2,516 research outputs found

    Comparison between two VSC-HVDC transmission systems technologies : modular and neutral point clamped multilevel converter

    Get PDF
    The paper presents a detail comparison between two voltage source converter high voltage dc transmission systems, the first is based on neutral point-clamped (also known as HVDC-Light) and the second is based on innovative modular multilevel converter (known as HVDC-Plus). The comparison focuses on the reliability issues of both technologies such as fault ride-through capability and control flexibility. To address these issues, neutral point-clamped and three-level modular converters are considered in both stations of the dc transmission system, and several operating conditions are considered, including, symmetrical and asymmetrical faults. Computer simulation in Matlab-Simulink environment has been used to confirm the validity of the results

    Modular multilevel converter with modified half-bridge submodule and arm filter for dc transmission systems with DC fault blocking capability

    Get PDF
    Although a modular multilevel converter (MMC) is universally accepted as a suitable converter topology for the high voltage dc transmission systems, its dc fault ride performance requires substantial improvement in order to be used in critical infrastructures such as transnational multi-terminal dc (MTDC) networks. Therefore, this paper proposes a modified submodule circuit for modular multilevel converter that offers an improved dc fault ride through performance with reduced semiconductor losses and enhanced control flexibility compared to that achievable with full-bridge submodules. The use of the proposed submodules allows MMC to retain its modularity; with semiconductor loss similar to that of the mixed submodules MMC, but higher than that of the half-bridge submodules. Besides dc fault blocking, the proposed submodule offers the possibility of controlling ac current in-feed during pole-to-pole dc short circuit fault, and this makes such submodule increasingly attractive and useful for continued operation of MTDC networks during dc faults. The aforesaid attributes are validated using simulations performed in MATLAB/SIMULINK, and substantiated experimentally using the proposed submodule topology on a 4-level small-scale MMC prototype

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y TecnologĂ­a DPI2001-3089Ministerio de EduaciĂłn y Ciencia d TEC2006-0386

    Investigation of Modular Multilevel Converter Performance under Non-Ideal Distribution System Conditions

    Get PDF
    The Modular Multilevel Converter (MMC) is an emerging power converter technology that has caught widespread attention mainly because of several technical and economic benefits such as modular realization, easy scalability, low total harmonic distortion, fail-safe operations etc. The MMC is comprised of a series connection of sub-modules (SM). A sub-module is made by either a half-bridge or a full-bridge IGBT device and a capacitor as a source of energy connected across the bridge. This modular structure allows for the possibility to design high-voltage converters handling hundreds of kilo-volts without direct series connection of the power semiconductor devices. Due to its modular and safe-fail structure, ability to work at low switching frequency (few hundreds of Hz) and reduced filtering requirements the MMCs are suitable for utility applications. One of the main challenges of a utility MMC is operation under non-ideal grid supply conditions. This includes phase to phase faults, phase to ground faults, non-sinusoidal grid supply etc. This dissertation presents a novel control strategy for MMC based on frequency domain decomposition of the converter currents. The converter supply voltage is also decomposed into symmetrical components. By using the positive sequence grid voltage component as a reference voltage the control system can produce symmetric sinusoidal phase currents under any type of grid unbalance condition. A novel circulating current controller based on frequency domain decomposition of arm currents is also presented which minimizes DC bus current ripples during unbalance grid supply A novel and simple method for estimating operating region of certain MMC parameters as a function of input variables (grid voltages and power references) is developed. The function of the operating region with respect to key system parameters ensures that the operating region can be maximized Finally, a new simplified loss modeling technique and a power reference computation algorithm is developed in order to extend its operating limit under certain unbalance conditions. The presented control architecture with a simplified real-time loss modeling method assures the best possible performance of a MMC during non-ideal supply conditions

    Cost and losses associated with offshore wind farm collection networks which centralise the turbine power electronic converters

    Get PDF
    Costs and losses have been calculated for several different network topologies, which centralise the turbine power electronic converters, in order to improve access for maintenance. These are divided into star topologies, where each turbine is connected individually to its own converter on a platform housing many converters, and cluster topologies, where multiple turbines are connected through a single large converter. Both AC and DC topologies were considered, along with standard string topologies for comparison. Star and cluster topologies were both found to have higher costs and losses than the string topology. In the case of the star topology, this is due to the longer cable length and higher component count. In the case of the cluster topology, this is due to the reduced energy capture from controlling turbine speeds in clusters rather than individually. DC topologies were generally found to have a lower cost and loss than AC, but the fact that the converters are not commercially available makes this advantage less certain

    Fault Tolerant DC–DC Converters at Homes and Offices

    Get PDF
    The emergence of direct current (DC) microgrids within the context of residential buildings and offices brings in a whole new paradigm in energy distribution. As a result, a set of technical challenges arise, concerning the adoption of efficient, cost-effective, and reliable DC-compatible power conditioning solutions, suitable to interface DC microgrids and energy consuming elements. This thesis encompasses the development of DC–DC power conversion solutions, featuring improved availability and efficiency, suitable to meet the requirements of a comprehensive set of end-uses commonly found in homes and offices. Based on the energy consumption profiles and requirements of the typical elements found at homes and offices, three distinctive groups are established: light-emitting diode (LED) lighting, electric vehicle (EV) charging, and general appliances. For each group, a careful evaluation of the criteria to fulfil is performed, based on which at least one DC–DC power converter is selected and investigated. Totally, a set of five DC–DC converter topologies are addressed in this work, being specific aspects related to fault diagnosis and/or fault tolerance analysed with particular detail in two of them. Firstly, mathematical models are described for LED devices and EV batteries, for the development of a theoretical analysis of the systems’ operation through computational simulations. Based on a compilation of requirements to account for in each end-use (LED lighting, EV charging, and general appliances), brief design considerations are drawn for each converter topology, regarding their architecture and control strategy. Aiming a detailed understanding of the two DC–DC power conversion systems subjected to thorough evaluation in this work – interleaved boost converter and fault-tolerant single-inductor multiple-output (SIMO) converter – under both normal and abnormal conditions, the operation of the systems is evaluated in the presence of open-circuit (OC) faults. Parameters of interest are monitored and evaluated to understand how the failures impact the operation of the entire system. At this stage, valuable information is obtained for the development of fault diagnosis strategies. Taking profit of the data collected in the analysis, a novel fault diagnostic strategy is presented, targeting interleaved DC–DC boost converters for general appliances. Ease of implementation, fast diagnostic and robustness against false alarms distinguish the proposed approach over the state-of-the-art. Its effectiveness is confirmed through a set of operation scenarios, implemented in both simulation environment and experimental context. Finally, an extensive set of reconfiguration strategies is presented and evaluated, aiming to grant fault tolerance capability to the multiple DC–DC converter topologies under analysis. A hybrid reconfiguration approach is developed for the interleaved boost converter. It is demonstrated that the combination of reconfiguration strategies promotes remarkable improvements on the post-fault operation of the converter. In addition, an alternative SIMO converter architecture, featuring inherent tolerance against OC faults, is presented and described. To exploit the OC fault tolerance capability of the fault-tolerant SIMO converter, a converter topology targeted at residential LED lighting systems, two alternative reconfiguration strategies are presented and evaluated in detail. Results obtained from computational simulations and experimental tests confirm the effectiveness of the approaches. To further improve the fault-tolerant SIMO converter with regards to its robustness against sensor faults, while simplifying its hardware architecture, a sensorless current control strategy is presented. The proposed control strategy is evaluated resorting to computational simulations.O surgimento de micro-redes em corrente contĂ­nua (CC) em edifĂ­cios residenciais e de escritĂłrios estabelece um novo paradigma no domĂ­nio da distribuição de energia. Como consequĂȘncia disso, surge uma panĂłplia de desafios tĂ©cnicos ligados Ă  adopção de soluçÔes de conversĂŁo de energia, compatĂ­veis com CC, que demonstrem ser eficientes, rentĂĄveis e fiĂĄveis, capazes de estabelecer a interface entre micro-redes em CC e as cargas alimentadas por esse sistema de energia. AtĂ© aos dias de hoje, os conversores CC–CC tĂȘm vindo a ser maioritariamente utilizados em aplicaçÔes de nicho, que geralmente envolvem nĂ­veis de potĂȘncia reduzidos. PorĂ©m, as perspectivas futuras apontam para a adopção, em larga escala, destas tecnologias de conversĂŁo de energia, tambĂ©m em equipamentos elĂ©ctricos residenciais e de escritĂłrios. Tal como qualquer outra tecnologia de conversĂŁo electrĂłnica de potĂȘncia, os conversores CC–CC podem ver o seu funcionamento afectado por falhas que degradam o seu bom funcionamento, sendo que essas falhas acabam por afectar nĂŁo apenas os conversores em si, mas tambĂ©m as cargas que alimentam, limitando assim o tempo de vida Ăștil do conjunto conversor + carga. Desta forma, Ă© fulcral localizar a origem da falha, para que possam ser adoptadas acçÔes correctivas, capazes de limitar as consequĂȘncias nefastas associadas Ă  falha. Para responder a este desafio, esta tese contempla o desenvolvimento de soluçÔes de conversĂŁo de energia CC–CC altamente eficientes e fiĂĄveis, capazes de responder a requisitos impostos por um conjunto alargado de equipamentos frequentemente encontrados em habitaçÔes e escritĂłrios. Com base nos perfis de consumo de energia elĂ©ctrica e nos requisitos impostos pelas cargas tipicamente utilizadas em habitaçÔes e escritĂłrios, sĂŁo estabelecidos trĂȘs grupos distintos: iluminação atravĂ©s de dĂ­odos emissores de luz, carregamento de veĂ­culo elĂ©ctrico (VE) e aparelhos elĂ©ctricos em geral. Para cada grupo, Ă© efectuada uma avaliação cuidadosa dos critĂ©rios a respeitar, sendo com base nesses critĂ©rios que serĂĄ escolhida e investigada pelo menos uma topologia de conversor CC–CC. No total, sĂŁo abordadas cinco topologias de conversores CC–CC distintas, sendo que os aspectos ligados ao diagnĂłstico de avarias e/ou tolerĂąncia a falhas sĂŁo analisados com particular detalhe em duas dessas topologias. Inicialmente, sĂŁo estabelecidos modelos matemĂĄticos descritivos do comportamento das principais cargas consideradas no estudo – dĂ­odos emissores de luz e baterias de VEs – visando a anĂĄlise teĂłrica do funcionamento dos sistemas em estudo, suportada por simulaçÔes computacionais. Com base numa compilação de requisitos a ter em conta em cada aplicação – iluminação atravĂ©s de dĂ­odos emissores de luz, carregamento de veĂ­culo elĂ©ctrico (VE) e aparelhos elĂ©ctricos em geral – sĂŁo estabelecidas consideraçÔes ligadas Ă  escolha de cada topologia de conversor nĂŁo isolado, no que respeita Ă  sua arquitectura e estratĂ©gia de controlo. Visando o conhecimento aprofundado das duas topologias de conversor CC–CC alvo de particular enfoque neste trabalho – conversor entrelaçado elevador e conversor de entrada Ășnica e mĂșltiplas saĂ­das, tolerante a falhas – quer em funcionamento normal, quer em funcionamento em modo de falha, Ă© avaliado o funcionamento de ambas as topologias na presença de falhas de circuito aberto nos semicondutores activos. Para o efeito, sĂŁo monitorizados e analisados parĂąmetros Ășteis Ă  percepção da forma como os modos de falha avaliados neste trabalho impactam o funcionamento de todo o sistema. Nesta fase, Ă© obtida informação fundamental ao desenvolvimento de estratĂ©gias de diagnĂłstico de avarias, particularmente indicadas para avarias de circuito aberto nos semicondutores activos dos conversores em estudo. Com base na informação recolhida anteriormente, Ă© apresentada uma nova estratĂ©gia de diagnĂłstico de avarias direccionada a conversores CC–CC elevadores entrelaçados utilizados em aparelhos elĂ©ctricos, em geral. Facilidade de implementação, rapidez e robustez contra falsos positivos sĂŁo algumas das caracterĂ­sticas que distinguem a estratĂ©gia proposta em relação ao estado da arte. A sua efectividade Ă© confirmada com recurso a uma multiplicidade de cenĂĄrios de funcionamento, implementados quer em ambiente de simulação, quer em contexto experimental. Por fim, Ă© apresentada e avaliada uma gama alargada de estratĂ©gias de reconfiguração, que visam assegurar a tolerĂąncia a falhas das diversas topologias de conversores CC–CC em estudo. É desenvolvida uma estratĂ©gia de reconfiguração hĂ­brida, direccionada ao conversor entrelaçado elevador, que combina mĂșltiplas medidas de reconfiguração mais simples num Ășnico procedimento. Demonstra-se que a combinação de mĂșltiplas estratĂ©gias de reconfiguração introduz melhorias substanciais no funcionamento do conversor ao longo do perĂ­odo pĂłs-falha, ao mesmo tempo que assegura a manutenção da qualidade da energia Ă  entrada e saĂ­da do conversor reconfigurado. Noutra frente, Ă© apresentada e descrita uma arquitectura alternativa do conversor de entrada Ășnica e mĂșltiplas saĂ­das, com tolerĂąncia a falhas de circuito aberto. AtravĂ©s da configuração proposta, Ă© possĂ­vel manter o fornecimento de energia elĂ©ctrica a todas as saĂ­das do conversor. Para tirar mĂĄximo proveito da tolerĂąncia a falhas do conversor de entrada Ășnica e mĂșltiplas saĂ­das, uma topologia de conversor indicada para sistemas residenciais de iluminação baseados em dĂ­odos emissores de luz, sĂŁo apresentadas e avaliadas duas estratĂ©gias de reconfiguração do conversor, exclusivamente baseadas na adaptação do controlo aplicado ao conversor. Os resultados de simulação computacional e os resultados experimentais obtidos confirmam a efectividade das abordagens adoptadas, atravĂ©s da melhoria da qualidade da energia elĂ©ctrica fornecida Ă s diversas saĂ­das do conversor. SĂŁo assim asseguradas condiçÔes essenciais ao funcionamento ininterrupto e estĂĄvel dos sistemas de iluminação, jĂĄ que a qualidade da energia elĂ©ctrica fornecida aos sistemas de iluminação tem impacto directo na qualidade da luz produzida. Por fim, e para aprimorar o conversor de entrada Ășnica e mĂșltiplas saĂ­das tolerante a falhas, no que respeita Ă  sua robustez contra falhas em sensores, Ă© apresentada uma estratĂ©gia de controlo de corrente que evita o recurso excessivo a sensores e, ao mesmo tempo, simplifica a estrutura de controlo do conversor. A estratĂ©gia apresentada Ă© avaliada atravĂ©s de simulaçÔes computacionais. A abordagem apresentada assume vantagens em mĂșltiplos domĂ­nios, sendo de destacar vantagens como a melhoria da fiabilidade de todo o sistema de iluminação (conversor + carga), os ganhos atingidos ao nĂ­vel do rendimento, a redução do custo de implementação da solução, ou a simplificação da estrutura de controlo.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under grant number SFRH/BD/131002/2017, co-funded by the Ministry of Science, Technology and Higher Education (MCTES), by the European Social Fund (FSE) through the ‘Programa Operacional Regional Centro’ (POR-Centro), and by the Human Capital Operational Programme (POCH)

    A capacitor voltage balancing approach based on mapping strategy for MMC applications

    Get PDF
    This paper proposes a new strategy to achieve balanced capacitor voltages in modular multilevel converters. Among the possible solutions, centralized arm control approaches are often adopted. These methods require a balancing technique based on a sorted list of the sub-modules according to their capacitor voltages. In order to achieve the aforementioned sorted list, different algorithms have been proposed in literature, such as: Sorting algorithms, max/min approaches, etc. However, the sorting algorithms require a long execution time, while the max/min approaches affect the converter dynamic response during faults. To overcome these issues, a new mapping strategy providing a quasi-sorted list is proposed in this paper. The suggested method is compared in simulation with both the classical bubble sorting algorithm, and the max/min method during both normal and faulty conditions. Moreover, the three methods have been implemented in a Xilinx Zynq-7000 System-on-Chip (SoC) device, in order to analyze the corresponding execution time and the required computational effort. Hardware-in-the-loop results are presented for demonstrating the superior performance of the proposed balancing strategy

    Reliability Analysis of Modular Multilevel Converter for Offshore Wind Power Transmission Systems

    Get PDF

    Advanced Control Strategies for Modular Multilevel Converters

    Get PDF

    On Converter Fault Tolerance in MMC-HVDC Systems:A Comprehensive Survey

    Get PDF
    • 

    corecore