204 research outputs found

    Hotspot wireless LANs to enhance the performance of 3G and beyond cellular networks

    Get PDF

    Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation

    Get PDF
    With the growing demand for new blend of applications, the user’s dependency on the Internet is increasing day by day. Mobile Internet users are giving more attention to their own experience, especially in terms of communication reliability, high data rate and service stability on the move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, many researchers are finding the best approach, Carrier Aggregation (CA) is one of the newest innovations which seems to fulfil the demands of future spectrum, CA is one the most important feature for Long Term Evolution - Advanced. In direction to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements 1 Gb/s peak data rate, the CA scheme is presented by 3GPP to sustain high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues containing the aggregation structure, its implementation, deployment scenarios, control signal technique and challenges for CA technique in LTE-Advanced, with consideration backward compatibility are highlighted. Performance evaluation in macrocellular scenarios through a simulation approach shows the benefits of applying CA and low-complexity multi-band schedulers in service quality and system capacity enhancement. The Enhanced multi-band scheduler is less complex than the General multi-band scheduler and performs better for cell radius longer than 1800 m (and a PLR threshold of 2%).This work is funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/EEA/50008/2020, COST CA 15104 IRACON, ORCIP and CONQUEST (CMU/ECE/0030/2017), TeamUp5G project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie project number 813391.info:eu-repo/semantics/acceptedVersio

    Calculating a single figure of merit (SFOM) in LTE: a predictor of quality of experience (QoE)

    Get PDF
    An exigent assignment for network planners of modern mobile systems technologies like Long Term Evolution (LTE) is to predict the subscriber’s satisfaction during the delivery of services over the wireless network and their satisfaction level during journeys such as freeway and train journeys. There is great need for a procedure and for a simulation software tool based on a methodology that would assist the mobile network planners in overcoming this arduous task. This thesis proposes and implements a new and novel solution to the aforementioned problem by proposing a method of calculating a Single Figure of Merit (SFOM), which assesses the user’s Quality of Experience (QoE) based on the technical measure of the Quality of Service (QoS) reported by the network. The proposed SFOM reduces the number of metrics involved in calculation in comparison to the earlier QoE computation approaches. The resulting SFOM proves to be a good indicator of the user’s QoE with the network for the complete duration of a journey along pre-defined and random paths. The SFOM calculation method has been implemented as an addition to an open-source Matlab-based LTE System Level Simulator. This thesis also proposes and implements two novel special event walking models, named as: “Starburst Walking Model” (e.g. people gathering or leaving a sports arena) and the “Trainload Walking Model” (e.g. trainload of people moving from one point to another) which are a novel addition to the mobility management aspects of the simulator. Network planners can benefit from this improved simulation tool to evaluate different arrangements and position mobile assets, with a view to optimizing the user’s experience and minimizing capital costs. The work supplementing the open-source Matlab-based LTE System Level Simulator’s functionality was published at the following IEEE conference: M. W. Baig and P. J. Radcliffe, “Pragmatic Network Layouts in 3GPP LTE”, 2010 2nd International Conference on Information and Multimedia Technology (ICIMT 2010) Making use of the improved functional ability of the simulator, a new and novel methodology which facilitates comparing alternative network topologies and assigns SFOM to random or predefined paths in a LTE environment was published at the following IEEE Conference: M. W. Baig and P. J. Radcliffe, “Assigning a Single Figure of Merit (SFOM) to a Specified Path in a LTE Network”, 2011 International Conference on Information and Computer Networks (ICICN 2011

    Coordinated Multi-Point MIMO Processing for 4G

    Get PDF
    The concept of cooperative Multiple-Input-Multiple-Output (MIMO), also referred to as network MIMO, or as Coordinated Multi-Point Transmission (CoMP), was standardized in 3GPP Release 11. The goal of CoMP is to improve the coverage of high data rates and cell-edge throughput, and also to increase system throughput. In this paper we analyze only the latter scenario, using system level simulations in accordance with 3GPP guidelines. It is shown that the use of joint coordinated multipoint transmission achieves additional throughput gains. However, the gains depend on the scheduling type. This paper also indicates that the criterion of fairness is an important parameter when the number of users is high

    Increased energy efficiency in LTE networks through reduced early handover

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Long Term Evolution (LTE) is enormously adopted by several mobile operators and has been introduced as a solution to fulfil ever-growing Users (UEs) data requirements in cellular networks. Enlarged data demands engage resource blocks over prolong time interval thus results into more dynamic power consumption at downlink in Basestation. Therefore, realisation of UEs requests come at the cost of increased power consumption which directly affects operator operational expenditures. Moreover, it also contributes in increased CO2 emissions thus leading towards Global Warming. According to research, Global Information and Communication Technology (ICT) systems consume approximately 1200 to 1800 Terawatts per hour of electricity annually. Importantly mobile communication industry is accountable for more than one third of this power consumption in ICT due to increased data requirements, number of UEs and coverage area. Applying these values to global warming, telecommunication is responsible for 0.3 to 0.4 percent of worldwide CO2 emissions. Moreover, user data volume is expected to increase by a factor of 10 every five years which results in 16 to 20 percent increase in associated energy consumption which directly effects our environment by enlarged global warming. This research work focuses on the importance of energy saving in LTE and initially propose bandwidth expansion based energy saving scheme which combines two resource blocks together to form single super RB, thereby resulting in reduced Physical Downlink Control Channel Overhead (PDCCH). Thus, decreased PDCCH overhead helps in reduced dynamic power consumption up to 28 percent. Subsequently, novel reduced early handover (REHO) based idea is proposed and combined with bandwidth expansion to form enhanced energy ii saving scheme. System level simulations are performed to investigate the performance of REHO scheme; it was found that reduced early handover provided around 35% improved energy saving while compared to LTE standard in 3rd Generation Partnership Project (3GPP) based scenario. Since there is a direct relationship between energy consumption, CO2 emissions and vendors operational expenditure (OPEX); due to reduced power consumption and increased energy efficiency, REHO subsequently proven to be a step towards greener communication with lesser CO2 footprint and reduced operational expenditure values. The main idea of REHO lies in the fact that it initiate handovers earlier and turn off freed resource blocks as compare to LTE standard. Therefore, the time difference (Transmission Time Intervals) between REHO based early handover and LTE standard handover is a key component for energy saving achieved, which is estimated through axiom of Euclidean geometry. Moreover, overall system efficiency is investigated through the analysis of numerous performance related parameters in REHO and LTE standard. This led to a key finding being made to guide the vendors about the choice of energy saving in relation to radio link failure and other important parameters

    Heterogeneous LTE/ Wi-Fi architecture for intelligent transportation systems

    Get PDF
    Intelligent Transportation Systems (ITS) make use of advanced technologies to enhance road safety and improve traffic efficiency. It is anticipated that ITS will play a vital future role in improving traffic efficiency, safety, comfort and emissions. In order to assist the passengers to travel safely, efficiently and conveniently, several application requirements have to be met simultaneously. In addition to the delivery of regular traffic and safety information, vehicular networks have been recently required to support infotainment services. Previous vehicular network designs and architectures do not satisfy this increasing traffic demand as they are setup for either voice or data traffic, which is not suitable for the transfer of vehicular traffic. This new requirement is one of the key drivers behind the need for new mobile wireless broadband architectures and technologies. For this purpose, this thesis proposes and investigates a heterogeneous IEEE 802.11 and LTE vehicular system that supports both infotainment and ITS traffic control data. IEEE 802.11g is used for V2V communications and as an on-board access network while, LTE is used for V2I communications. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban vehicular environment. The system performance is evaluated in terms of data loss, data rate, delay and jitter. Several simulation scenarios are performed and evaluated. In the V2I-only scenario, the delay, jitter and data drops for both ITS and video traffic are within the acceptable limits, as defined by vehicular application requirements. Although a tendency of increase in video packet drops during handover from one eNodeB to another is observed yet, the attainable data loss rate is still below the defined benchmarks. In the integrated V2V-V2I scenario, data loss in uplink ITS traffic was initially observed so, Burst communication technique is applied to prevent packet losses in the critical uplink ITS traffic. A quantitative analysis is performed to determine the number of packets per burst, the inter-packet and inter-burst intervals. It is found that a substantial improvement is achieved using a two-packet Burst, where no packets are lost in the uplink direction. The delay, jitter and data drops for both uplink and downlink ITS traffic, and video traffic are below the benchmarks of vehicular applications. Thus, the results indicate that the proposed heterogeneous system offers acceptable performance that meets the requirements of the different vehicular applications. All simulations are conducted on OPNET Network Modeler and results are subjected to a 95% confidence analysis
    • 

    corecore