125 research outputs found

    Performance evaluation of decode and forward cooperative diversity systems over nakagami-m fading channels with non-identical interferers

    Get PDF
    The deficiencies of regular cooperative relaying schemes were the main reason behind the development of Incremental Relaying (IR). Fixed relaying is one of the regular cooperative relaying schemes and it relies on using the relay node to help in transmitting the signal of the source towards the destination despite the channel’s condition. However, adaptive relaying methods allocate the channel resources efficiently; thus, such methods have drawn the attention of researchers in recent years. In this study, we analyze a two-hop Decode-and-Forward (DF) IR system’s performance via Nakagami-m fading channels with the existence of the several L distinguishable interferers placed close to the destination which diminishes the overall performance of the system due to the co-channel interference. Tight formulas for the Bit Error Rate (BER) and the Outage Probability (OP) are drawn. The assumptions are consolidated by numerical calculations

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Cooperative Relaying in Wireless Networks under Spatially and Temporally Correlated Interference

    Full text link
    We analyze the performance of an interference-limited, decode-and-forward, cooperative relaying system that comprises a source, a destination, and NN relays, placed arbitrarily on the plane and suffering from interference by a set of interferers placed according to a spatial Poisson process. In each transmission attempt, first the transmitter sends a packet; subsequently, a single one of the relays that received the packet correctly, if such a relay exists, retransmits it. We consider both selection combining and maximal ratio combining at the destination, Rayleigh fading, and interferer mobility. We derive expressions for the probability that a single transmission attempt is successful, as well as for the distribution of the transmission attempts until a packet is transmitted successfully. Results provide design guidelines applicable to a wide range of systems. Overall, the temporal and spatial characteristics of the interference play a significant role in shaping the system performance. Maximal ratio combining is only helpful when relays are close to the destination; in harsh environments, having many relays is especially helpful, and relay placement is critical; the performance improves when interferer mobility increases; and a tradeoff exists between energy efficiency and throughput

    Performance Analysis of Multi-Antenna Hybrid Satellite-Terrestrial Relay Networks in the Presence of Interference

    Get PDF
    Abstract—The integration of cooperative transmission into satellite networks is regarded as an effective strategy to increase the energy efficiency as well as the coverage of satellite communications. This paper investigates the performance of an amplifyand-forward (AF) hybrid satellite-terrestrial relay network (HSTRN), where the links of the two hops undergo Shadowed- Rician andRayleigh fadingdistributions, respectively.By assuming that a single antenna relay is used to assist the signal transmission between the multi-antenna satellite and multi-antenna mobile terminal, and multiple interferers corrupt both the relay and destination, we first obtain the equivalent end-to-end signal-to-interference-plus-noise ratio (SINR) of the system. Then, an approximate yet very accurate closed-form expression for the ergodic capacity of the HSTRN is derived. The analytical lower bound expressions are also obtained to efficiently evaluate the outage probability (OP) and average symbol error rate (ASER) of the system. Furthermore, the asymptotic OP and ASER expressions are developed at high signal-to-noise ratio (SNR) to reveal the achievable diversity order and array gain of the considered HSTRN. Finally, simulation results are provided to validate of the analytical results, and show the impact of various parameters on the system performance

    Performance analysis for cooperative wireless communications

    Get PDF
    Cooperative relaying has been proposed as a promising solution to mitigate and combat the deleterious effects of fading by sending and receiving independent copies of the same signal at different nodes. It has attracted huge attention from both industry and academia. The purpose of this thesis is to provide an analytical performance evaluation of the cooperative wireless systems while taking some realistic conditions into consideration. To achieve this, first, performance analysis of amplify-and-forward (AF) relaying using pilot-aided maximum likelihood estimation is studied in this thesis. Both disintegrated channel estimation (DCE) and cascaded channel estimation (CCE) are considered. Based on this analysis, optimal energy allocation is proposed. Then, performance analysis for AF relaying corrupted by interferers are investigated. Both randomly distributed and fixed interferers are considered. For random interferers, both the number and the locations of the interferers are random while for fixed interferers, both the number and the locations are fixed. Next, multihop relaying and multiple scattering channels over α - μ fading are analyzed. Channels with interferences and without interferences are considered. Exact results in the form of one-dimensional integral are derived. Also, approximate results with simplified structure and closed-form expressions are provided. Finally, a new hard decision fusion rule that combines arbitrary numbers of bits for different samples taken at different nodes is proposed. The best thresholds for the fusion rules using 2 bits, 3 bits and 4 bits are obtained through simulation. The bit error rate (BER) for hard fusion rule with 1 bit is provided. Numerical results are presented to show the accuracy of our analysis and provide insights. First, they show that our optimal energy allocation methods outperform the conventional system without optimal energy allocation, which could be as large as several dB’s in some cases. Second, with the increase of signal-to-interference-plus-noise ratio (SINR) for AF relaying with interference, the outage probability decreases accordingly for both random and fixed interferers. However, with the change of interference-to-noise ratio (INR) but with the SINR fixed, the outage probability for random interferers change correspondingly while the outage probability for fixed interferers remains almost the same. Third, our newly derived approximate expressions are shown to have acceptable performances in approximating outage probability in wireless multihop relaying system and multiple scattering channel considering interferences and without interferences. Last, our new hard decision fusion rule is shown to achieve better performance with higher energy efficiency. Also they show that there is a tradeoff between performance and energy penalty in the hard decision fusion rule
    • …
    corecore