165 research outputs found

    Saliency Driven Vasculature Segmentation with Infinite Perimeter Active Contour Model

    Get PDF
    Automated detection of retinal blood vessels plays an important role in advancing the understanding of the mechanism, diagnosis and treatment of cardiovascular disease and many systemic diseases, such as diabetic retinopathy and age-related macular degeneration. Here, we propose a new framework for precisely segmenting retinal vasculatures. The proposed framework consists of three steps. A non-local total variation model is adapted to the Retinex theory, which aims to address challenges presented by intensity inhomogeneities, and the relatively low contrast of thin vessels compared to the background. The image is then divided into superpixels, and a compactness-based saliency detection method is proposed to locate the object of interest. For better general segmentation performance, we then make use of a new infinite active contour model to segment the vessels in each superpixel. The proposed framework has wide applications, and the results show that our model outperforms its competitors

    Salient Object Detection Techniques in Computer Vision-A Survey.

    Full text link
    Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end

    Lettuce growth stage identification based on phytomorphological variations using coupled color superpixels and multifold watershed transformation

    Get PDF
    Identifying the plant's developmental growth stages from seed leaf is crucial to understand plant science and cultivation management deeply. An efficient vision-based system for plant growth monitoring entails optimum segmentation and classification algorithms. This study presents coupled color-based superpixels and multifold watershed transformation in segmenting lettuce plant from complicated background taken from smart farm aquaponic system, and machine learning models used to classify lettuce plant growth as vegetative, head development and for harvest based on phytomorphological profile. Morphological computations were employed by feature extraction of the number of leaves, biomass area and perimeter, convex area, convex hull area and perimeter, major and minor axis lengths of the major axis length the dominant leaf, and length of plant skeleton. Phytomorphological variations of biomass compactness, convexity, solidity, plant skeleton, and perimeter ratio were included as inputs of the classification network. The extracted Lab color space information from the training image set undergoes superpixels overlaying with 1,000 superpixel regions employing K-means clustering on each pixel class. Six-level watershed transformation with distance transformation and minima imposition was employed to segment the lettuce plant from other pixel objects. The accuracy of correctly classifying the vegetative, head development, and harvest growth stages are 88.89%, 86.67%, and 79.63%, respectively. The experiment shows that the test accuracy rates of machine learning models were recorded as 60% for LDA, 85% for ANN, and 88.33% for QSVM. Comparative analysis showed that QSVM bested the performance of optimized LDA and ANN in classifying lettuce growth stages. This research developed a seamless model in segmenting vegetation pixels, and predicting lettuce growth stage is essential for plant computational phenotyping and agricultural practice optimization

    An L1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition

    Get PDF
    Identifying sparse salient structures from dense pixels is a longstanding problem in visual computing. Solutions to this problem can benefit both image manipulation and understanding. In this paper, we introduce an image transform based on the L1 norm for piecewise image flattening. This transform can effectively preserve and sharpen salient edges and contours while eliminating insignificant details, producing a nearly piecewise constant image with sparse structures. A variant of this image transform can perform edge-preserving smoothing more effectively than existing state-of-the-art algorithms. We further present a new method for complex scene-level intrinsic image decomposition. Our method relies on the above image transform to suppress surface shading variations, and perform probabilistic reflectance clustering on the flattened image instead of the original input image to achieve higher accuracy. Extensive testing on the Intrinsic-Images-in-the-Wild database indicates our method can perform significantly better than existing techniques both visually and numerically. The obtained intrinsic images have been successfully used in two applications, surface retexturing and 3D object compositing in photographs.postprin

    An improved Gaussian Mixture Model with post-processing for multiple object detection in surveillance video analytics

    Get PDF
    Gaussian Mixture Model (GMM) is an effective method for extracting foreground objects from video sequences. However, GMM fails to detect the object in challenging scenarios like the presence of shadow, occlusion, complex backgrounds, etc. To handle these challenges, intrinsic and extrinsic enhancement is required in traditional GMM. This paper presents a novel framework that combines improved GMM with postprocessing for multiple object detection. In the proposed system, GMM with parameter initialization is considered an intrinsic improvement. Video preprocessing and postprocessing are considered extrinsic improvements. Integration of morphological operation with GMM helps for better segmentation than traditional GMM, and it also helps to increase detection performance by reducing false positives. Video preprocessing is the process of noise removal that prepares input video ready for further processing. In the final step gradient of morphological operations is used for postprocessing. The proposed approach was tested on challenging surveillance video sequences from benchmark datasets such as PETS 2009 and CD 2014(Change Detection). The experimental results are compared using ground truth and performance evaluation metrics. The results show that the proposed approach performs better than GMM, and the method can detect the object effectively even in illumination variation and partial occlusion

    Studies on Personalized HCI

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore