317 research outputs found

    DTN Routing as a Resource Allocation Problem

    Get PDF
    Routing protocols for disruption-tolerant networks (DTNs) use a variety of mechanisms, including discovering the meeting probabilities among nodes, packet replication, and network coding. The primary focus of these mechanisms is to increase the likelihood of finding a path with limited information, and so these approaches have only an incidental effect on routing such metrics as maximum or average delivery delay. In this paper, we present rapid, an intentional DTN routing protocol that can optimize a specific routing metric such as the worst-case delivery delay or the fraction of packets that are delivered within a deadline. The key insight is to treat DTN routing as a resource allocation problem that translates the routing metric into per-packet utilities which determine how packets should be replicated in the system. We evaluate rapid rigorously through a prototype deployed over a vehicular DTN testbed of 40 buses and simulations based on real traces. To our knowledge, this is the first paper to report on a routing protocol deployed on a real DTN at this scale. Our results suggest that rapid significantly outperforms existing routing protocols for several metrics. We also show empirically that for small loads RAPID is within 10% of the optimal performance

    Methodological evaluation of architectural alternatives for an aeronautical delay tolerant network

    Get PDF
    In this paper, we use graph analysis to evaluate the network architecture of a large scale delay tolerant network (DTN) of transoceanic aircraft. At LCN (Local Computer Networks) 2014 we analyzed information propagation inside a pure opportunistic version of this network, a scenario constructed from more than 2,500 traces of transatlantic flights in which communications relied only on the sporadic contacts between airplanes. As only a small percentage of the nodes were capable of performing efficient air-to-ground communications we concluded the need to devise a more suitable network architecture by combining opportunistic and satellite communication systems. We propose a generic methodology based on graph analysis (both static and dynamic temporal) to evaluate the different ways to create this new architecture. We show the architectural combination that most improves the network delivery performance while minimizing its deployment costs

    Analysis of Different Buffer Management Strategies in Delay Tolerance Network Routing

    Get PDF
    Delay Tolerant Networks or DTNs are the results of the evolutions in the mobile ad hoc networks (MANETs). In such environments the link between the pair of nodes is frequently disrupted due to the dissemination nature, mobility of nodes, and power outages. Because of the environment nature in Delay Tolerant Networks like under water, ocean sensor networks etc., the delays may be very extensive. To obtain data delivery in such challenging and harsh networking environments, researchers have proposed a technique in which the messages is stored into the buffers of intermediary nodes until it is forwarded to the destination. The DTNs are based on the concept of store-carry-and-forward protocols. So, node have to store message for long or short period of time and when connection established replica will be sent to encountered node. A critical challenge is to determine routes through the network without even having an end-to-end connection. This combination of long term storage and message replication imposes a high storage and bandwidth overhead. Thus, efficient scheduling and dropping policies are necessary to decide which messages should be discarded when nodes’ buffers operate close to their capacity. If a relay buffer is full and needs to store a new packet, it has to decide either to keep the current message or to drop it. This paper will give survey on different transmission and dropping policies with their mechanism, their performance in different routing and their limitations

    Connectivity Analysis in Vehicular Ad-hoc Network based on VDTN

    Get PDF
    In the last decade, user demand has been increasing exponentially based on modern communication systems. One of these new technologies is known as mobile ad-hoc networking (MANET). One part of MANET is called a vehicular ad-hoc network (VANET). It has different types such as vehicle-to-vehicle (V2V), vehicular delay-tolerant networks, and vehicle-to-infrastructure (V2I). To provide sufficient quality of communication service in the Vehicular Delay-Tolerant Network (VDTN), it is important to present a comprehensive survey that shows the challenges and limitations of VANET. In this paper, we focus on one type of VANET, which is known as VDTNs. To investigate realistic communication systems based on VANET, we considered intelligent transportation systems (ITSs) and the possibility of replacing the roadside unit with VDTN. Many factors can affect the message propagation delay. When road-side units (RSUs) are present, which leads to an increase in the message delivery efficiency since RSUs can collaborate with vehicles on the road to increase the throughput of the network, we propose new methods based on environment and vehicle traffic and present a comprehensive evaluation of the newly suggested VDTN routing method. Furthermore, challenges and prospects are presented to stimulate interest in the scientific community
    • …
    corecore