88 research outputs found

    Overlapped CDMA system in optical packet networks : resource allocation and performance evalutation

    Get PDF
    Dans cette thĂšse, la performance du systĂšme CDMA Ă  chevauchement optique (OVCDMA) au niveau de la couche de contrĂŽle d'accĂšs au support (MAC) et l'allocation des ressources au niveau de la couche physique (PRY) sont Ă©tudiĂ©es. Notre but est d'apporter des amĂ©liorations pour des applications Ă  dĂ©bits multiples en rĂ©pondant aux exigences de dĂ©lai minimum tout en garantissant la qualitĂ© de service (QoS). Nous proposons de combiner les couches PRY et MAC par une nouvelle approche d'optimisation de performance qui consolide l'efficacitĂ© potentielle des rĂ©seaux optiques. Pour atteindre notre objectif, nous rĂ©alisons plusieurs Ă©tapes d'analyse. Tout d 'abord, nous suggĂ©rons le protocole S-ALOHA/OV-CDMA optique pour sa simplicitĂ© de contrĂŽler les transmissions optiques au niveau de la couche liaison. Le dĂ©bit du rĂ©seau, la latence de transmission et la stabilitĂ© du protocole sont ensuite Ă©valuĂ©s. L'Ă©valuation prend en considĂ©ration les caractĂ©ristiques physiques du systĂšme OY-CDMA, reprĂ©sentĂ©es par la probabilitĂ© de paquets bien reçus. Le systĂšme classique Ă  traitement variable du gain (YPG) du CDMA, ciblĂ© pour les applications Ă  dĂ©bits multiples, et le protocole MAC ±round-robinÂż rĂ©cepteur/Ă©metteur (R31), initialement proposĂ© pour les rĂ©seaux par paquets en CDMA optique sont Ă©galement pris en compte. L'objectif est d ' Ă©valuer comparativement la performance du S-ALOHA/OY-CDMA en termes de l'immunitĂ© contre l'interfĂ©rence d'accĂšs lTIultiple (MAI) et les variations des charges du trafic. Les rĂ©sultats montrent que les performances peuvent varier en ce qui concerne le choix du taux de transmission et la puissance de transmission optique au niveau de la couche PRY. Ainsi, nous proposons un schĂ©ma de rĂ©partition optimale des ressources pour allouer des taux de transmission Ă  chevauchement optique et de puissance optique de transmission dans le systĂšme OY-CDMA comme des ressources devant ĂȘtre optimalement et Ă©quitablement rĂ©parties entre les utilisateurs qui sont regroupĂ©s dans des classes de diffĂ©rentes qualitĂ©s de service. La condition d'optimalitĂ© est basĂ©e sur la maximisation de la capacitĂ© par utilisateur de la couche PHY. De ce fait, un choix optimal des ressources physiques est maintenant possible, mais il n'est pas Ă©quitable entre les classes. Par consĂ©quent, pour amĂ©liorer la performance de la couche liaison tout en Ă©liminant le problĂšme d'absence d'Ă©quitĂ©, nous proposons comme une approche unifiĂ©e un schĂ©ma Ă©quitable et optimal pour l'allocation des ressources fondĂ© sur la qualitĂ© de service pour des multiplexages temporels des rĂ©seaux par paquets en CDMA Ă  chevauchement optique. Enfin, nous combinons cette derniĂšre approche avec le protocole MAC dans un problĂšme d'optimisation d'allocation Ă©quitable des ressources Ă  contrainte de dĂ©lai afin de mieux amĂ©liorer le dĂ©bit du rĂ©seau et le dĂ©lai au niveau de la couche liaison avec allocation Ă©quitable et optimale des ressources au niveau de la couche PHY

    Fiber-optic code division multiple access : multi-class optical orthogonal codes, optical power control, and polarization encoding

    Get PDF
    Ever since the mid- 1980s when the single-mode fiber-optic media were believed to become the main highways of future telecommunications networks for transporting high-volume high-quality multipurpose information, the need for all-optical multi-access networking became important. An all-optical multi-access network is a collection of multiple nodes where the interconnection among various nodes is via single- or multi-mode fiber optics and for which they perform all their essential signal processing requirements such as switching, add-drop, multiplexing/demultiplexing and amplification in the optical domain. Optical CDMA networking is one possible technique that allows multiple users in local area networks to access the same fiber channel asynchronously with no delay or scheduling. Optical CDMA networks are not without their own problems. Search for codes suitable to the optical domain is one of the important topics addressed in the literature on optical CDMA. Existing codes developed in the late 80's are limited to single class traffic or can support multiclass traffic but with restrictions on code lengths and weights. Also the number of generated codes is severely limited due to orthogonality issues. In this thesis, we pay particular attention to propose new codes that can support multiclass traffic with arbitrary code weights and lengths. Therefore, data sources with varying traffic demands can be accommodated by optical CDMA networks using the proposed codes. We also present a simple generation technique for the proposed multiclass codes and analyze their performance. The number of users supported by the proposed multiclass codes will be limited since it is an extension of existing code designs with such limitation. We then propose the use of polarization dimension in order to double the number of supported users. On the other hand, incoherent optical CDMA systems are considered as positive systems meaning that only unipolar codes can be considered for such systems. Therefore, multiple access interference will be quite high in optical CDMA due to the nature of incoherent power detection. Reducing the effect of the interference on the performance of optical CDMA is an important topic. We propose the use of power control to decrease the effects of interference in optical star networks in which users' fiber lengths and data rates are not equal. We consider the case of optically amplified network with amplifier noise as the main source. We then elaborate by considering the nonlinearity in the photodetection process and propose the use of an iterative algorithm to find the solution of the non-linear optical power control problem. Finally, we propose an optical CDMA system based on polarization encoding. Since the encoding is performed in the spatial domain, therefore, positive and negative levels can be realized. This approach leads to increasing the number of supported users of optical CDMA by the use of known codes, such as Gold and Hadamard codes, with enhanced performance.reviewe

    A Comparative Study of Asynchronous and Synchronous OCDMA Systems

    Get PDF

    System level performance of ATM transmission over a DS-CDMA satellite link.

    Get PDF
    PhDAbstract not availableEuropean Space Agenc

    Applications of perfect difference codes in fiber-optics and wireless optical code-division multiplexing/multiple-access systems

    Get PDF
    After establishing itself in the radio domain, Spread spectrum code-division multiplexing/multiple-access (CDMA) has seen a recent upsurge in optical domain as well. Due to its fairness, flexibility, service differentiation and increased inherent security, CDMA is proved to be more suitable for the bursty nature of local area networks than synchronous multiplexing techniques like Frequency/Wavelength Division Multiplexing (F/WDM) and Time Division Multiplexing (TDM). In optical domain, CDMA techniques are commonly known as Optical-CDMA (O-CDMA). All optical CDMA systems are plagued with the problem of multiple-access interference (MAI). Spectral amplitude coding (SAC) is one of the techniques used in the literature to deal with the problem of MAI. The choice of spreading code in any CDMA system is another way to ensure the successful recovery of data at the receiving end by minimizing the effect of MAI and it also dictates the hardware design of the encoder and decoder. This thesis focuses on the efficient design of encoding and decoding hardware. Perfect difference codes (PDC) are chosen as spreading sequences due to their good correlation properties. In most of the literature, evaluation of error probability is based on the assumptions of ideal conditions. Such assumptions ignore major physical impairments such as power splitting losses at the multiplexers of transmitters and receivers, and gain losses at the receivers, which may in practice be an overestimate or underestimate of the actual probability of error. This thesis aims to investigate thoroughly with the consideration of practical impairments the applications of PDCs and other spreading sequences in optical communications systems based on spectral-amplitude coding and utilizing codedivision as multiplexing/multiple-access technique. This work begins with a xix general review of optical CDMA systems. An open-ended practical approach has been used to evaluate the actual error probabilities of OCDM/A systems under study. It has been concluded from results that mismatches in the gains of photodetectors, namely avalanche photodiode (APDs), used at the receiver side and uniformity loss in the optical splitters results in the inaccurate calculation of threshold level used to detect the data and can seriously degrade the system bit error rate (BER) performance. This variation in the threshold level can be compensated by employing techniques which maintain a constant interference level so that the decoding architecture does not have to estimate MAI every time to make a data bit decision or by the use of balanced sequences. In this thesis, as a solution to the above problem, a novel encoding and decoding architecture is presented for perfect difference codes based on common zero code technique which maintains a constant interference level at all instants in CDM system and thus relieves the need of estimating interference. The proposed architecture only uses single multiplexer at the transmitters for all users in the system and a simple correlation based receiver for each user. The proposed configuration not only preserves the ability of MAI in Spectral-Amplitude Coding SAC-OCDM system, but also results in a low cost system with reduced complexity. The results show that by using PDCs in such system, the influence of MAI caused by other users can be reduced, and the number of active users can be increased significantly. Also a family of novel spreading sequences are constructed called Manchestercoded Modified Legendre codes (MCMLCs) suitable for SAC based OCDM systems. MCMLCs are designed to be used for both single-rate and Multirate systems. First the construction of MCMLCs is presented and then the bit error rate performance is analyzed. Finally the proposed encoding/decoding architecture utilizing perfect difference codes is applied in wireless infrared environment and the performance is found to be superior to other codes

    Modulation and Multiple Access Techniques for Ultra-Wideband Communication Systems

    Get PDF
    Two new energy detection (ED) Ultra-Wideband (UWB) systems are proposed in this dissertation. The first one is an ED UWB system based on pulse width modulation (PWM). The bit error rate (BER) performance of this ED PWM system is slightly worse than ED pulse position modulation (PPM) system in additive white Gaussian noise (AWGN) channels. However, the BER performance of this ED PWM system surpasses that of a PPM system in multipath channels since a PWM system does not suffer cross-modulation interference (CMI) as a PPM system. In the presence of synchronization errors, the BER performance of a PWM system also surpasses that of a PPM system. The second proposed ED UWB system is based on using two pulses, which are the different-order derivatives of the Gaussian pulse, to transmitted bit 0 or 1. These pulses are appropriately chosen to separate their spectra in frequency domain.The receiver is composed of two energy detection branches and each branch has a filter which captures the signal energy of either bit 0 or 1. The outputs of two branches are subtracted from each other to generate the decision statistic and the value of this statistic is compared to a threshold to determine the transmitted bits. This system is named as acf{GFSK} system in this dissertation and it exhibits the same BER performance as a PPM system in AWGN channels. In multipath channels, a GFSK system surpasses a PPM system because it does not suffer CMI. And the BER performance of a GFSK system is better than a PPM system in the presence of synchronization errors. When a GFSK system is compared to a PWM system, it will always achieve approximately 2 dB improvement in AWGN channels, multipath channels, and in the presence synchronization errors. However, a PWM system uses lower-order derivatives of the Gaussian pulse to transmit signal, and this leads to a simple pulse generator. In this dissertation, an optimal threshold is applied to improve PPM system performance. The research results show that the application of an optimal threshold can e

    Modulation and Multiple Access Techniques for Ultra-Wideband Communication Systems

    Get PDF
    Two new energy detection (ED) Ultra-Wideband (UWB) systems are proposed in this dissertation. The first one is an ED UWB system based on pulse width modulation (PWM). The bit error rate (BER) performance of this ED PWM system is slightly worse than ED pulse position modulation (PPM) system in additive white Gaussian noise (AWGN) channels. However, the BER performance of this ED PWM system surpasses that of a PPM system in multipath channels since a PWM system does not suffer cross-modulation interference (CMI) as a PPM system. In the presence of synchronization errors, the BER performance of a PWM system also surpasses that of a PPM system. The second proposed ED UWB system is based on using two pulses, which are the different-order derivatives of the Gaussian pulse, to transmitted bit 0 or 1. These pulses are appropriately chosen to separate their spectra in frequency domain.The receiver is composed of two energy detection branches and each branch has a filter which captures the signal energy of either bit 0 or 1. The outputs of two branches are subtracted from each other to generate the decision statistic and the value of this statistic is compared to a threshold to determine the transmitted bits. This system is named as acf{GFSK} system in this dissertation and it exhibits the same BER performance as a PPM system in AWGN channels. In multipath channels, a GFSK system surpasses a PPM system because it does not suffer CMI. And the BER performance of a GFSK system is better than a PPM system in the presence of synchronization errors. When a GFSK system is compared to a PWM system, it will always achieve approximately 2 dB improvement in AWGN channels, multipath channels, and in the presence synchronization errors. However, a PWM system uses lower-order derivatives of the Gaussian pulse to transmit signal, and this leads to a simple pulse generator. In this dissertation, an optimal threshold is applied to improve PPM system performance. The research results show that the application of an optimal threshold can e

    Co-channel interference reduction in Optical Code Division Multiple Access systems

    Get PDF
    In this thesis few new code sets and a multi-user interference (MUI) cancellation scheme have been proposed for Optical Code Division Multiple Access (OCDMA) systems, which can be employed in the next generation of global communication networks to enhance their existing systems’ performance dramatically. The initial evaluation of the proposed code sets shows that their implementation improves the performance, decreases the BER and increases security considerably. Also the proposed MUI cancellation scheme totally removes all the cross-talk and interference between the active users within the network. These novel schemes and codes can be easily implemented in the optical packet switched networks. Optical switching has the ability of bandwidth manipulation at the wavelength level (e.g. with optical circuit/packet/burst switching); the capability to accommodate a wide range of traffic distributions, and also to make dynamic resource reservations possible. This thesis first gives a brief overview of co-channel interference reduction in OCDMA networks, then proposes two novel code sets, Uniform Cross-Correlation Modified Prime Code (UC-MPC) and Transposed UC-MPC (T-UCMPC), along with their evaluation and analysis in various systems, including IP routing over an OCDMA network. Thereafter, the new MUI cancellation scheme is proposed and then the proposed code sets and the MUI cancellation scheme are implemented and analysed in a laboratory-based experimental test bed. Finally the conclusion of this research is discussed
    • 

    corecore