1,828 research outputs found

    Grid-based Hybrid 3DMA GNSS and Terrestrial Positioning

    Full text link
    The paper discusses the increasing use of hybridized sensor information for GNSS-based localization and navigation, including the use of 3D map-aided GNSS positioning and terrestrial systems based on different geometric measurement principles. However, both GNSS and terrestrial systems are subject to negative impacts from the propagation environment, which can violate the assumptions of conventionally applied parametric state estimators. Furthermore, dynamic parametric state estimation does not account for multi-modalities within the state space leading to an information loss within the prediction step. In addition, the synchronization of non-deterministic multi-rate measurement systems needs to be accounted. In order to address these challenges, the paper proposes the use of a non-parametric filtering method, specifically a 3DMA multi-epoch Grid Filter, for the tight integration of GNSS and terrestrial signals. Specifically, the fusion of GNSS, Ultra-wide Band (UWB) and vehicle motion data is introduced based on a discrete state representation. Algorithmic challenges, including the use of different measurement models and time synchronization, are addressed. In order to evaluate the proposed method, real-world tests were conducted on an urban automotive testbed in both static and dynamic scenarios. We empirically show that we achieve sub-meter accuracy in the static scenario by averaging a positioning error of 0.640.64 m, whereas in the dynamic scenario the average positioning error amounts to 1.621.62 m. The paper provides a proof-of-concept of the introduced method and shows the feasibility of the inclusion of terrestrial signals in a 3DMA positioning framework in order to further enhance localization in GNSS-degraded environments

    Improving the performance of a radio-frequency localization system in adverse outdoor applications

    Get PDF
    In outdoor RF localization systems, particularly where line of sight can not be guaranteed or where multipath effects are severe, information about the terrain may improve the position estimate's performance. Given the difficulties in obtaining real data, a ray-tracing fingerprint is a viable option. Nevertheless, although presenting good simulation results, the performance of systems trained with simulated features only suffer degradation when employed to process real-life data. This work intends to improve the localization accuracy when using ray-tracing fingerprints and a few field data obtained from an adverse environment where a large number of measurements is not an option. We employ a machine learning (ML) algorithm to explore the multipath information. We selected algorithms random forest and gradient boosting; both considered efficient tools in the literature. In a strict simulation scenario (simulated data for training, validating, and testing), we obtained the same good results found in the literature (error around 2 m). In a real-world system (simulated data for training, real data for validating and testing), both ML algorithms resulted in a mean positioning error around 100 ,m. We have also obtained experimental results for noisy (artificially added Gaussian noise) and mismatched (with a null subset of) features. From the simulations carried out in this work, our study revealed that enhancing the ML model with a few real-world data improves localization’s overall performance. From the machine ML algorithms employed herein, we also observed that, under noisy conditions, the random forest algorithm achieved a slightly better result than the gradient boosting algorithm. However, they achieved similar results in a mismatch experiment. This work’s practical implication is that multipath information, once rejected in old localization techniques, now represents a significant source of information whenever we have prior knowledge to train the ML algorithm

    Cooperative Positioning using Massive Differentiation of GNSS Pseudorange Measurements

    Get PDF
    With Differential GNSS (DGNSS), Single Differentiation (SD) of GNSS pseudorange mea- surements is computed with the aim of correcting harmful errors such as ionospheric and tropospheric delays. These errors can be mitigated to up to very few centimeters, which denotes a performance improvement with respect to the Standard Point Positioning (SPP) solution, widely used in GNSS receivers. However, with DGNSS it is necessary to have a very precise knowledge of the coordinates of a reference station in order to experience this performance improvement. We propose the Massive User-Centric Single Differentiation (MUCSD) algorithm, which is proven to have a comparable performance to DGNSS with- out the need of a reference station. Instead, N cooperative receivers which provide noisy observations of their position and clock bias are introduced in the model. The MUCSD algorithm is mathematically derived with an Iterative Weighted Least Squares (WLS) Estimator. The estimator lower bound is calculated with the Cramér-Rao Bound (CRB). Several scenarios are simulated to test the MUCSD algorithm with the MassiveCoop-Sim simulator. Results show that if the observations provided by the cooperative users have a noise of up to 10 meters, DGNSS performance can be obtained with N = 10. When observations are very noisy, the MUCSD performance still approaches DGNSS for high values of N

    Innovative Wireless Localization Techniques and Applications

    Get PDF
    Innovative methodologies for the wireless localization of users and related applications are addressed in this thesis. In last years, the widespread diffusion of pervasive wireless communication (e.g., Wi-Fi) and global localization services (e.g., GPS) has boosted the interest and the research on location information and services. Location-aware applications are becoming fundamental to a growing number of consumers (e.g., navigation, advertising, seamless user interaction with smart places), private and public institutions in the fields of energy efficiency, security, safety, fleet management, emergency response. In this context, the position of the user - where is often more valuable for deploying services of interest than the identity of the user itself - who. In detail, opportunistic approaches based on the analysis of electromagnetic field indicators (i.e., received signal strength and channel state information) for the presence detection, the localization, the tracking and the posture recognition of cooperative and non-cooperative (device-free) users in indoor environments are proposed and validated in real world test sites. The methodologies are designed to exploit existing wireless infrastructures and commodity devices without any hardware modification. In outdoor environments, global positioning technologies are already available in commodity devices and vehicles, the research and knowledge transfer activities are actually focused on the design and validation of algorithms and systems devoted to support decision makers and operators for increasing efficiency, operations security, and management of large fleets as well as localized sensed information in order to gain situation awareness. In this field, a decision support system for emergency response and Civil Defense assets management (i.e., personnel and vehicles equipped with TETRA mobile radio) is described in terms of architecture and results of two-years of experimental validation

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF
    • …
    corecore