each small gain increase. Identifying a

basic set of requirements and tolerances can help focus resources to where they

are required. Most authors hypothesised that the effects of latency would be linear

down to zero, based on the observation that the effects of latency do not follow

Weber’s Law. We conducted two studies examining latencies at levels lower than any

previous works, and in both cases our results were unexpected. For low level physical

interaction we found that the effect of latency was non-linear. We hypothesised that

this was due to an unexpected interaction between the underlying motor processes

and the task itself. This result has significant implications for those using low level

motor tasks to test the effects of latency. This is because it implies using only the

typical metric of movement time may hide more nuanced, but significant, effects

of latency. We also tested a perceptual functionality - distance estimation. At first

glance latency would be a surprising predictor to analyse in the context of distance

estimation. Synthetic environments significantly affect distance estimation however,

and the cause has proved elusive over many studies. We were unable to find a

significant effect of latency, but were able to reproduce distance judgements as

accurate as any before seen in a synthetic environment. This is significant, because
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our conditions deviated far from those in which this was previously demonstrated.

8.2 Future of dataflow computing in rendering

Our prototypes show that dataflow architectures have the potential to play a signif-

icant role in the reduction of perceived latency. Their true-parallel nature makes

them good replacements for a single shader running on a SIMD core in theory, but

in practice the inflexibility of current spatial platforms (FPGAs) makes this use-case

infeasible in real systems. A more immediately beneficial application of the technol-

ogy would be to perform advanced versions of the functionality in devices such as

the Warper Board [28] or Address Recalculation Pipeline [180].

The current algorithm used for real-time rendering on most GPUs - the painter’s

algorithm - is highly computationally efficient because few computations are ex-

pended on fragments that do not contribute to the final frame. However, when

considering this algorithm it the context of the lifetime of the application it is very

inefficient. Fragment computations are discarded each frame - 90 times a second

or more, regardless of their temporal coherence. While GPUs are increasing in

computational power, the future requirements of VR HMDs will be very strenu-

ous [26]. It is possible in the future that the painters algorithm could be augmented

with additional stages, which take advantage of this spatial coherence. It is also

possible such techniques will be combined with a cascade of image warping stages,

as suggested by Zheng et al. [263] and Lincoln et al. [119]. In the future a flexible

SIMD-core based GPU could render to a data structure more persistent than frames

but less persistent than geometry. This scene representation could be rasterised

with a faster, more highly constrained local loop, maximising the useful lifetime of

each computation, and reducing the apparent latency. Examples of such pipelines

already exist, in the form of the Address Recalculation Pipeline [180], or the the

virtual light field renderers [150]. Other uses of dataflow implementations applied to

computer graphics could be found in the pipeline proposed by Jota et al. [98] which

accelerates the apparent response of the GUI on mobile devices, and of course in

offline applications such as ray tracing.
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8.3 Rendering on Maxeler DFEs

The Maxeler Coria and Isca DFEs were a good platform to test the implementation of

rendering dataflow algorithms, due to the very high grade FPGAs powering the cards.

Designed for high performance computing installations however such cards would be

unsuitable for use in final installations due to the cost of the FPGAs. Once a prototype

algorithm is refined, the resources required can be identified with a high degree of

confidence, and a more appropriate platform sourced. The other impediment to the

use of DFEs are the interfaces. In order to directly drive a display, the infrastructure

logic on the FPGA, and the physical interface of the cards themselves, needed to be

modified. This took a considerable amount of time and was an entirely sunk cost,

as these cards are unlikely to be used for rendering outside the apparatus presented

here.

The use of a spatial programming language such as MaxJ is the biggest benefit

of using a pre-existing platform such as a DFE. Rendering algorithms such as those

described contain many complex functionalities, such as floating point operations,

vector math, clock-domain crossing and backpressure signalling. The implemen-

tation of such design primitives on FPGAs is well studied and so is low-risk, but

significantly increases the implementation time for a new design. The MaxCompiler

toolchain handles this automatically. That considered, the lack of low level visibility

can also be a problem during prototyping. When driving COTS display, if the output

is out of specification, the display will simply fail to operate with little to no feedback

on the source of the problem. MaxCompiler has a set of debugging tools which can

capture the state of the graph, but most performance issues are transient and beyond

their scope.

Dataflow graphs are deterministic in theory, but in practice implementation

details can make them perform sub-optimally. One of the most egregious examples is

the stalling behaviour. Resources such as memory are non-deterministic for example,

even if the variance in response time is low. For this reason buffering must be placed

around the resources, and the graph run at a higher rate than the eventual sink (the

display) in order to smooth out irregularities. As the graph runs at a higher rate than
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data is consumed, it must be periodically throttled (stopped). The signal to stop all

the nodes in the graph however takes a specific number of cycles to propagate back

to deactivate all the nodes, and the same number to re-active them. This spin-up

and spin-down time results in unavoidable gaps in the data stream and if the stream

is started and stopped too often, the total throughput of the graph will drop below

that required by the display. This is unavoidable in almost any practical dataflow

implementation.

8.4 Latency experiments after commercial HMDs

reach 20 ms
In previous decades, many experiments were limited to latencies of 20-40 ms or more,

and so behaviour at latencies below this could only be hypothesised or extrapolated.

Recent commercial VR systems are advertising latencies of between 10-20 ms

however, and some are claiming imperceptible latencies using techniques such as

predictive warping.

In our study on distance estimation, the conditions were chosen not to go

above 20 ms partly due to participant comfort, but also because if an effect were

demonstrated at these levels, it would in some senses be meaningless, since VR

systems are no longer built which have such high latencies. It could be argued that

in this case it would have been worthwhile, as it would demonstrate the experiment

worked. As user studies are expensive to conduct however it is worth considering

what advantages there are of continuing to test at such high levels. In the specific

case of distance estimation, it probably is, because only one other study showed an

effect of latency, and that was on gait, rather than distance judgements. In the case

of physical interaction however, there is no question of the effect of latency, only at

what levels, and how.

A more pertinent avenue of investigation may be into the effects of distortion

and re-projection, rather than latency itself. Commerical HMD manufacturers can

achieve 20 ms of true latency easily now that the screens powering such devices run

at 90 Hz or more. Those that claim 10 ms or less are doing so with predictive warping
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techniques, and getting more and more ambitious in attempts to correct for longer

and longer periods [199]. Such techniques will introduce errors, and the significance

of these errors will depend on scene content, the nature of the motion, and perhaps

even display technology/rendering technique as described in Section 5.3.2. The most

impactful future studies may not be looking at behavioural thresholds of latency

levels, but of visual artefact severity.

8.5 Future Works

Compensating for latency in VR is difficult. Latency is an inherent characteristic of

the assembly of components that make up VR systems. Given current technology it

cannot be eliminated, only minimised and compensated for. The computer systems

that make up VEs are already state-of-the-art, due to the number and resolution of

modalities requiring virtual stimuli. Each small gain in performance then becomes

more and more expensive. At the same time, the nature of GPUs will change

to support more GPGPU applications, to spread the cost over a larger number of

industries, and the use of mobile VR will increase, in which computational power is

already severely limited and not optimised for latency.

Given that computer graphics is a continuous trade-off between fidelity, compu-

tational power and memory, it is important to understand which aspect of the visual

stimuli has largest effect on user experience. Some of the most effective immediate

performance gains could be had by refactoring the existing rasteriasation pipeline to

take advantage of temporal coherence. The current pipeline, by the time it reaches

the GPU, does not use this anywhere. Reducing the computational power required

to draw a frame will have benefits for VR systems at all levels. This could be done

by making more invasive changes to the pipeline, inserting another stage between

geometry and fragments. Alternatively it could be augmented with additional stages

on the end, with advanced image warping facilitating reduced frame rates.

The latter solution is attractive due to its simplicity, but the implications of

making ever increasingly extreme distortions to images in terms of user experience

are unknown. Synthesising to a more complete data structure that can be rendered
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from in a fast local loop will help reduce the potential for distortions. It will require

much more development however than simple image warping architectures. By

manipulating the tracking data fed to the DFE, our realtime raycaster can emulate

various rendering approaches & image warping techniques, as well as various la-

tencies. The question to examine in future works is, which is it most productive to

optimise?
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This project has resulted in the following publications, appearing in or submitted to
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FRISTON, S., STEED, A., TILBURY, S., AND GAYDADJIEV, G. Ultra low

latency dataflow renderer. In 25th International Conference on Field Programmable

Logic and Applications, FPL 2015 (2015)

Contains extracts of work presented in Chapter 3.

FRISTON, S., STEED, A., TILBURY, S., AND GAYDADJIEV, G. Construction

and Evaluation of an Ultra Low Latency Frameless Renderer for VR. IEEE Transac-

tions on Visualization and Computer Graphics 22, 4 (apr 2016), 1377–1386

Contains extracts of work presented in Chapters 4 & 5.

FRISTON, S., KARLSTROM, P., AND STEED, A. The Effects of Low Latency

on Pointing and Steering Tasks. IEEE Transactions on Visualization and Computer

Graphics 22, 5 (may 2016), 1605–1615

Contains extracts of work presented in Chapter 6.

FRISTON, S., AND STEED, A. Measuring Latency in Virtual Environments.

IEEE Transactions on Visualization and Computer Graphics (Proceedings Virtual

Reality 2014) 20, 4 (2014)
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Sebastian Friston, Simon Tilbury, Georgi Gaydadjiev, and Anthony Steed.

Latency, Gait and Distance Compression - or Lack of - in Virtual Reality.

Under Review.

Contains extracts of work presented in Chapter 7.
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List of Acronyms

AR Augmented Reality

CAVE Cave Automatic Virtual Environment

CG Computer Generated

COTS Commerical Off-The-Shelf

DFE Dataflow Engine

DMD Digital Micro-mirror Device

FOV field-of-view

FPGA Field Programmable Gate Array

HMD head mounted display

HVS Human Visual System

ID Index of Difficulty

IQM Image Quality Measure

IMU Inertial Measurement Unit

IQA Image Quality Assessment

IQM Image Quality Measure
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MR Mixed Reality

MSE Mean-Squared Error

MT Movement Time

OLED Organic Light-Emitting Diode

PARTS Programmable And Reconfigurable Tool Set

PCML Pseudo Current Mode Logic

PCS Physical Coding Sublayer

PMA Physical Media Access

PSF Parallel Sub-Field

PSNR Peak Signal to Noise Ratio

RMS Root Mean Squared

SERDES Serialisation-Deserialisation

SIMD Single Instruction Multiple Data

TMDS Transition Minimized Differential Signalling

VE Virtual Environment

VIF Visual Information Fidelity

VITE Vector Integration to Endpoint

VLF Virtual Light Field

VR Virtual Reality
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Colophon

This document was set using LATEX and BibTEXwith the UCL Thesis document class,

composed with TexMaker and the following tools.

Mendeley. Matlab. Microsoft Office Visio. Gimp. Notepad++.
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travel distance from visual motion in virtual environments. ACM Transactions

on Applied Perception 4, 1 (2007).

[60] FRIMENKO, R., WHITEHEAD, C., AND BRUENING, D. Do Men and Women

Walk Differently? A Review and Meta-Analysis of Sex Difference in Non-

Pathological Gait Kinematic. Tech. rep., INFOSCITEX CORP DAYTON OH,

2014.

[61] FRISTON, S., KARLSTROM, P., AND STEED, A. The Effects of Low Latency

on Pointing and Steering Tasks. IEEE Transactions on Visualization and

Computer Graphics 22, 5 (may 2016), 1605–1615.

[62] FRISTON, S., AND STEED, A. Measuring Latency in Virtual Environments.

IEEE Transactions on Visualization and Computer Graphics (Proceedings

Virtual Reality 2014) 20, 4 (2014).

[63] FRISTON, S., STEED, A., TILBURY, S., AND GAYDADJIEV, G. Ultra

low latency dataflow renderer. In 25th International Conference on Field

Programmable Logic and Applications, FPL 2015 (2015).

[64] FRISTON, S., STEED, A., TILBURY, S., AND GAYDADJIEV, G. Construction

and Evaluation of an Ultra Low Latency Frameless Renderer for VR. IEEE

Transactions on Visualization and Computer Graphics 22, 4 (apr 2016), 1377–

1386.

[65] GANACIM, F., FIGUEIREDO, L. H., AND NEHAB, D. Beam Casting Implicit

Surfaces on the GPU with Interval Arithmetic. In Proceedings of the 24th

SIBGRAPI Conference on Graphics, Patterns and Images (aug 2011), pp. 72–

77.



Bibliography 226

[66] GARAU, M., SLATER, M., PERTAUB, D.-P., AND RAZZAQUE, S. The

Responses of People to Virtual Humans in an Immersive. Presence 14, 1

(2005), 104–116.

[67] GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F.

The lumigraph. In Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques - SIGGRAPH ’96 (New York, New York,

USA, 1996), ACM Press, pp. 43–54.

[68] GROSSMAN, G. E., LEIGH, R. J., ABEL, L. A., LANSKA, D. J., AND

THURSTON, S. E. Frequency and velocity of rotational head perturbations

during locomotion. Experimental Brain Research 70, 3 (1988), 470–476.

[69] GUTWIN, C. The Effects of Network Delays on Group Work in Real-Time

Groupware. In Proceedings of the Seventh European Conference on Computer-

Supported Cooperative Work (Bonn, Germany, 2001), pp. 299–318.

[70] HALLER, I., AND BARUCH, Z. F. High-speed clock recovery for low-cost

FPGAs. In Proceedings of the 2010 Design, Automation & Test in Europe

Conference & Exhibition (DATE 2010) (mar 2010), IEEE, pp. 610–613.

[71] HARRIS, M. Maxwell: The most advanced cuda gpu ever

made. http://devblogs.nvidia.com/parallelforall/max

well-most-advanced-cuda-gpu-ever-made, 2014.

[72] HARVEY, M. A., AND SANCHEZ-VIVES, M. V. The Binding Problem in

Presence Research. Presence: Teleoperators and Virtual Environments 14, 5

(oct 2005), 616–621.

[73] HE, D., LIU, F., PAPE, D., DAWE, G., AND SANDIN, D. Video-Based Mea-

surement of System Latency. International Immersive Projection Technology

Workshop (2000).

[74] HECKBERT, P. S., AND HANRAHAN, P. Beam tracing polygonal objects.

ACM SIGGRAPH Computer Graphics 18, 3 (jul 1984), 119–127.

http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made
http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made


Bibliography 227

[75] HOFFMAN, H. G., CHAMBERS, G. T., MEYER, W. J., ARCENEAUX, L. L.,

RUSSELL, W. J., SEIBEL, E. J., RICHARDS, T. L., SHARAR, S. R., AND

PATTERSON, D. R. Virtual reality as an adjunctive non-pharmacologic

analgesic for acute burn pain during medical procedures. Annals of Behavioral

Medicine 41, 2 (2011), 183–191.

[76] HOLLMAN, J. H., BREY, R. H., BANG, T. J., AND KAUFMAN, K. R. Does

walking in a virtual environment induce unstable gait? An examination of

vertical ground reaction forces. Gait & posture 26, 2 (jul 2007), 289–94.

[77] HOLLMAN, J. H., BREY, R. H., ROBB, R. A., BANG, T. J., AND KAUFMAN,

K. R. Spatiotemporal gait deviations in a virtual reality environment. Gait

and Posture 23, 4 (2006), 441–444.

[78] HRUSKA, J. The future of ray tracing, reviewed: Caustic’s r2500

accelerator finally moves us towards real-time ray tracing. http:

//www.extremetech.com/extreme/161074-the-future-o

f-ray-tracing-reviewed-caustics-r2500-accelerat

or-finally-moves-us-towards-real-time-ray-tracing,

2013.

[79] HUDSON, L. Virtual reality’s possibilities lure video game developers.

http://www.nytimes.com/2016/09/29/technology/perso

naltech/virtual-realitys-possibilities-lure-video

-game-developers.html, 2016.

[80] HUGHES, J. F., VAN DAM, A., MCGUIRE, M., SKLAR, D. F., FOLEY,

J. D., FEINER, S. K., AND AKELEY, K. Computer Graphics: Principles and

Practice (3rd Edition), 3rd ed. Addison-Wesley, 2013.

[81] HUYS, R., FERNANDEZ, L., BOOTSMA, R. J., AND JIRSA, V. K. Fitts’ law

is not continuous in reciprocal aiming. In Proceedings of the Royal Society B:

Biological Sciences (apr 2010), vol. 277, pp. 1179–1184.

http://www.extremetech.com/extreme/161074-the-future-of-ray-tracing-reviewed-caustics-r2500-accelerator-finally-moves-us-towards-real-time-ray-tracing
http://www.extremetech.com/extreme/161074-the-future-of-ray-tracing-reviewed-caustics-r2500-accelerator-finally-moves-us-towards-real-time-ray-tracing
http://www.extremetech.com/extreme/161074-the-future-of-ray-tracing-reviewed-caustics-r2500-accelerator-finally-moves-us-towards-real-time-ray-tracing
http://www.extremetech.com/extreme/161074-the-future-of-ray-tracing-reviewed-caustics-r2500-accelerator-finally-moves-us-towards-real-time-ray-tracing
http://www.nytimes.com/2016/09/29/technology/personaltech/virtual-realitys-possibilities-lure-video-game-developers.html
http://www.nytimes.com/2016/09/29/technology/personaltech/virtual-realitys-possibilities-lure-video-game-developers.html
http://www.nytimes.com/2016/09/29/technology/personaltech/virtual-realitys-possibilities-lure-video-game-developers.html


Bibliography 228

[82] IHM, I., PARK, S., AND LEE, R. K. Rendering of spherical light fields.

In Proceedings of the Fifth Pacific Conference on Computer Graphics and

Applications (1997), IEEE Comput. Soc, pp. 59–68.

[83] IJSSELSTEIJN, W., AND RIVA, G. Being There : The experience of presence

in mediated environments. In Being There: Concepts, effects and measurement

of user presence in synthetic environments. Ios Press, Amsterdam, 2003.

[84] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO9241-9:

Ergonomic requirements for office work with visual display terminals (VDTs)

— Part 9 Requirements for non-keyboard input devices, 2000.

[85] INTERRANTE, V., RIES, B., AND ANDERSON, L. Distance Perception in Im-

mersive Virtual Environments, Revisited. In IEEE Virtual Reality Conference

(VR 2006) (2006), IEEE, pp. 3–10.

[86] INTERRANTE, V., RIES, B., LINDQUIST, J., KAEDING, M., AND ANDER-

SON, L. Elucidating Factors that Can Facilitate Veridical Spatial Perception

in Immersive Virtual Environments. Presence: Teleoperators and Virtual

Environments 17, 2 (apr 2008), 176–198.

[87] ISAKSEN, A., MCMILLAN, L., AND GORTLER, S. J. Dynamically repa-

rameterized light fields. In Proceedings of the 27th annual conference on

Computer graphics and interactive techniques - SIGGRAPH ’00 (New York,

New York, USA, 2000), ACM Press, pp. 297–306.

[88] ITO, H., OGAWA, M., AND SUNAGA, S. Evaluation of an organic light-

emitting diode display for precise visual stimulation. Journal of Vision 13, 7

(jun 2013), 1–21.

[89] JANKOWSKI, J., AND HACHET, M. A Survey of Interaction Techniques for

Interactive 3D Environments. Eurographics 2013 - State of the Art Reports

(2013), 65–93.



Bibliography 229

[90] JAX, S. A., ROSENBAUM, D. A., AND VAUGHAN, J. Extending Fitts’ Law

to manual obstacle avoidance. Experimental brain research 180, 4 (jul 2007),

775–9.

[91] JAY, C., GLENCROSS, M., AND HUBBOLD, R. Modeling the effects of

delayed haptic and visual feedback in a collaborative virtual environment.

ACM Transactions on Computer-Human Interaction 14, 2 (aug 2007).

[92] JELFS, A., AND WHITELOCK, D. The notion of presence in virtual learn-

ing environments: What makes the environment “real”. British Journal of

Educational Technology 31, 2 (2000), 145–152.

[93] JENSEN, H. W. Global Illumination using Photon Maps. Tech. rep., The

Technical University of Denmark, 1996.

[94] JERALD, J., PECK, T., STEINICKE, F., AND WHITTON, M. Sensitivity to

scene motion for phases of head yaws. In Proceedings of the 5th symposium

on Applied Perception in Graphics and Vsualization (New York, 2008), ACM

Press, p. 155.

[95] JERALD, J., AND WHITTON, M. Relating Scene-Motion Thresholds to

Latency Thresholds for Head-Mounted Displays. In Proceedings of the 2009

IEEE Virtual Reality Conference (mar 2009), IEEE, pp. 211–218.

[96] JERALD, J., WHITTON, M., AND BROOKS, F. P. Scene-Motion Thresholds

During Head Yaw for Immersive Virtual Environments. ACM Transactions

on Applied Perception 9, 1 (2012), 4:2–4:23.

[97] JONES, J. A., SWAN, J. E., SINGH, G., REDDY, S., MOSER, K., HUA,

C., AND ELLIS, S. R. Improvements in visually directed walking in virtual

environments cannot be explained by changes in gait alone. In Proceedings of

the ACM Symposium on Applied Perception - SAP ’12 (New York, New York,

USA, 2012), no. October, ACM Press.



Bibliography 230

[98] JOTA, R., FORLINES, C., LEIGH, D., SANDERS, S., AND WIGDOR, D.

Towards Zero-Latency User Experiences. Tech. rep., Tactual Labs Co.

[99] JOTA, R., NG, A., DIETZ, P., AND WIGDOR, D. How fast is fast enough?

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems - CHI ’13 (New York, New York, USA, 2013), ACM Press, pp. 2291–

2300.

[100] JUNE, X. Video Connectivity Using TMDS I / O in Spartan-3A FPGAs

FPGA Throughput and Video Screen Modes Notes :. 1–36.

[101] JUNIPER. Understanding cos flow control (ethernet pause and pfc).

http://www.juniper.net/techpubs/en_US/junos13.2/to

pics/concept/cos-qfx-series-congestion-notificatio

n-understanding.html, 2014.

[102] KAJIYA, J. T. The rendering equation. ACM SIGGRAPH Computer Graphics

20, 4 (aug 1986), 143–150.

[103] KEETH, B., AND BAKER, R. J. DRAM Circuit Design: A Tutorial. John

Wiley & Sons, 2001.

[104] KHANNA, P., SLATER, M., MORTENSEN, J., AND YU, I. A Virtual Light

Field for Propagation and Walkthrough of Globally Illuminated Scenes. Tech.

rep., University College London, 2005.

[105] KIM, H., DIGIACOMO, T., EGGES, A., LYARD, E., AND GARCHERY,

S. Believable virtual environment: Sensory and perceptual believability.

Workshop on Believability in Virtual Environments (2008).

[106] KIM, S.-S., NAM, S.-W., AND LEE, I.-H. Fast ray-triangle intersection

computation using reconfigurable hardware. Tech. rep., Digital Content

Research Division, Heidelberg, 2007.

http://www.juniper.net/techpubs/en_US/junos13.2/topics/concept/cos-qfx-series-congestion-notification-understanding.html
http://www.juniper.net/techpubs/en_US/junos13.2/topics/concept/cos-qfx-series-congestion-notification-understanding.html
http://www.juniper.net/techpubs/en_US/junos13.2/topics/concept/cos-qfx-series-congestion-notification-understanding.html


Bibliography 231

[107] KNOLL, A., HIJAZI, Y., KENSLER, A., SCHOTT, M., HANSEN, C., AND

HAGEN, H. Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and

Affine Arithmetic. Computer Graphics Forum (2008).

[108] KONTARINIS, D. A., HOWE, R. D., AND HALL, P. Tactile Display of

Vibratory Information in Teleoperation and Virtual Environments. Applied

Sciences 4, 4 (1995), 387–402.

[109] KULIKOV, S., MACKENZIE, I. S., AND STUERZLINGER, W. Measuring

the effective parameters of steering motions. CHI ’05 extended abstracts on

Human factors in computing systems - CHI ’05 (2005), 1569.

[110] KUNZ, B. R., WOUTERS, L., SMITH, D., THOMPSON, W. B., AND CREEM-

REGEHR, S. H. Revisiting the effect of quality of graphics on distance

judgments in virtual environments: A comparison of verbal reports and blind

walking. Attention, Perception, & Psychophysics 71, 6 (aug 2009), 1284–

1293.

[111] LAPERE, S. John carmack: “eventually ray tracing will win”.

http://raytracey.blogspot.co.uk/2011/08/john-car

mack-eventually-ray-tracing.html, 2011.

[112] LEBEDEV, A. S. History of global illumination algorithms. http://lebe

dev.as/index.php?p=1_10_NEW-Articles, 2011.

[113] LEVOY, M. Light fields and computational imaging. IEEE Computer (2006).

[114] LEVOY, M., AND HANRAHAN, P. Light Field Rendering. In Proceedings of

the 23rd annual conference on Computer graphics and interactive techniques

- SIGGRAPH ’96 (New York, USA, 1996), ACM Press, pp. 31–42.

[115] LI, J., ZHOU, K., WANG, Y., AND SHUM, H.-Y. A Novel Image-Based Ren-

dering System With A Longitudinally Aligned Camera Array. Eurographics

2000 - Short Presentations (2000).

http://raytracey.blogspot.co.uk/2011/08/john-carmack-eventually-ray-tracing.html
http://raytracey.blogspot.co.uk/2011/08/john-carmack-eventually-ray-tracing.html
http://lebedev.as/index.php?p=1_10_NEW-Articles
http://lebedev.as/index.php?p=1_10_NEW-Articles


Bibliography 232

[116] LI, X., LIU, B., AND WU, E. Full Solid Angle Panoramic Viewing by Depth

Image Warping on Field Programmable Gate Array. International Journal of

Virtual Reality 6, 2 (2007), 69–77.

[117] LIN, Q. L. Q., AND KUO, C. K. C. Virtual tele-operation of underwater

robots. In Proceedings of International Conference on Robotics and Automa-

tion (1997), vol. 2, pp. 1022–1027.

[118] LIN, Z., AND SHUM, H.-Y. On the number of samples needed in light field

rendering with constant-depth assumption. In Proceedings IEEE Conference

on Computer Vision and Pattern Recognition - CVPR 2000 (2000), vol. 1,

IEEE Comput. Soc, pp. 588–595.

[119] LINCOLN, P., BLATE, A., SINGH, M., WHITTED, T., STATE, A., LASTRA,

A., AND FUCHS, H. From Motion to Photons in 80 Microseconds: Towards

Minimal Latency for Virtual and Augmented Reality. IEEE Transactions on

Visualization and Computer Graphics 22, 4 (2016), 1367–1376.

[120] LIU, B., WEI, L.-Y., XU, Y.-Q., AND WU, E. Multi-layer depth peeling via

fragment sort. In Proceedings of the 2009 11th IEEE International Confer-

ence on Computer-Aided Design and Computer Graphics (aug 2009), IEEE,

pp. 452–456.

[121] LIU, L., AND LIERE, R. V. The Effect of Varying Path Properties in Path

Steering Tasks. In Proceedings of the 16th Eurographics conference on Virtual

Environments & Second Joint Virtual Reality (EGVE - JVRC’10) (2010), pp. 9–

16.

[122] LIU, L., AND LIERE, R. V. Modelling Object Pursuit for Desktop Virtual

Reality. IEEE Transactions on Visualization and Computer Graphics 18, 7

(2012), 1017–1026.

[123] LIU, L., MARTENS, J.-B., AND VAN LIERE, R. Revisiting path steering for

3D manipulation tasks. In Proceedings of the 2010 IEEE Symposium on 3D

User Interfaces (3DUI) (mar 2010), Ieee, pp. 39–46.



Bibliography 233

[124] LONDON, U. C. Immersive virtual environments laboratory. http://vr

.cs.ucl.ac.uk/, 2014.

[125] LOOMIS, J. M., DA SILVA, J. A., PHILBECK, J. W., AND FUKUSIMA,

S. S. Visual Perception of Location and Distance. Current Directions in

Psychological Science 5, 3 (jun 1996), 72–77.

[126] LUXION. Keyshot 4 manual: Material types and their set-

tings. https://www.keyshot.com/keyshot4/manual/mater

ial_types/high_res/metal_roughness.html, 2014.

[127] MACKENZIE, I. S. A note on the information-theoretic basis for Fitts’ Law.

Journal of Motor Behavior 3, 21 (1989), 323–330.

[128] MACKENZIE, I. S. Movement Time Prediction in Human-Computer Inter-

faces. In Readings in human-computer interaction (1995), pp. 483–493.

[129] MACKENZIE, I. S., AND WARE, C. Lag as a determinant of human per-

formance in interactive systems. In Proceedings of the SIGCHI conference

on Human factors in computing systems (New York, 1993), ACM Press,

pp. 488–493.

[130] MANIA, K., ADELSTEIN, B. D., ELLIS, S. R., AND HILL, M. I. Perceptual

sensitivity to head tracking latency in virtual environments with varying

degrees of scene complexity. In Proceedings of the 1st Symposium on Applied

Perception in Graphics and Visualization (2004), pp. 39–48.

[131] MANIA, K., TROSCIANKO, T., HAWKES, R., AND CHALMERS, A. Fi-

delity Metrics for Virtual Environment Simulations Based on Spatial Memory

Awarness States. Presence 12 (2003), 296–310.

[132] MARK, W. R., BISHOP, G., AND MCMILLAN, L. Post-Rendering Image

Warping for Latency Compensation UNC-CH Computer Science Technical

Report\# 96-020. Science (1996).

http://vr.cs.ucl.ac.uk/
http://vr.cs.ucl.ac.uk/
https://www.keyshot.com/keyshot4/manual/material_types/high_res/metal_roughness.html
https://www.keyshot.com/keyshot4/manual/material_types/high_res/metal_roughness.html


Bibliography 234

[133] MARK, W. R., MCMILLAN, L., AND BISHOP, G. Post-Rendering 3D

Warping. In Proceedings of the 1997 Symposium on Interactive 3D Graphics

(1997), pp. 7–16.

[134] MASHOUR, G. The cognitive binding problem: from Kant to quantum

neurodynamics. NeuroQuantology 2, 1 (2004), 29–38.

[135] MAXELER TECHNOLOGIES LTD. Acceleration Tutorial - Loops and Pipelin-

ing. Maxeler Technologies, 2014.

[136] MAXELER TECHNOLOGIES LTD. Dataflow Programming for Networking.

Maxeler Technologies, 2014.

[137] MAXELER TECHNOLOGIES LTD. MaxCompiler Manager Compiler Tutorial.

Maxeler Technologies, 2014.

[138] MAXELER TECHNOLOGIES LTD. Multiscale Dataflow Programming. Max-

eler Technologies, 2014.

[139] MAXFIELD, C. FPGAs - Instant Access. Elsevier, dec 2008.

[140] MCGUIRE, M., AND LUEBKE, D. Hardware-Accelerated Global Illumination

by Image Space Photon Mapping. Tech. rep., Williams College and NVIDIA

Corporation, 2001.

[141] MCNAMARA, A. Visual Perception in Realistic Image Synthesis. Computer

Graphics Forum 20, 4 (2001), 211–224.

[142] MEEHAN, M., RAZZAQUE, S., INSKO, B., WHITTON, M., AND BROOKS,

F. P. Review of four studies on the use of physiological reaction as a measure

of presence in stressful virtual environments. Applied Psychophysiology

Biofeedback 30, 3 (2005), 239–258.

[143] MEEHAN, M., RAZZAQUE, S., WHITTON, M. C., AND BROOKS JR., F. P.

Effect of latency on presence in stressful virtual environments. In Proceedings

of the 2003 IEEE Virtual Reality Conference (2003).



Bibliography 235
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