1,492 research outputs found

    ARM Wrestling with Big Data: A Study of Commodity ARM64 Server for Big Data Workloads

    Full text link
    ARM processors have dominated the mobile device market in the last decade due to their favorable computing to energy ratio. In this age of Cloud data centers and Big Data analytics, the focus is increasingly on power efficient processing, rather than just high throughput computing. ARM's first commodity server-grade processor is the recent AMD A1100-series processor, based on a 64-bit ARM Cortex A57 architecture. In this paper, we study the performance and energy efficiency of a server based on this ARM64 CPU, relative to a comparable server running an AMD Opteron 3300-series x64 CPU, for Big Data workloads. Specifically, we study these for Intel's HiBench suite of web, query and machine learning benchmarks on Apache Hadoop v2.7 in a pseudo-distributed setup, for data sizes up to 20GB20GB files, 5M5M web pages and 500M500M tuples. Our results show that the ARM64 server's runtime performance is comparable to the x64 server for integer-based workloads like Sort and Hive queries, and only lags behind for floating-point intensive benchmarks like PageRank, when they do not exploit data parallelism adequately. We also see that the ARM64 server takes 13rd\frac{1}{3}^{rd} the energy, and has an Energy Delay Product (EDP) that is 5071%50-71\% lower than the x64 server. These results hold promise for ARM64 data centers hosting Big Data workloads to reduce their operational costs, while opening up opportunities for further analysis.Comment: Accepted for publication in the Proceedings of the 24th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC), 201

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    A Big Data Analyzer for Large Trace Logs

    Full text link
    Current generation of Internet-based services are typically hosted on large data centers that take the form of warehouse-size structures housing tens of thousands of servers. Continued availability of a modern data center is the result of a complex orchestration among many internal and external actors including computing hardware, multiple layers of intricate software, networking and storage devices, electrical power and cooling plants. During the course of their operation, many of these components produce large amounts of data in the form of event and error logs that are essential not only for identifying and resolving problems but also for improving data center efficiency and management. Most of these activities would benefit significantly from data analytics techniques to exploit hidden statistical patterns and correlations that may be present in the data. The sheer volume of data to be analyzed makes uncovering these correlations and patterns a challenging task. This paper presents BiDAl, a prototype Java tool for log-data analysis that incorporates several Big Data technologies in order to simplify the task of extracting information from data traces produced by large clusters and server farms. BiDAl provides the user with several analysis languages (SQL, R and Hadoop MapReduce) and storage backends (HDFS and SQLite) that can be freely mixed and matched so that a custom tool for a specific task can be easily constructed. BiDAl has a modular architecture so that it can be extended with other backends and analysis languages in the future. In this paper we present the design of BiDAl and describe our experience using it to analyze publicly-available traces from Google data clusters, with the goal of building a realistic model of a complex data center.Comment: 26 pages, 10 figure

    H-word: Supporting job scheduling in Hadoop with workload-driven data redistribution

    Get PDF
    The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-44039-2_21Today’s distributed data processing systems typically follow a query shipping approach and exploit data locality for reducing network traffic. In such systems the distribution of data over the cluster resources plays a significant role, and when skewed, it can harm the performance of executing applications. In this paper, we addressthe challenges of automatically adapting the distribution of data in a cluster to the workload imposed by the input applications. We propose a generic algorithm, named H-WorD, which, based on the estimated workload over resources, suggests alternative execution scenarios of tasks, and hence identifies required transfers of input data a priori, for timely bringing data close to the execution. We exemplify our algorithm in the context of MapReduce jobs in a Hadoop ecosystem. Finally, we evaluate our approach and demonstrate the performance gains of automatic data redistribution.Peer ReviewedPostprint (author's final draft

    Garbage collection auto-tuning for Java MapReduce on Multi-Cores

    Get PDF
    MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present MRJ, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a four-core, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that Java runtime garbage collection has on the performance and scalability of MRJ. We propose the use of memory management auto-tuning techniques based on machine learning. With our auto-tuning approach, we are able to achieve MRJ performance within 10% of optimal on 75% of our benchmark tests

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method
    corecore