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Abstract
With Differential GNSS (DGNSS), Single Differentiation (SD) of GNSS pseudorange mea-
surements is computed with the aim of correcting harmful errors such as ionospheric and
tropospheric delays. These errors can be mitigated to up to very few centimeters, which
denotes a performance improvement with respect to the Standard Point Positioning (SPP)
solution, widely used in GNSS receivers. However, with DGNSS it is necessary to have a
very precise knowledge of the coordinates of a reference station in order to experience this
performance improvement. We propose the Massive User-Centric Single Differentiation
(MUCSD) algorithm, which is proven to have a comparable performance to DGNSS with-
out the need of a reference station. Instead, N cooperative receivers which provide noisy
observations of their position and clock bias are introduced in the model. The MUCSD
algorithm is mathematically derived with an Iterative Weighted Least Squares (WLS)
Estimator. The estimator lower bound is calculated with the Cramér-Rao Bound (CRB).
Several scenarios are simulated to test the MUCSD algorithm with the MassiveCoop-Sim
simulator. Results show that if the observations provided by the cooperative users have
a noise of up to 10 meters, DGNSS performance can be obtained with N = 10. When
observations are very noisy, the MUCSD performance still approaches DGNSS for high
values of N .
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Notation
x̂ Estimation of parameter x.

f(x)|x=a Function f(x) evaluated at x = a.

|x| Absolute value (modulus) of scalar x.

∥x∥ ℓ2-norm of vector x.

det(X) Determinant of matrix X.

IN Identity matrix with dimension N ×N .

JN×M Matrix of ones or all-ones matrix with dimension N ×M .

XT Transpose of matrix X.

X† Moore-Penrose pseudoinverse of matrix X.

⊗ Kronecker or tensor product.

N (µ, Σ) Multivariate Gaussian distribution with mean µ and covariance matrix Σ.

U(µ, Σ) Continuous uniform distribution with mean µ and covariance matrix Σ.

E [·] Statistical expectation.

I(θ) Fisher Information Matrix (FIM) with respect to the parameter vector θ.

ln(·) Natural logarithm (base e).
∂f(x)
∂xi

Partial derivative of function f(x) with respect to the variable xi.

∂f(x)
∂x

Gradient of function f(x) with respect to the vector x.

i.i.d. Independent and Identically Distributed

r.v. Random Variable

s.t. Subject to

Boldface upper-case letters denote matrices and boldface lower-case letters denote column
vectors.
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1 Introduction
The introductory section of this thesis aims to first describe the thesis outline in order to
provide a clear understanding on what is explained throughout the document and which
topics are covered. The state-of-the-art section covers the topic of Cooperative Positioning
(CP) using Global Navigation Satellite Systems (GNSS) and other technologies. As the
background section contains very specific content that is highly linked to the conducted
research, we have decided to separate it from the introductory section. Please, refer to
Section 2 for an introduction to the mathematical derivations behind GNSS code-based
positioning.

1.1 General Information

This thesis is being submitted in partial fulfillment of the requirements for the Master’s
degree in Telecommunications Engineering (MET) at Universitat Politècnica de Catalunya
(UPC), Barcelona School of Telecommunications Engineering (ETSETB). The research
has been conducted as part of an international mobility program at the Signal Processing
Imaging Reasoning and Learning (SPIRAL) Laboratory (Department of Electrical and
Computer Engineering, College of Engineering) of Northeastern University in Boston
(United States, Massachusetts).

As it is mentioned in Section 4, it has been required to use the Discovery Cluster from
Northeastern University due to the high computational cost of some of the experiments
conducted with MATLAB R2021b. A more detailed description of this matter is later
provided to the reader.

The domain of this thesis is cooperative device localization in GNSS-only systems.

1.2 Thesis Outline

At the beginning of the document, the list of the figures and tables is included and followed
by the notation description used in the mathematical derivations found in Sections 2, 3
and 4.

Within Section 1, and after the thesis outline, a review of current literature on CP using
several technologies, not only GNSS, is included. The challenges posed by data sharing be-
tween a massive number of users, such as data protection, privacy and high computational
cost, are described.

In Section 2, an extensive and detailed background on the core ideas of GNSS code-based
positioning is provided, focusing on the single-constellation Standard Positioning Point
(SPP) solution and the use of Single Differentiation (SD) between receivers in Differential
GNSS (DGNSS). This section allows the reader to gain in-depth knowledge to read Section
3, and also to understand the hypothesis and contribution of this research in more detail.
Consequently, both the hypothesis and contribution are described at the end of Section
2.

In Section 3, the proposed User-Centric Single Differentiation (UCSD) and Massive User-
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Centric Single Differentiation (MUCSD) algorithms are mathematically derived. Section
4 shows the setup used to conduct the final experiments of this research. Our simulator,
which we refer to as MassiveCoop-Sim, is inspired by the simulator in [3] and is described
in detail. Some parameter values that are part of the experimental setup are experiment-
dependent. Therefore, details regarding these parameters are directly provided in Section
5, where the thesis results are described

The performance of the proposed techniques is evaluated in Section 5. The discussion is
focused on comparing the UCSD and MUCSD algorithms to the well-known and widely
used DGNSS technique.

Lastly, conclusions are drawn from the obtained results in Section 6. A list of possible
(and motivating) future lines of research is provided at the very end of the document.

1.3 Problem Statement

Please refer to Section 2.4 to read about the purpose, hypothesis and contribution of
this research. Section 2 allows the reader to gain the in-depth knowledge required to
understand the problem statement in detail.

1.4 State of the Art on Cooperative Positioning

In this section we would like to emphasize the importance of hybrid positioning and also
the importance of Cooperative Positioning (CP). Hybrid positioning is defined as the
use of more than one technology with positioning purposes, while CP is defined as the
use of measurements from multiple users when conducting a position estimation task. The
availability of measurements from several users brings a new dimension of information into
positioning algorithms and this is the reason why it is such a powerful tool. However, these
algorithms pose challenges given their high computational cost and the loss of privacy in
some applications.

Radio signals have been used with localization purposes for a long time, being the most
prominent used technologies the Global Positioning System (GPS), cellular systems and
Wireless Fidelity (Wi-Fi) [4]. In general, localization encompasses two steps. The first step
consists on the processing of user measurements to obtain distance or angle information.
The second step usually involves triangulation to determine the position of a user [4].

1.4.1 Hybrid Positioning Techniques

A wide range of current (and future) applications demand high positioning accuracy.
This is the case of several 5G use cases, such as the ones that are mission-critical (public
safety, emergency calls), location-based (augmented reality, wearables, vehicle sharing,
tracking systems), Intelligent Transportation Systems (ITSs) (traffic monitoring, drone
tracking, autonomous driving, V2X), eHealth-related (patient tracking inside and outside
hospitals, location of emergency equipment) and Industry 4.0 applications [5]. The support
of localization services in 5G communications is considered a separate use case that can be
managed by relying on multiple technologies. In [5], they separate between three categories
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of 5G localization services: the ones using 3GPP technologies exclusively, the ones using
non-3GPP technologies exclusively and, lastly, the combination of the latter.

Figure 1: Diagram illustrating the concept of hybrid positioning using GNSS and 5G mmWave
signals, from [6]. The users (vehicles) receive GNSS signals from the satellites and 5G signals

from the 5G gNBs (radio nodes).

Wi-Fi [7], ZigBee, Radio Frequency Identification (RFID) and Bluetooth Low Energy
(BLE) are some of the technologies used in hybrid positioning techniques and they are
currently available for Wireless Local Area Networks (WLANs), Wireless Sensor Networks
(WSN) and Internet of Things (IoT) applications. It is very interesting that, although
they were initially designed with communication purposes only, they are now being used
for localization as well. These technologies do not provide positioning capabilities by
themselves, but the signals they transmit, if properly processed, offer different levels of
localization accuracy [5]. For instance, accuracies at meter-level can be achieved using Wi-
Fi fingerprinting techniques [7] [8]. This explains why Wi-Fi and BLE have been considered
complementary localization technologies in LTE (Release 13). Their wide diffusion offers
the possibility to enhance indoor positioning, which is specially challenging.

It is relevant to highlight that each localization method has its own benefits and draw-
backs. Besides, accuracy levels depend on the technology we rely on [8]. Consequently,
combining technologies, which is what hybrid techniques do, can be a good strategy. For
example, GNSS positioning methods such as the Precise Point Positioning (PPP) and
Real Time Kinematic (RTK) techniques provide centimeter-level accuracy when enough
satellites are in view. The need of having enough satellites in view implies that GNSS
systems perform better in outdoor conditions, where GNSS receivers are able to properly
decode navigation messages. However, GNSS can also be of help in hybrid positioning
systems that work both in outdoor and indoor environments [9]. Interestingly, numerous
studies in current literature suggest that the integration of GPS and UWB is very pow-
erful for indoor positioning [10]. This combination can also help in outdoor and indoor
mixed scenarios [11].

As stated in [6], the GNSS performance drop due to the obstruction of Line of Sight (LOS)
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paths (in urban canyons or underground tunnels, for instance) is generally overcome
by augmenting GNSS systems with other dedicated subsystems like the one provided
by future 5G mmWave networks. Hybridization of GNSS and 5G positioning systems
is studied in current literature. The concept of hybrid positioning using GNSS and 5G
signals is illustrated in Figure 1. In this scheme, the users (vehicles), receive information
from the GNSS system and also from the radio nodes of the 5G cellular network.

Figure 2: Scenario with satellite blocking in urban canyons, from [12]. Satellite signals that are
outside the user visible elevation angle (blocked signals) are not received by the user and

consequently the satellite sending that signal is not considered to be in view.

We would like to stress on the concept of satellite in view. The obstruction of LOS paths
mentioned beforehand usually occurs due to not having enough in view satellites in the
scenario, i.e., satellites sending signals within the user/receiver visible elevation angle. In
Section 2, we justify the fact that four satellites in view are needed in order to properly
estimate the position of a user. In Section 4, the concept of elevation angle is introduced.
Figure 2 shows the diagram of an example scenario with two satellites in view and one
blocked satellite. This diagram has been extracted from [12], where GNSS-only absolute
positioning is studied under different sky view conditions. The challenge posed by the
obstruction of LOS path (or NLOS) conditions is also illustrated in Figure 3 (b).

In urban environments, multipath can dramatically increase the positioning error in
GNSS-only systems. Multipath is originated by reflected paths present in challenging
scenarios such as urban canyons. This is illustrated in Figure 3 (a). There is a wide choice
of literature on multipath and NLOS error mitigation, which can be targeted with hybrid
positioning.

Multipath and NLOS errors are not an object of study in this research, as we are assum-
ing that a minimum number of satellites in view is available in the scenario. However,
we considered relevant to introduce the need of hybridization, as the technique that is
proposed in this Master Thesis could benefit from it in further lines of research. This way,
we could protect the receiver when not being under open-sky conditions.
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Figure 3: Challenges posed by LOS path obstruction and multipath propagation in GNSS-only
systems, from [13]. In (b) the satellite is not in view and consequently the signal is not received
within the user visible elevation angle, while in (a) the satellite is indeed in view but multipath

effects increase position estimation error.

1.4.2 Crowdsensing and Privacy Protection

Crowdsensing (CS) is introduced in this section because it poses important challenges
that will need to be addressed in future applications that require accurate knowledge
of device location, for which GNSS Cooperative Positioning (CP) will be of great help.
With CS, information is distributed across a large number of users rather than by a
set of sensors in fixed locations. Current work focuses on Mobile CS, which assumes
that a large group of individuals having devices that are capable of sensing will agree
to collectively share their data [14]. In Figure 4, the factors contributing to the rise of
Mobile CS are shown. In crowdsensing and crowdsourcing, data is collected collaboratively
by exploiting the massive presence of geolocated devices that are connected to the Internet
[15]. The introduction of IoT, crowdsensing, crowdsourcing and cloud computing is having
important effects that promote innovation in applications that are part of the Industry
4.0.

Although advantageous, Mobile CS poses several challenges such as the limitation of
resources like energy, bandwidth and computational power. For instance, if wanting to
share GPS locations of several users in an outdoor scenario, the battery of the devices
being used will probably drain. To fix this, Wi-Fi can be used for tracking, but the
shared location will be less accurate [14]. It is relevant to highlight the high computational
cost that cooperative algorithms have. This is the reason why several publications in the
literature are trying to assess how critical is the loss of Quality of Service (QoS) due to
the continuous generation of large amount of data in, for example, IoT applications using
Mobile CS [16].

It is interesting to talk about CS in this section because it helps bringing up the concept
of data protection and privacy. While data sharing is something beneficial for some ap-
plications, it can cause severe damages when phenomena such as the leakage of private
data occur. In order to solve this problem, many privacy protection strategies based on
different technologies have been proposed in state-of-the-art literature. The aim of these
strategies is to secure the privacy of CS tasks and data [17]. For example, in [18], an en-
cryption algorithm is proposed within a distributed structure that allows user to upload
their sensory data and receive information without any concern regarding privacy disclo-
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Figure 4: Illustration of the factors contributing to the rise of Mobile Crowdsensing (MCS).
MCS assumes that a large group of individuals having devices that are capable of sensing will

agree to collectively share their data [14].

sure. The algorithm presented in this publication is very interesting because it combines
k-anonymity and blockchain.

1.4.3 GNSS Cooperative Positioning

CP exploits location information from additional measurements between users and thus in-
creases localization accuracy. Several technologies suggested for future 5G networks would
benefit from the access to accurate location of Mobile Terminals (MTs). In the light of this,
it is conceivable that cooperative localization systems will be implemented in the future
5G networks [19]. Some authors have currently driven the further development of refined
localization methods with the use of 5G Massive Multiple-input Multiple-output (MIMO)
[4]. These large-scale antenna systems offer advantages not only in communications but
also in localization given their high angular resolution.

As it has been previously mentioned, positioning techniques might rely on more than one
technology. This also happens with some algorithms of CP that we find in the literature.
In numerous publications, it has been proven that the use of GNSS data in CP algorithms
is beneficial against GNSS impairments and it generally improves the accuracy [20] [21].
Moreover, the research about theoretical limits of CP is appealing in the GNSS field. For
example, in [22], the Cramér-Rao Bound (CRB) for hybrid CP where GNSS information
is combined with terrestrial range measurements is assessed. We consider this publication
to be relevant because it provides a theoretical tool to evaluate the achievable positioning
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accuracy for a given network configuration and can be used as a reference to compare the
performance of other practical positioning algorithms.

Most of the CP methods are based on the assumption that the inter-vehicular ranges
(IVRs) are available through a radio ranging method. The signal strength (RSS), time
of arrival (ToA), or time difference of arrival (TDoA) can be measured for this purpose
[23]. It is though important to take into account that the accuracy and feasibility of
these methods is limited due to the communication medium constraints and the rapidly
changing vehicular environment. Consequently, these are not always a reliable option for
safety-critical systems.

GNSS-only cooperative systems are also endorsed in the state-of-the-art literature [24]
[25]. GNSS systems are widely deployed for absolute and relative positioning as part of
a wide range of ITS applications, given their global coverage, which is of high interest.
Nevertheless, these systems have limited availability under some conditions, thus not
being able to meet the strict requirements of many safety-critical applications [23]. To
address the need of high accuracy and continuity of position information required by such
applications, CP and sensor data fusion can help [26].

In [27], IVRs are measured by using raw GNSS observables, which is a similar approach
to Differential GNSS (DGNSS), with the difference that both nodes are mobile and there
is no presence of a reference or base station. The use of both code and carrier-phase
measurements for GNSS-only CP is currently being investigated [28] [29]. Although the
carrier-phase measurements are more precise, they are not the first option for CP in
current literature. This is due to the fact that with carrier-phase measurements there is
the need to resolve the carrier-phase ambiguity, which is computationally expensive.

We would like to focus on the algorithms presented in the publications [24] and [25]. These
algorithms suggest that, by using only GPS pseudorange measurements, we can improve
the positioning accuracy in cooperative vehicular localization systems, which is critical
for cooperative vehicle safety (CVS) applications. The standard Double Differentiation
(DD) pseudorange solution is adapted to low-end navigation level GPS receivers for its
wide availability in ground vehicles. The Carrier to Noise Ratio (CNR) of raw pseudorange
measurements are taken into account for noise mitigation, as they are used to build matrix
W of the proposed Weighted Least Squares (WLS) estimator. The contribution of [25] is
mentioned again in Section 2.4 when describing the novelty of the algorithms proposed in
this Master Thesis.

1.4.4 Inter-Device Communication Systems

Our intention with this subsection is to emphasize the importance of the communication
systems and standards used to exchange raw pseudorange information among neighbour-
ing users in a cooperative scenario. Some studies suggest the use of Dedicated Short Range
Communications (DSRC) for this matter [25].

DSRC are one-way or two-way short-range to medium-range wireless communication chan-
nels specifically designed for automotive use and a corresponding set of protocols and
standards. The IEEE 802.11p is an approved amendment to the IEEE 802.11 standard
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Figure 5: Example scenario of the proposed CP method using GPS in [1]. DSRC signals allow
inter-vehicle communication, while GPS and radar signals are used to provide precise location

information.

to add wireless access in vehicular environments (WAVE), and it can be used for DSRC
communications. According to [1], CP has potential benefits from the emerging vehicular
communications based on IEEE 802.11p DSRC, opening new opportunities that support
vehicular applications. As GNSS is incorporated in modern vehicles, robust positioning
approaches can be developed due to the availability of accurate position information. In
Figure 5 we can see an example scenario of the proposed CP method using GPS in [1]. We
see how this scenario makes use of DSRC signals that allow inter-vehicle communication.
GPS and radar signals are used to provide precise location information to the algorithm
proposed in the mentioned publication.

As stated in [30] (Chapter 5.8), for real-time users of DGNSS, a standard format for
data communication developed by the Radio Technical Commission for Maritime Services
(RTCM) is widely used for communication between the base station and the DGNSS re-
ceiver. The standard, named RTCM SC-104, was established in 1994. This is mentioned
again in Section 2, as the concept of reference station or base station has not been intro-
duced in the document yet. In [31], they suggest the use of RTCM corrections via DSRC
to improve vehicle localization.
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2 Background on GNSS Code-Based Positioning
This section focuses on GNSS code-based Positioning. We present how single-frequency
code-based positioning is performed with the Standard Positioning Point (SPP) solution,
which is widely used in GNSS receivers. The mathematical derivations presented in this
section allow the reader to gain in-depth knowledge to move forward into the following
sections. An introduction to Single Differentation (SD) techniques is provided, paying
special tribute to Differential GNSS (DGNSS).

The Real-Time Kinematic (RTK) method is also mentioned. Nevertheless, RTK also
makes use of carrier-phase measurements and this is out of the scope of this research.
As it has been previously mentioned in Section 1, the use of carrier-phase measurements
involves very high computational costs and consequently cooperative positioning algo-
rithms that only use pseudorange mesurements are lighter. Furthermore, the mathematical
derivations that include differentiation of carrier-phase measurements are more complex.
Although computationally demanding, a study of GNSS Massive CP using these mea-
surements would be of interest at least from a theoretical point of view. Therefore, this is
proposed as a future line of research in Section 6.

Before getting into the mathematical derivations, we would also like to stress the fact that,
in DGNSS, SD is performed between receivers and not between satellites. Nevertheless,
SD between satellites has been explored in other literature such as in [32], where they try
to solve the carrier-phase ambiguity with satellite-satellite SD. In RTK, differentiation is
computed between both satellites and receiver (Double Differentiation).

2.1 Introduction to GNSS

In this subsection we are presenting very important concepts related to GNSS. The need
of a fourth satellite when estimating the position of a user is justified with the introduc-
tion of the pseudorange expression, which includes the clock bias term. Next, a general
description of available GNSS frequency bands is provided with the aim of bringing up
the advantages provided by multi-frequency GNSS techniques. Finally, the general archi-
tecture of a standard GNSS receiver is presented in Figure 8. This is relevant in order to
understand that the novel techniques proposed in this research are located at the very
end of the receiver chain, i.e., the Navigation Module, providing user position and time
as an output.

The concept of clock bias or clock offset and pseudorange must be introduced to the
reader. GNSS receivers learn the satellite signal transmit time by inspecting the navigation
message. Reception time is also known by the receiver from an internal clock, which has a
considerably low precision in comparison to the one of satellite clocks. With the difference
between the signal transmit and reception times, an estimated distance between satellite
and receiver can be obtained. As GNSS signals are electromagnetic waves propagating at
the speed of light, to compute the distance the difference in time is multiplied by the speed
of light c ≈ 3e8 m/s. The estimated distance provides the radius of the spherical surface
centered at the satellite and containing the position of the user [33]. Position estimation
would be possible with just three satellites in view if there was not a clock offset δtkm
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between the receiver time (receiver m) and the GNSS time (from satellites k = 1, . . . , K).
All range measurements are shifted by an unknown term, which corresponds to this clock
offset, and therefore they are referred to as pseudorange measurements or pseudorange
observables (see Figure 6). Given the emergence of this unknown, an additional satellite
is required to solve the navigation equations. Consequently, a total of four satellites in
view is required to solve the position estimation problem.

Figure 6: Illustration of the rationale behind GNSS positioning and the effect of unknown
receiver clock offset, from [33].

GNSS satellites transmit signals in two or more frequencies that belong to the L band.
According to the Institute of Electrical and Electronics Engineers (IEEE), the L band
covers the radio spectrum frequencies from 1 to 2 gigahertz (GHz). These are at the top
end of the Ultra High Frequency (UHF) band and at the lower end of microwave frequen-
cies. Transmitted signals contain ranging codes and navigation data. The description of
the characteristics of GNSS navigation signals is out of the scope of this research. We
would like to, however, devote this paragraph to the frequency band allocation in Radio
Navigation Satellite Systems (RNSS), which can be found in Figure 7, extracted from
[34]. Let us first define GPS, Galileo and GLONASS as the GNSS systems owned by the
United States, Europe and Russia, respectively. Two bands are worldwide available in
the region allocated to the Aeronautical Radio Navigation Service (ARNS). The first one
corresponds to the upper L band and contains GPS L1, Galileo E1 and GLONASS G1.
The second one corresponds to the bottom of the lower L band and contains GPS L5 and
Galileo E5, with E5a and L5 coexisting in the same frequencies. The remaining GPS L2,
GLONASS G2 and Galileo E6 signals were only allocated to RNSS and correspond to
intermediate bands, which are more vulnerable to interferences [34].

The previous paragraph is essential to understand the concept of multi-band (also called
multi-frequency) GNSS techniques, which allow to simultaneously process signals from
different frequency bands. These techniques bring several advantages. For instance, in
situations where the system is suffering from interferences such as jamming or spoofing,
it might happen that one of the frequency bands used by the receiver is interference-
free. Also, the use of different bands allows to cancel ionosphere and troposphere delays.

20



Figure 7: GPS, Galileo and GLONASS navigational frequency bands, from [34].

Furthermore, ambiguity resolution techniques may be improved with the use of more
frequencies when combining GNSS measurements (narrow and wide-lane combinations)
[35]. All in all, the more measurements are available, the better performance we can
achieve. Also, some signals such as L5 have better transmission power, providing better
Signal-to-Noise Ratio (SNR) values. In [36], they give insight into the design of GNSS
multi-band antennas.

Finally, we would like to present which is the general architecture of a standard GNSS
receiver (see Figure 8, extracted from [33]). It is of our interest to provide the reader
with this image because we would like to highlight that the stage at which the algorithms
proposed in this research are run is at the very end of the chain, at the navigation module.
The output of the proposed techniques corresponds to the final chain output, with all the
information required by the user: its time and position. A description of the functionalities
of each module within the architecture is out of the scope of this Master Thesis.

Figure 8: General architecture of a standard GNSS receiver, from [33], including the (a) front
end and acquisition module, (b) the tracking module and (c) the navigation module, which

outputs the user time and position.

A detailed description of the characteristics (i.e., number of satellites in orbit, coverage,
bit rate) of the different GNSS constellations (GPS, Galileo, GLONASS, BeiDou, IRNSS)
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is out of the scope of our study. The interested reader may find valuable information
regarding this topic in several of the book references provided in this document, such as
[3], [30], [37] and [38].

2.2 Single Constellation Standard Positioning Point (SPP) Solu-
tion

This subsection aims to describe how single-frequency code-based positioning is performed
when computing the Standard Positioning Point (SPP) solution. It is possible to obtain
the position coordinates of a receiver p = [x, y, z]T and its clock bias δt if pseudorange
measurements of at least four satellites in view are available.

First of all, a comment regarding the notation used in this section is needed. We introduce
two receivers (also called users), which we refer to as the reference user m and the cooper-
ative user n. Expressions such as (1) are particularized for one specific user. For example,
P k
m denotes the pseudorange measurement between user m and satellite k. Although this

section could also be understood without particularizing for a specific user, we have found
interesting to introduce the notation from Section 4 early in the document.

2.2.1 Pseudorange Measurements Model

P k
m and P k

n are the pseudorange code measurements of the reference user m and the
cooperative user n with respect to satellite k, being the satellites indexed by k = 1, . . . , K.
P k
m and P k

n are non-linear functions of the parameter vectors γm and γn, being γ =[
pT, cδt

]T. The pseudorange measurements of receiver m with respect to satellite k can
be expressed as

P k
m = ρkm + c

(
δtm − δtk

)
+ ηkm, (1)

being
ηkm = c∆T k

m + c∆Ikm + ϵkm, (2)

where ∆T k
m and ∆Ikm are the non-dispersive tropospheric delay and the frequency-dependent

ionospheric delay terms, respectively. These errors can be estimated and subtracted from
the pseudorange measurements in order to mitigate their impact on the error term ηkm.
The term ρkm is defined in (3) and corresponds to the geometric range between receiver m
and satellite k.

On the one hand, single-frequency users rely on ionospheric correction models such as
Klobuchar in the case of GPS and Nequick in the case of Galileo. On the other hand, multi-
frequency users are able to cancel the ionospheric delay with the so-called ionosphere-free
combination of GNSS measurements [39]. Single-frequency users do not rely on ionospheric
corrections when DGNSS augmentation techniques are used, such as Classical DGNSS or
Real Time Kinematic (RTK). With Single Differentiation (SD) and Double Differentiation
(DD) techniques in short baseline scenarios the tropospheric and ionospheric delay terms
are cancelled and consequently there is no need to estimate them.
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Figure 9: Direction of the Line of Sight (LOS) vector, from [40]. In this figure, uSr corresponds
to the LOS vector from receiver r to satellite S. In our notation, we denote LOSk

m as the LOS
vector from receiver m to satellite k.

In (2), the error term ϵkm ∼ N (0, σ2
m) takes into account errors from various sources

such as multipath, ephemeris and relativistic effects. It is considered that fore a same
receiver the realizations of this error are independent and identically distributed (i.i.d.)
for different satellites.

2.2.2 Geometric Range Linearization

The non-linearity of the pseudorange expression in (1) comes from the geometric range
ρkm, which does not include the clock biases and can be defined as

ρkm =
∥∥pm − pk

∥∥ =
√

(xm − xk)2 + (ym − yk)2 + (zm − zk)2, (3)

where pm and pk are the receiver and satellite position Earth-Centered, Earth-Fixed
(ECEF) coordinates, respectively. Coordinate systems used in GNSS are later defined in
Section 4. The satellite coordinates are sent by the satellite to the receiver in the navigation
message. The geometric range measurements and clock biases can be put together in the
function h(γm), which already contains the contribution of theK satellites, as we have one
available pseudorange measurement per satellite in view. The linearization of this function
with respect to the vector γm can be obtained by applying the first Taylor expansion as

h(γm) =

 ρ
1
m + c(δtm − δt1)

...
ρKm + c(δtm − δtK)

 ≈ h(γ0,m) +H(γm − γ0,m), (4)

where γ0,m is the value of γm at which the function h(γm) is linearized. The calculation
of the H matrix can be performed as
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H =
∂h(γ)

∂γ

∣∣∣∣
γ=γ0,m

=


∂h1(γ)
∂γ
...

∂hK(γ)
∂γ


∣∣∣∣∣∣∣∣
γ=γ0,m


∂(ρ1m+c(δtm−δt1))

∂γ
...

∂(ρKm+c(δtm−δtK))
∂γ


∣∣∣∣∣∣∣∣
γ=γ0,m

, (5)

where the subindex m in γm is avoided for simplicity. The gradient of h(γ) with respect
to the vector γ can be calculated as

H =


∂h1(γ)
∂xm

∂h1(γ)
∂ym

∂h1(γ)
∂zm

∂h1(γ)
∂cδtm

...
∂hK(γ)
∂xm

∂hK(γ)
∂ym

∂hK(γ)
∂zm

∂hK(γ)
∂cδtm


∣∣∣∣∣∣∣∣
γ=γ0,m

, (6)

where the subindex m in γm is again avoided for simplicity. To obtain the values of the
gradient in (6), we calculate the partial derivatives of hk(γ) with respect to the position-
related variables as

∂hk(γ)

∂xm
=
∂
(√

(xm − xk)2 + (ym − yk)2 + (zm − zk)2
)

∂xm

=
2(xm − xk)

2
√

(xm − xk)2 + (ym − yk)2 + (zm − zk)2
=

−(xk − xm)

ρkm
.

(7)

This result applies for the three coordinates xm, ym and zm. It can be expressed as a
function of the LOSk

m vector, which if defined from the receiver m to the satellite k can
be expressed as [41]

LOSk
m =

[xk − xm, y
k − ym, z

k − zm]

ρkm
. (8)

The definition of the LOS vector direction is important because it affects the order of the
terms in the subtraction. In Figure 9, from [40], uSr corresponds to the LOS vector from
receiver r to satellite S.

The partial derivative of hk(γ) with respect to the code bias is computed as

∂hk(γ)

∂cδtm
=
∂
(
c(δtm − δtk)

)
∂cδtm

= 1, (9)

which reminds us that actually the clock bias term is linear in the pseudorange expression.
Taking all the aforementioned results into account, the H matrix can be expressed as
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H =

−LOS1
m 1

...
...

−LOSK
m 1

 . (10)

Finally, we can express the pseudorange code measurements of receiver m as

Pm ≈ h(γ0,m) +H(γm − γ0,m) + ηm =

ρ
1
m,0
...

ρKm,0

+

−LOS1
m 1

...
...

−LOSK
m 1



δx
δy
δz
cδtm

+

η
1
m
...
ηKm

 , (11)

where δx = xm − x0, δy = ym − y0 and δz = zr − z0. There is no differential of δt because
this term was already linear. Another way of justifying this is that the contribution of δt
in h(γ0), δt0, is cancelled with the term δt0 found in δ (δt) = δt− δt0.

2.2.3 Observation Model

The expression in (11) can be rearranged in order to obtain a linear model which allows
to estimate the position solution from the following linear equation

Pm − h(γ0,m) = H(γ − γ0,m) + ηm. (12)

This observation model resembles the ones presented in (25) and (30) for the two proposed
algorithms. It is necessary to state in a very clear manner the expression of the observation
model, and also the probability distribution of the observations, so that the LSE can be
derived in a straightforward manner.

2.2.4 Iterative LSE

The presented linear model can be solved by a standard Iterative Least Squares Estimator
(LSE) as

γ̂j+1
m = γ̂j

m +
(
HTH

)−1
HT

(
Pm − h(γ̂j

m)
)
. (13)

The iterative solution can be initially approximated as γ̂0,m = 0, meaning that the initial
guess of the estimator is located at the center of the Earth. After convergence, this yields
to the estimator γ̂m. The matrix

(
HTH

)−1
HT is known as the pseudo-inverse of H or

LSE solution matrix and has a dimension of 4 ×K, being K the number of satellites in
view, for the single-constellation case described in this thesis.

In Section 3.3.4, some thinking regarding the LSE as part of the navigation solution is
provided.
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2.2.5 Dilution of Precision

The LSE solution matrix H depends on the relative geometry of the user and satellite
positions that are involved in the computation of the estimator solution. The Dilution of
precision (DOP) is a term used in satellite navigation to specify the error propagation as a
mathematical effect of this relative geometry [30]. Although this metric is not further used
to evaluate the proposed algorithm, we consider relevant to introduce it in the background
section because it can be inferred from the LSE solution matrix, which is a very important
matrix in most of the thesis mathematical derivations.

If assuming that the pseudorange errors are i.i.d., jointly Gaussian and with zero mean,
their covariance can be modeled, as a function of H, as

cov(δx̂) = (HTH)−1σ2
UERE =


σ2
x σ2

xy σ2
xz σ2

xt̂

σ2
xy σ2

y σ2
yz σ2

zt̂

σ2
xz σ2

yz σ2
z σ2

zt̂

σ2
xt̂

σ2
yt̂

σ2
zt̂

σ2
t̂

 , (14)

where δx̂ corresponds to the error of the solution parameters x̂ = (x, y, z, c · δt)T , with
the receiver position expressed in local East, North, Up (ENU) coordinates.

The term σ2
UERE corresponds to the User Equivalent Range Error (UERE) variance, which

is the umbrella term for error sources such as the satellite clock, upper atmosphere (iono-
sphere), receiver clock, satellite orbit, lower atmosphere (troposphere) and multipath. The
DOP is a parameter without units used to describe the satellite geometry and UERE is the
total sum of errors involved in satellite communication expressed as the unit of distance.
These two metrics can be used to evaluate the performance of a positioning algorithm
such as in [42].

The DOP gives a measure of the global quality of the obtained solution as the sum
of the combinations of variances per component [38]. Some of the combinations that are
commonly used to describe the expected precision per component are the Geometric DOP
(GDOP), the Position DOP (PDOP), the Horizontal DOP (HDOP), the Vertical DOP
(VDOP) and the Time DOP (TDOP). In cases where the position cannot be determined
due to geometric singularities, the DOP values are infinitely large. For example, the GDOP
can be computed as

GDOP =

√
σ2
x + σ2

y + σ2
z + σ2

t̂

σUERE
. (15)

Moreover, there has been studies to investigate the use of the DOP metric to perform se-
lection of satellites in GNSS positioning algorithms [43]. In general, increasing the number
of satellites considered in the algorithm improves the positioning accuracy and increases
availability. However, it reduces the positioning accuracy improvement rate and increases
calculation loads. An appropriate satellite selection method is required and some litera-
ture proposes the use of HDOP and VDOP measurements with this purpose [44]. Other
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metrics can be taken into account to perform satellite selection, such as the signal level
[45].

2.2.6 Weighted Least Squares Estimator

If assuming that the UEREs of all satellites that contribute to the position solution are
i.i.d., the model could lead to a sub-optimal solution in the position estimation. In order
to avoid this, the pseudoange errors are modeled as Gaussian with a covariance matrix
V, which can be described by different models based on different aspects such as the
noise level and elevation of the satellites. From this matrix, a weighting matrix can be
calculated as W = V−1. If the weighting matrix is introduced to the LSE solution in (13),
the new iterative solution is obtained from a Weighted Least Squares (WLS) estimator as

γ̂j+1
m = γ̂j

m +
(
HTWH

)−1
HTW

(
Pm − h(γ̂j

m)
)
. (16)

In the case of V = σ2
UEREIK , the presented solution is again the one found in (13), with-

out the need of a weighting matrix W. For single-frequency positioning algorithms, the
pseudo-range errors are dominated by the residual ionospheric delays. When the iono-
spheric errors are estimated using methods as Klobuchar or NeQuick, residual errors are
highly correlated for all satellites involved in the solution. This is the reason why previous
literature has emphasized on the modeling of matrix V, which is a relevant object of study
[46].

In most cases, the strength of each satellite signal is monitored in order to model W [33].
The interested reader may find a valuable summary on signal strength monitoring tech-
niques in [47]. In our implementation, we are assuming that we have complete knowledge
of the weighting matrix in the LSE estimator.

2.3 Classic Single Differentiation of Pseudorange Measurements

We use the term DGNSS to refer to the classical DGNSS algorithm, which is based on
Single Differenciation (SD) of pseudorange measurements. In other literature, this term
sometimes refers to other GNSS Augmentation systems such as RTK or Wide Area RTK
(WARTK).

2.3.1 Differential GNSS (DGNSS)

In DGNSS applications, the position and clock bias of the reference receiver are unknown.
However, it is assumed that they are known with high precision for another receiver which
we refer to as reference station or base station. Ideally, the reference station is located
near the receiver whose position wants to be estimated. This way, the ionospheric and
tropospheric errors are similar between the two receivers and their contribution can be
cancelled. The distance between the reference receiver and the reference station is known
as baseline. When the baseline is under 10 km it is considered that the setup is under short
baseline conditions. As the position and clock bias of the reference station are known,
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the unknown parameter vector associated to the reference receiver can be successfully
estimated when the pseudoranges of both users are combined.

The main objective of techniques using SD of pseudorange measurements such as DGNSS
is to cancel, or at least mitigate, the sources of error listed in Table 1 (from [30], Chap-
ter 5.8). The potential error size from these sources, as well as the resulting error after
mitigating these sources with DGNSS are also provided in this table. We can see how the
use of DGNSS is successful in the task of improving the accuracy of GNSS positioning
algorithms.

Nevertheless, it is relevant to highlight that for a DGNSS implementation, the commu-
nication with a reference station that knows its coordinates with very high precision is
needed. This is the weakness of DGNSS that we are trying to improve with the techniques
proposed in this paper.

Table 1: Error sources that techniques using Single Differentiation (SD) of pseudorange
measurements aim to mitigate (from [30], Chapter 5.8). An orientative value of the potential

error size and mitigation with DGNSS is provided. Single-frequency receiver under short
baseline scenario is assumed.

Error Source Potential Error (in meters) Error after SD (in meters)
Satellite Clock 2 0

Satellite Ephemeris Prediction 2 0.1
Ionospheric Delay 2-10 0.2

Tropospheric Delay 2.5 0.2

There are some sources of error that DGNSS techniques cannot mitigate because they are
uncorrelated between receivers, or even between antennas of a same receiver. The latter is
the case of errors introduced by multipath propagation. These errors are out of the scope
of this research.

Lastly, and as previously mentioned in Section 1, real-time DGNSS users usually use an
RTCM standard format for data communication with the reference station [30] (Chapter
5.8). This standard corresponds to the RTCM SC-104, which was established in 1994.
RTCM defined data messages and also an interface between the DGNSS receiver and the
base station.

2.3.2 Mathematical Derivation

In this section, the reference receiver is referred to as receiverm, while the reference or base
station is referred to as receiver n. It is essential to not be mistaken by the nomenclature,
as the reference receiver is not a reference station. The reference receiver coordinates are
not known and our objective is to estimate them, while the coordinates of the reference
or base station are known in a precise manner.

According to (11), and as it has been previously explained, the pseudorange code mea-
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surements of the reference user m can be expressed as

P k
m = ρkm + c

(
δtm − δtk

)
+ ηkm, (17)

being
ηkm = c∆T k

m + c∆Ikm + ϵkm. (18)

In the same manner, the pseudorange code measurements of the cooperative user n can
be expressed as

P k
n = ρkn + c

(
δtn − δtk

)
+ ηkn. (19)

In order to perform SD of the pseudorange code measurements of users m and n, we
subtract these expressions as

∆P = P k
m − P k

n = rk + c (δtm − δtn) + ηkm − ηkn, (20)

where rk = ρkm − ρkn. We can see that the satellite clock bias term is cancelled due to
differentiation, as well as the ionospheric and tropospheric delay terms c∆T k

m + c∆Ikm.
The cancellation of atmospheric delay terms happens in short baseline scenarios, meaning
that the reference user and the base station are at most 10 km far from each other. With
two receivers separated by 25 km, the differential ionospheric delay is not cancelled. We
can assume in these cases the delay to be typically at 10-20 cm level. This difference can
increase up to 1 m with 100 km of baseline [30] (Chapter 5.8). DGNSS accuracy is in
the order of 1 meter (1 sigma) for users in the range of few tens of kilometers from the
reference station.

2.4 Contribution and Hypothesis

As it has been stated in this section, DGNSS uses Single Differentiation (SD) of pseudo-
range code measurements to enhance GNSS by correcting error sources listed in Table 1.
As seen in this table, the error mitigation provided by DGNSS is very powerful because
it reduces high errors to up to very few centimeters. This is the reason why access to
DGNSS correction information makes differential GPS and GNSS receivers much more
accurate than other receivers. A simple graphic proposal for a DGNSS scenario can be
found in Figure 10 (left subfigure).

Having understood how beneficial DGNSS is for GNSS receivers, it is time to introduce
the contribution that we aim to provide with this research. Our objective with this thesis is
to derive and implement a method that provides a performance enhancement comparable
to the one provided by DGNSS without the need of DGNSS corrections, or equivalently,
without the need of precise knowledge about the position of a reference station.

The hypothesis posed in this research states that it is possible to increase GNSS accuracy
with corrections provided by N cooperative users that have partial knowledge of their
positions. We will assume that we are provided with noisy observations of their position
and clock bias vectors γn.
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2.4.1 Novelty

We consider that the algorithms proposed in this research are novel. There is a large
amount of literature on the use of GNSS pseudorange measurements for cooperative posi-
tioning in scenarios with N users. However, most of these publications do not explore the
use of differentiation (single or double) of measurements between the N users or, if they
do, the position estimation algorithms are more complex and require more steps, such as
the one proposed in [25].

In [25], they propose a CP algorithm that uses differentiation of pseudorange measure-
ments between N users. However, their approach is different to ours, as it requires the
implementation of two algorithms. With the first algorithm, they introduce a ranging
technique based on Double Differentiation (DD) of pseudorange measurements, which is
used to detect inter-user distances. The second algorithm relies on the inter-user distances
estimated with the first algorithm and also on inaccurate pseudorange measurements. A
constrained nonlinear optimization problem is formulated by maximizing the PDF of the
GPS fix error constrained to a road space constraint.

The inputs of the technique proposed in [25] match the ones of the Massive User-Centric
Single Differentiation (MUCSD) algorithm that is proposed for this Master Thesis. These
inputs are, first, noisy GPS fix values (which we refer to as noisy position and clock bias
observations) and, second, inaccurate GNSS pseudorange measurements. The technique
proposed in [25] is more complex because it needs the implementation of two separate
algorithms and also uses DD instead of SD, which has a higher computational cost. Fur-
thermore, the position estimation solution that we are proposing is closer to the navigation
filter solution in standard GNSS receivers, with a Weighted Least Squares (WLS) estima-
tor.

The first objective of this Master Thesis is to find whether it is possible to achieve DGNSS
performance by increasing the value of N . The second objective is to, once DGNSS per-
formance is achieved, try to find how the noise in cooperative user positions affects the
performance of our technique. With this purpose, it is required to perform several exper-
iments.
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3 Proposed GNSS Cooperative Positioning Algorithm
The contribution of this research is hereafter developed. In this section, the proposed
algorithms are mathematically derived.

3.1 Motivation of the UCSD and MUCSD algorithms

We first propose the User-Centric Single Differentiation (UCSD) (see Figure 10, center)
algorithm, which differs from Differential GNSS (DGNSS) (see Figure 10, left) because the
coordinates of the additional user, or station, are known with an error instead of with very
high precision. With UCSD and DGNSS we achieve the cancellation of the tropospheric
and ionospheric delays in short baseline scenarios. However, with UCSD the performance
is worse due to the coordinates of the additional user being noisy, which increases the
estimation error.

To solve this, the Massive User-Centric Single Differentiation (MUCSD) algorithm is
proposed (see Figure 10, right), where N cooperative users are introduced to the scenario.
The diversity in users increases available information and thus the algorithm performance.
With MUCSD, it is shown that it is possible to obtain accurate positioning results if the
positioning error of the cooperative users is not too high.

GPS, BeiDou, Galileo, 

GLONASS, IRNSS

User m Base Station

(Knowledge of precise coordinates)

DGNSS 

Corrections

User m User n

(Knowledge of noisy coordinates)

UCSD Input

User m User n1

(Knowledge of noisy coordinates)

User n2

User nN

UCSD Input

Differential GNSS

(DGNSS)

User-Centric Single Differentiation

(UCSD)

Massive UCSD

(MUCSD)

Figure 10: Simple description of (from left to right) a standard DGNSS scenario and the
scenarios proposed for a system using User-Centric Single Differentiation (UCSD) and Massive

UCSD (MUCSD), respectively.

With the UCSD algorithm, we propose to perform Single Differentiation (SD) of pseu-
dorange measurements between a reference user m and an additional user n. The aim of
the algorithm is to estimate the position and clock bias of user m, γm = [pT

m, cδtm]
T. The

proposed technique differs from DGNSS because with UCSD we do not have a reference
or base station, whose position and clock bias are known with high precision. Instead,
noisy observations are available as γ̄n = [p̄T

n , c
¯δtn]

T, where the bar operator denotes that
the values do not correspond to the actual position and clock bias of user n. Taking this
into account, we can state that the UCSD is tackling a more challenging problem than
DGNSS because with UCSD we are missing the high precision provided by a base or
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reference station. As the observations are noisy and not precise, the station, which would
correspond to user n, is now referred to as a cooperative user. In Figure 10, we can see
a very simple description of the differences between a DGNSS system scenario and the
setup for the proposed UCSD.

It is relevant to highlight that with the UCSD and MUCSD algorithms the objective is to
estimate the parameter vector γm. It is not of our interest to estimate the position and
clock bias of the N cooperative users in this section. This is the reason why we refer to
the proposed technique as Massive User-Centric Single Differentiation.

An Iterative Least Squares Estimator (LSE) is proposed for each algorithm, together with
their respective variance lower bounds, which have been calculated with the Cramér–Rao
bound (CRB). In Table 2, the two estimators are listed together with a quick link to the
most relevant equations of their mathematical derivation.

Table 2: Estimators proposed with the UCSD and MUCSD algorithms, which correspond to the
main contribution of this research. A link to the observation model, error covariance matrix,
Iterative LSE and variance lower bound (CRB) of the estimators is provided in this table.

Notation Observation Model Error Cov Iterative LSE CRB
γ̂UCSD
m Eq. (25) Eq. (26) Eq. (28) Eq. (27)

γ̂MUCSD
m Eq. (30) Eq. (35) Eq. (45) Eq. (41)

Table 3: Description of the experiments conducted to test the performance of the UCSD and
MUCSD algorithms.

ID Tested Algorithm Experiment-dependent parameter values
A UCSD Table 7
B MUCSD Tables 8 and 10
C MUCSD Table 11

3.2 User-Centric Single Differentiation (UCSD)

In this subsection, the model for UCSD, with 1 cooperative receiver, is mathematically
derived. The UCSD algorithm estimator is denoted as γ̂UCSD

m and it is defined in Section
3.2.4. The lower bound on the variance of the proposed estimator can be found in Section
3.2.3.

3.2.1 Observation Model

The observation model for the SD between the reference receiver and a cooperative re-
ceiver that provides noisy observations of its state vector is formulated in this subsection.
According to (11), the pseudorange code measurements of the reference user m can be
expressed as
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Pm = h(γm) + ηm ≈ h(γ0,m) +H(γm − γ0,m) + ηm. (21)

where γm = [pT
m, cδtm]

T contains the unknown parameters to be estimated and γ0,m

corresponds to the point at which the measurements Pm are linearized when applying the
first-order Taylor expansion. The error terms ηkm = c∆T k

m+c∆Ikm+ϵkm and ϵkm ∼ N (0, σ2
m)

have been previously defined in Section 2.

As it has been previously stated, it is assumed that the position and clock bias of
the cooperative user n are known with an error. This error can be modeled as ηγn

∼
N (0, σ2

γn
I4), with dimension 4× 1. The noisy observations of user n can be expressed as

γ̄n = [p̄T
n , cδt̄n]

T = γn+ηγn
∼ N (γn, σ

2
γn
I4), where γn is the true value of the parameter

vector. The pseudorange code measurements of the cooperative user n can therefore be
approximated by the first-order Taylor expansion as

Pn = h(γn) + ηn ≈ h(γ̄n) +H(γn − γ̄n) + ηn = h(γ̄n) +Hηγn
+ ηn, (22)

where Pn is linearized with respect to the point γ̄n so that the error term ηγn
shows

in the equation and its contribution to the covariance matrix can be calculated in a
straightforward manner.

For simplicity, it can be assumed that the LOS vectors are approximately the same in the
case of the two receivers due to the geometry of the problem. Therefore, it is considered
that the H matrices in (21) and (22) are approximately the same. Considering this ap-
proximation and combining these two equations, the SD of code measurements between
receivers m and n can be expressed as

∆ρm,n = Pm −Pn ≈ h(γ0,m) +H(γm − γ0,m)− h(γ̄n) + ϵm,n, (23)

where the tropospheric and ionospheric delays have been cancelled in the error term
ϵm,n = ϵm − ϵn − ϵγn

, being ϵγn
= Hηγn

∼ N (0, σ2
γn
HHT). The cancellation occurs due

to the differentiation between two users in a short baseline scenario (distances under 10
km).

The components of vector ϵm,n are

ϵm,n =

ϵ
1
m
...
ϵKm

−

ϵ
1
n
...
ϵKn

−

−LOS1
m 1

...
...

−LOSK
m 1



ηxn

ηyn
ηzn
ηcδtn

 =

ϵ
1
m
...
ϵKm

−

ϵ
1
n
...
ϵKn

−

 ϵ
1
γn...
ϵKγn

.

 , (24)

where ϵkm ∼ N (0, σ2
m) and ϵkn ∼ N (0, σ2

n).

A linear observation model can be built from (23) as follows

ym,n = ∆ρm,n − h(γ0,m) + h(γ̄n) = H(γm − γm,0) + ϵm,n. (25)
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These observations can be modeled as ym,n ∼ N (µm,n, Σm,n), where µm,n = Hγm if the
term Hγm,0 is moved to the left side of (25). Also, Σm,n = E

[
ϵm,nϵ

T
m,n

]
, which corresponds

to the error covariance matrix.

3.2.2 Error Covariance Matrix

When computing the SD of measurements between two users, the variance of the resulting
code error term ϵm − ϵn is the sum of each code error variance. It is considered that
ϵkm ∼ N (0, σ2

m), ϵkn ∼ N (0, σ2
n) and σm = σn. Also, it is assumed that the error terms are

i.i.d. between receivers and also between satellites of a same receiver. Therefore, the error
covariance matrix can be expressed as

Σm,n = Σm −Σn −Σγn = 2σ2IK + σ2
γn
HHT. (26)

Heatmap figures created from Σm,n for different values of σγn
and σ = 1 meter are shown

in Figure 19.

3.2.3 CRB

The CRB can be used to find the lower bound on the variance of the unbiased estimator
of each element in γm. The estimator of the i-th element is denoted as

[
γ̂UCSD
m

]
i
, and its

CRB corresponds to the [i, i] element of the FIM inverse as

var
([
γ̂UCSD
m

]
i

)
≥ CRB

([
γ̂UCSD
m

]
i

)
=

[(
IUCSD(γm)

)−1
]
ii
=

[
(HTΣ−1

m,nH)−1
]
ii
. (27)

The mathematical derivation that leads to the expression in (27) can be inferred from
the one provided in Section 3.3.3 for the MUCSD algorithm. The definition of the Fisher
Information Matrix (FIM) is also provided later. In this case, the FIM is denoted as IUCSD

because it is calculated with a likelihood function that describes the observation model
in (25), which only contains the contribution of one user pair. Therefore, it differs from
the FIM denoted as IMUCSD from (40).

3.2.4 Iterative LSE

As explained in Section 3.3.4, due to the non-linearity in the pseudorange measurement
expression, it is necessary to solve the estimator iteratively by linearizing the function
at some initial guess γ0,m. A new estimate can be computed as indicated in (28), where
Wm,n = Σ−1

m,n. The matrix Wm,n changes at every iteration because it depends on matrix
H, which also depends on the iteration. More details regarding the Iterative LSE derivation
can be found for the MUCSD algorithm in Section 3.3.4. The mathematical derivation
that leads to (28) can also be inferred from that section.

γ̂j+1,UCSD
m =

[
p̂m

j+1

c ˆδtm
j+1

]
=

[
pj
m

0

]
+ (HjTWj

m,nH
j)−1HjTWj

m,ny
j
m,n (28)
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3.2.5 Motivation for the Extension to N Cooperative users

The results and discussion provided in Section 5.2.1 suggest that there is a great motiva-
tion to extend this model to its massive version with N ≥ 1.

3.3 Massive User-Centric Single Differentiation (MUCSD)

In this subsection, the model for the MUCSD algorithm, with N cooperative receivers,
is mathematically derived. The MUCSD algorithm estimator is denoted as γ̂MUCSD

m and
it is defined in Section 3.3.4. The lower bound on the variance of the proposed estimator
can be found in Section 3.3.3.

3.3.1 Observation Model

The parameter vector to estimate is γm, which is associated to the reference receiver m.
The vector γn is associated to a cooperative receiver n, where n = 1, . . . , N , being N the
number of available cooperative receivers and thus the number of available user pairs to
perform massive differential positioning. Consequently, the total number of users in the
scenario is N + 1. The model in (25) can be expanded to the case of N user pairs in a
straightforward manner as

y =


ym,1

ym,2
...

ym,N

 =


∆ρm,1

∆ρm,2
...

∆ρm,N

− 1N×1 ⊗ h(γ0,m) +


h(γ̄1)
h(γ̄2)

...
h(γ̄N)

+Aγ0,m

= Aγm +


ϵm,1

ϵm,2
...

ϵm,N

 ,
(29)

where A = 1N×1⊗H. Again, due to the geometry of the problem, it can be assumed that
the H matrices are approximately the same for all the users. Considering that Γ̄1:N =[
γ̄1 γ̄2 . . . γ̄N

]T, the extended observation model can be expressed as

y = ∆ρ− 1N×1 ⊗ h(γ0,m) + h(Γ̄1:N) = A
(
γm − γ0,m

)
+ ϵ. (30)

These observations can be modeled as y ∼ N (µ, Σ), where µ = Aγm if the term Aγ0,m

is moved to the left side of the expression in (30). The error covariance matrix corresponds
to Σ = E[ϵϵT]. The mathematical expression used to compute this matrix is derived in
the following subsection, as it differs from the one obtained with the UCSD algorithm in
Section 3.2.2.

3.3.2 Error Covariance Matrix

With MUCSD, the measurements of the cooperative users are combined with the mea-
surements of the reference user N times, as we have a total of N user pairs. This adds
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more correlation to the error covariance matrix Σ, which now is colored not only by the
noise term ϵγn

= Hηγn ∼ N (0, σ2
γn
HHT) but also by the combination of the pseudor-

ange code errors of users m and n. In the following lines, we are calculating which is the
contribution of this correlation to the error covariance matrix.

First, the resulting error term from the extended observation model in (30) must be
properly defined. The error vector ϵ can be expressed as

ϵ =

ϵm...
ϵm

−

ϵ1
...
ϵN

−

Hηγ1
...

HηγN

 = 1N×1 ⊗ ϵm − ϵ1:N − (IN ⊗H)ηγ1:N
. (31)

Therefore, the error covariance matrix has dimension NK × NK and can be calculated
as

Σ = E[ϵϵT] = E[(1N×1 ⊗ ϵm)(1N×1 ⊗ ϵm)
T] (a)

− E[ϵ1:NϵT1:N ] (b)

− E[((IN ⊗H)ηγ1:N
)((IN ⊗H)ηγ1:N

)T] (c) .

(32)

Each of the three terms that appear in (32) are derived in the following lines. They
describe the contribution to Σ of the pseudorange code error of the reference user m, in
(32) (a), the pseudorange code error of the cooperative receivers n = 1, . . . , N , in (32)
(b), and the error from the coordinates provided by the cooperative users, in (32) (c).

Regarding the first term, (32) (a), and considering that the code error of the reference
receiver m is modeled as ϵm ∼ N (0, σ2

mIK), we have that

E[(1N×1 ⊗ ϵm)(1N×1 ⊗ ϵm)
T] = E[(1N×1 ⊗ ϵm)(1

T
N×1 ⊗ ϵTm)] =

E[(1N×11
T
N×1)⊗ (ϵmϵ

T
m)] = JN×N ⊗ E[ϵmϵTm] = JN×N ⊗ σ2

mIK ,
(33)

where JN×N is the all-ones matrix with dimension N × N . Regarding the second term,
(32) (b), and if it is assumed that the code errors are i.i.d. between cooperative receivers
and also between satellites of a same receiver, the error vector ϵn can be modeled as
ϵn ∼ N (0, σ2

nIK). It is also assumed that σ2
n has the same value for all the cooperative

receivers. Consequently, the term (32) (b) can be developed as E[ϵ1:NϵT1:N ] = σ2
nINK , which

matches with the dimension of Σ being NK ×NK.

Finally, regarding the third term and assuming that the position errors of the different
cooperative users are identically distributed, which means that the accuracy of their po-
sitioning algorithms is the same (σ2

γn has the same value for all cooperative users), and
also that they are independent, the third term, (32) (c), can be developed as
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E[((IN ⊗H)ηγ1:N
)((IN ⊗H)ηγ1:N

)T]

= E
[
Hηγ1 · · · HηγN

]
]T
[
Hηγ1 · · · HηγN

]
]

= E[(IN ⊗H)ηγ1:N
ηT
γ1:N

(ITN ⊗HT)]

= (IN ⊗H)E[ηγ1:N
ηT
γ1:N

](ITN ⊗HT)

= σ2
γnIN ⊗HHT.

(34)

Taking into account all these expressions, and if σm = σn = σ, the error covariance matrix
of the Massive SD model can be expressed as

Σ = σ2(JN×N ⊗ IK + INK) + σ2
γnIN ⊗HHT. (35)

Heatmap figures created from Σ for K = 6 satellites, N = 3 cooperative users, σ = 5 and
σγn = [0, 5] meters are shown in Figures 20 and 21.

3.3.3 CRB

The observation model that we have is the one in (30) and the parameter vector to
estimate corresponds to γm. The lower bound on the estimator γ̂MUCSD

m is derived by
computing the inverse of the Fisher Information Matrix (FIM), which is calculated as

IMUCSD(γm) = −E
[
∂2 ln f(y|γm)

∂γm∂γ
T
m

]
, (36)

where the likelihood function that describes the joint probability of the observation data
y ∼ N (µ, Σ) modeled in (30) as a function of the parameter vector γm can be expressed
as

f(y|γm) =
1√

(2π)N det(Σ)
exp

(
−1

2
(y −Aγm)

TΣ−1(y −Aγm)

)
. (37)

The log-likelihood function is calculated as

ln f(y|γm) = C − 1

2
(y −Aγm)

TΣ−1(y −Aγm)

= C − 1

2
(yTΣ−1y + γT

mA
TΣ−1Aγm − 2yTΣ−1Aγm),

(38)

where C = −1
2
ln
(
(2π)N det(Σ)

)
is a constant that does not influence the CRB deriva-

tion. If we compute the first derivative of the log-likelihood function with respect to the
parameter vector γm, we obtain
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∂ ln fγm
(y)

∂γm

= −1

2

(
2ATΣ−1Aγm − 2ATΣ−1y

)
. (39)

The 4 × 4 FIM with respect to the parameter vector γm, denoted as I(γm)
MUCSD, is

therefore obtained as

IMUCSD(γm) = −E
[
∂2 ln f(y|γm)

∂γm∂γ
T
m

]
= ATΣ−1A. (40)

As a result, a lower bound can be placed on the variance of the estimator of each element
in γm. The estimator of element i in γm is denoted as

[
γ̂MUCSD
m

]
i
. The CRB for element

i corresponds to the [i, i] element of the FIM inverse as

var
([
γ̂MUCSD
m

]
i

)
≥ CRB

([
γ̂MUCSD
m

]
i

)
=

[(
IMUCSD(γm)

)−1
]
ii
=

[
(ATΣ−1A)−1

]
ii
. (41)

According to [48] (p. 35), if the measurements provided by each pair of users are i.i.d.,
the CRB of each element may be calculated as

CRB
([
γ̂MUCSD
m

]
i

)
=

1

N
CRB

([
γ̂UCSD
m

]
i

)
=

1

N

[
(HTΣ−1

m,nH)−1
]
ii
, (42)

which corresponds to the CRB for the UCSD algorithm (see the expression in (27)) in-
versely weighted by the number of cooperative users in the scenario. As the measurements
provided by each pair of users are not independent because the measurements of the refer-
ence user are present in each SD combination. Consequently, the CRB must be computed
following the expression in (41).

3.3.4 Iterative LSE

The estimator γ̂MUCSD
m takes into account all the cooperative users added to the scenario

and can be obtained from the full matrix model found in (30). As this observation model
is linear, we can use a Least Squares Estimator (LSE) to estimate γm as

γ̂MUCSD
m = (1N×1 ⊗H)† y = A†y, (43)

where (·)† refers to the pseudoinverse, or the Moore-Penrose inverse, which can be defined
as A† = (ATA)−1AT. This expression can be obtained by minimizing the cost function
of γm, which we refer to as J (γm). As the observations are Gaussian and the model has
been linearized, the LSE can also be obtained by maximizing the likelihood function of
γm. This is equivalent to setting the expression in (39) to zero.

As it has been previously stated, the covariance matrix of the observation model error is
colored as Σ = σ2(JN×N⊗IK+INK)+σ

2
γnIN⊗HHT. As a consequence, a Weighted Least

Squares (WLS) problem needs to be solved and the estimator of γm can be computed as
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γ̂MUCSD
m = (ATWA)−1ATWy, (44)

where W = Σ−1. Due to the non-linearity in the pseudorange measurement expression,
this is a non-linear Least Squares problem. Consequently, it is necessary to solve the
estimator iteratively by linearizing the function at some initial guess γ0,m. A new estimate
can be computed as

γ̂j+1,MUCSD
m =

[
p̂m

j+1

c ˆδtm
j+1

]
=

[
pj
m

0

]
+ (AjTWjAj)−1AjTWjyj, (45)

where pj corresponds to the position estimated in the previous iteration. The matrix Wj

changes at every iteration because it depends on matrix A, which also depends on the
iteration. The LOS vectors in matrix Aj are calculated considering the distances between
the satellites and the estimated position pj. Also, yj is the Observed minus Computed
(O-C) value, also called prefit, of the observations and is calculated as (see also (30))

yj = ∆ρ− 1N×1 ⊗ h(γj
0,m) + h(Γ̄1:N) +Aγj

0,m

=

∆ρm,1
...

∆ρm,N

− 1N×1 ⊗ h(γj
0,m) +

h(γ̄1)
...

h(γ̄N)

+Aγj
0,m

=



∆ρ1m,1
...

∆ρKm,1
...

∆ρ1m,N
...

∆ρKm,N


−



h1(γj
0,m)

...
hK(γj

0,m)
...

h1(γj
0,m)

...
hK(γj

0,m)


+



h1(γ̄1)
...

hK(γ̄1)
...

h1(γ̄N)
...

hK(γ̄N)


+Aγj

0,m.

(46)

The value of the geometric range of the reference user m, ρ1:K(γj
0,m), is updated at every

iteration with the last estimated value of pj. The value of the geometric range of the
cooperative users, ρ1:K(γ̂1:N), is the same over all the WLS iterations because the infor-
mation regarding the position of the cooperative users is not updated. To compute these
geometric ranges, the small angle approximation is applied to the rotation of the Earth
during the signal transit time as suggested in (8.35) from [3].

The LSE, regardless of any probabilistic assumption made about the observations, corre-
sponds to the value of γ that minimizes the cost function J (γ). The method is equally
valid for Gaussian as well as non-Gaussian noise [48]. Nevertheless, the performance of the
method depends on the properties of the corrupting noise and the modeling errors. If the
observations belong to a Gaussian distribution and are i.i.d. and linear, the LSE is equiv-
alent to the Maximum Likelihood Estimator (MLE), which is asymptotically efficient. If
the observations are Gaussian but not i.i.d., the WLS is equivalent to the MLE.
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For the proposed observation model, the described WLS estimator is equivalent to the
MLE and therefore it is asymptotically efficient. It has been proven that the implemented
estimator is asymptotically efficient because the mean tends to zero and the variance to
the CRB throughout the Monte Carlo iterations. Also, due to the initial model being
non-linear, the model has been linearized and consequently it is needed to iterate the LS
solution. This is why we are working with an Iterative WLS algorithm.
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4 Methods
A general description of the setup used to conduct the experiments of this Master Thesis is
provided at the beginning of this section. In Table 4, the computational resources used for
the execution of our script are listed. After that, details regarding the simulator that has
been employed, which we have named MassiveCoop-Sim, are provided to the reader. In
Table 5, we can find a list of the modules implemented in our simulator. Finally, important
aspects in relation to the conducted experiments are given in the last subsection.

4.1 General Setup Description

The experiments described in this thesis have been conducted with the MATLAB version
0.9.11 (R2021b) [49]. Due to the high computational cost of some of the experiments, it
has been required to use the Discovery Cluster from Northeastern University, in Boston,
which is operated by the university’s Research Computing team. The Discovery cluster
is located in the Massachusetts Green High Performance Computing Center in Holyoke,
MA [2].

We have built a simulator which we refer to as MassiveCoop-Sim. This simulator is able
to generate a scenario with N users uniformly distributed within a spherically defined
space. It also computes the GNSS measurements of the N users in order to estimate their
positions. The main contribution of this research is included in an additional module of
the simulator, which aims to estimate the user positions in an enhanced manner with
respect to the widely known DGNSS technique.

The simulator in [3] is taken as a reference for the implementation of the initial modules
used in MassiveCoop-Sim. The initial modules cover the simulation of the scenario and the
acquisition of GNSS pseudorange measurements, for which the user and satellite positions
are needed in order to calculate the LOS vectors.

An accurate description of the modules that belong to MassiveCoop-Sim is later provided.
In this section we are only referring to the parameter values and simulator features that
are common for all the final experiments. The parameter values that are experiment-
dependent are provided together with their description and results in further sections.

4.1.1 Use of NEU’s Discovery Cluster

A description of the computational resources used for the execution of our .m scripts in
the Discovery cluster can be found in Table 4. It should be noted that the resources used
are not particularly powerful. This is because our purpose when using the cluster was to
be able to run several .m scripts in parallel in order to save time. An evaluation of the
computational efficiency of the code is not an object of study of this research. However,
this matter is included in Section 6 as it would be relevant if testing the algorithm in a
real scenario, for future stages of the project.
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Table 4: Computational resources used for the execution of our .m scripts in the Discovery
cluster from Northeastern University, Boston [2].

Description Size
RAM 10 GB
CPUs 1
Cores 2

Partition Size Small
Parallel Run Activated

4.2 MassiveCoop-Sim Simulator

The main modules of the MassiveCoop-Sim simulator are listed in Table 5. In the following
subsections, details about these modules are provided so that the reader can understand
which has been the procedure followed to implement the algorithms proposed in this
Master Thesis.

Table 5: Main modules of the MassiveCoop-Sim simulator, which takes as a reference the
simulator provided in [3].

Module ID Purpose
1 Build the N -users scenario.
3 Generate GNSS pseudorange measurements.
4 Benchmark (CRB calculation).
5 Estimate user positions with novel technique.
6 Plotting and Debugging.

4.2.1 GNSS Configuration

The GNSS configuration is first defined with parameters such as the number of satellites
in the constellation and the orbital radius and inclination angle of the satellites. GNSS
receivers can be set to ignore satellite signals with an angle above the horizon below a
user-defined threshold, which corresponds to the mask angle and is also a setting of our
simulator. The procedure followed to calculate which are the satellites in view for each
user is further described, as some notation and knowledge needs to be introduced before.

We have set the number of satellites in the constellation to 30, the satellite orbital radius
to 2.656175e7 meters and their inclination angle to 55◦. These values have been taken
from the GNSS configuration of one of the setups provided in the simulator in [3], as the
geometry proposed by these setups has proven to be realistic. The mask angle has been
set to 15◦, being the most typical mask angle in GPS receivers between 10◦ and 15◦.

4.2.2 User Distribution

It is essential to define a scenario that allows to test the proposed technique in the final
experiments. For this research, we implement a specific module in our simulator to build
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the defined scenario. First of all, some constants must be defined, such as the total number
of users in the scenario and the maximum distance between them, which we refer to as
∆MAX. Also, the proposed estimation techniques are evaluated under several values of
standard deviation of the code error. These standard deviation values can be selected
as well. A constant with the number of Monte Carlo realizations is also defined. As
the experiments have been run using a cluster, a large enough number of Monte Carlo
realizations has been selected for every case (1e4).

Figure 11: Location of the firstly generated user, which is used as a reference for the distribution
of the rest of the users within the available space. For the selected setup, the position of this
user is p = [4.022036955287312e6, 0, 4.933552391696703e6] meters in ECEF coordinates [37].

We consider relevant to describe the manner used to distribute the users within the
available space, which we have defined to be spherical in order to make the scenario more
realistic. The position of a firstly generated user is taken as a reference. For the selected
setup, the position of this user is p = [4.022036955287312e6, 0, 4.933552391696703e6]
meters in Earth-Centered, Earth-Fixed (ECEF) or Geocentric system coordinates [37]. As
shown in Figure 11, the values of these coordinates match with a location nearby the city of
Brighton, in the United Kingdom. We have considered interesting to select a real location
and define it in this document in order to show the applicability of our experiments
in a real life use case. We are assuming that users are uniformly distributed within a
sphere, being its center the firstly generated user with coordinates p. The impact of the
values in this vector is later described. When necessary, the ionospheric and tropospheric
conditions are set to values that are suitable for our experiments, which do not necessarily
match the conditions experienced at the defined user location. Although unrealistic, this
allows to properly test the performance of the proposed technique when mitigating such
atmospheric effects.

The simulator in [3] contains several .csv files with user profiles including their positions
at different time instants. For our setup, only a first position γ is extracted from one of
these files. The positions associated to the rest of users are calculated afterwards with
our simulator. The values extracted from the .csv file are actually in Local north, east,
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down (NED) coordinates, and they are converted to ECEF with a function also provided
by the simulator in [3]. As it can also be seen in Figure 11, the latitude and longitude of
the first user location is 51◦ and 0 ◦, respectively, being 10 meters high. In the modules
adapted for our simulator, we are only working with ECEF coordinates. However, the
NED coordinates are always used when calculating the contribution that Earth rotation
has on the GNSS pseudorange measurements.

Figure 12: Distribution of 101 users within the defined spherical space for ∆MAX = [10, 10, 10]
m. In this case, the blue marker can be seen due to the low density of users.

One of the modules added to our simulator allows to plot the distribution of users along
the defined spherical space. A sphere with center c = γ and radius r (∆MAX) is defined
in space. This means that the coordinates of the sphere center correspond to the position
of the firstly generated user γ. The vector ∆MAX contains the maximum distance that a
user can have with respect to the firstly generated user in the three components of the
cartesian coordinates system, meaning that the maximum Euclidean distance between a
user position γn and the firstly generated user γ is ∥∆MAX∥. For example, for a realistic
setup where ∆MAX = [10, 10, 10] m, we have that the Euclidean distance between a user
that has been positioned in the farthest location and the firstly generated user corresponds
to ∥∆MAX∥ = 10

√
3 ≈ 17.32 m.

One of the aims of this module in our simulator is to generate the position vectors of N
additional users, so that in the end we have a total of N +1 position vectors. To compute
a random point in a sphere, we first generate three random values, which correspond to
the three cartesian coordinates, and store them in a vector u = (x, y, z). For example,
these can be three realizations of a normal distribution with µ = 0 and σ = 1. After that,
a normalization constant is calculated as α = r

∥u∥ , being r a randomly generated number
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Figure 13: Distribution of 1001 users within the defined spherical space for ∆MAX = [10, 10, 10]
m. The firstly generated user with position coordinates γ is highlighted with a blue marker
(not visible due to the high user density). The rest of the 1000 users are highlighted with

markers of orange edge color.

between 0 and 1 following an uniform distribution. Finally, the three components of u are
multiplied by the normalization constant and also by the desired sphere radius, which in
our case corresponds to ∥∆MAX∥. The center of the sphere must also be added up to this
result. In Figure 13 we can see the distribution of 1001 users within the defined spherical
space. The firstly generated user with position coordinates γ is highlighted with the blue
marker. The rest 1000 users are highlighted with markers of orange edge color. It can be
observed that the users are uniformly distributed within the defined sphere.

Another term to consider for further analysis is what we call the inter-user distance dm,n

between users m and n. As previously mentioned, the maximum value of d1,n for any value
of n corresponds to ∥∆MAX∥. In Figure 15, we can see the distribution of d1,n forN = 1000.
It is shown that d1,n ∼ U (0, ∥∆MAX∥) for big values of N . The distribution is less flat
due to the high value assigned to the parameter bins when plotting the histogram, but
it is considered that the distribution is uniform. The total number of inter-user distances
that can be computed in a scenario with N users corresponds to

(
N
2

)
= N !

2!(N−2)!
= N(N−1)

2

(combination without repetition of N total elements and sample size 2).

Also, in Figures 16 and 17 we can see the inter-user distances in a newly generated scenario
with 4 users. The distances between users dm,n for m,n ̸= 1 can be higher than ∥∆MAX∥.
More specifically, dm,n ≤ ∥2∆MAX∥ ≈ 34.64 m. Figure 17 shows the values of the 3D
norms, while Figure 16 shows the values of the 2D norms in the planes defined by the
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Figure 14: Distribution of 10001 users within the defined spherical space for
∆MAX = [10, 10, 10] m. The density of users in this scenario is extremely high.

three possible combinations of cartesian coordinates (XY, XZ, YZ). For these figures, a
scenario with lower number of users has been simulated so that the distribution of users
is more illustrative.

4.2.3 Mask Angle filtering

In the simulator, the user positions are used to compute the euclidean distances between
the users and the satellites in view, which play a role in the calculation of the LOS vectors
needed to compute the GNSS pseudorange measurements. It is assumed that all the
users considered for the experiments are under open-sky conditions and have commonly
in view enough satellites to solve the navigation equations (4 satellites). Having this
minimum number of common satellites in view is a necessary condition to perform single
differentiation of pseudorange measurements. Given the position of a user p = [x, y, z]T,
we can calculate which satellites are in view for this user. To calculate whether a satellite
k with position pk is in view for user n, we first compute the ECEF-to-NED coordinate
transformation matrix given the latitude λ and longitude φ of user n (see (47) [41]). Then
we determine the ECEF LOS vector from user m to satellite k as indicated in 8, which
we refer to as LOSk

m. This vector is converted to NED coordinates as well. With the
LOSk

m vector in NED coordinates, we can describe the direction of each GNSS satellite
from the user antenna by calculating its elevation θ and azimuth ψ angles as indicated in
(48) and (49), respectively. In these equations, the unit vectors in NED coordinates are
denoted as [ê, n̂, û]. Finally, it is determined whether the satellite elevation angle is above
the masking angle. If it is, this satellite is considered to be in view of the user.
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Figure 15: Distribution of d1,n for N = 10000 and ∆MAX = [10, 10, 10], showing that
d1,n ∼ U (0, ∥∆MAX∥) for big values of N . For this setup, ∥∆MAX∥ = 17.32 m.
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 =

 − sinλ cosλ 0
− cosλ sinφ − sinλ sinφ cosφ
cosλ cosφ sinλ cosφ sinφ

 x
y
z

 (5) (47)

θ = arcsin
(
LOSk

m · û
)

(48)

ψ = arctan

(
LOSk

m · ê
LOSk

m · n̂

)
(49)

4.2.4 Generation of Pseudorange Measurements

To compute the GNSS pseudorange code measurements, we follow the expression in (3).
We are able to compute the pseudorange measurements because we have the knowledge
of the position of each user and also of the pseudorange code error standard deviation,
which is a setting of the simulator. When it is assumed that the position of the addi-
tional/cooperative users is known with an error with standard deviation σγn , this error is
not included in the position used to compute the pseudorange measurement. This means
that the only error included in the calculation of the code measurement is the code mea-
surement error itself, regardless of the experimental setup. The term σγn , if different from
zero, is used when computing the prefit of the position estimator. The same applies for
the clock bias error. This is explained in more detail later, as the scope of this subsection
is to talk about the genertion of pseudorange measurements exclusively.

The number of GNSS measurements computed in a code execution corresponds to (N +
1) × K × M × S, being N the number of additional/cooperative users added to the
scenario, K the number of satellites in view, M the number of Monte Carlo realizations
that are set and S the number of values of code error standard deviation under which
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Figure 16: 2D norms of the inter-user distances dm,n in a simulated scenario with N = 4.

the proposed algorithms are tested. This means that, for instance, in a scenario with 6
satellites in view, 20 user pairs (therefore we take into account that we have a total of
21 users), 1000 Monte Carlo realizations and 10 values of code error standard deviation
under study, we will generate 1.26e6 GNSS pseudorange measurements. It is interesting
to mention this calculation as it gives an idea of how massive the scenario posed by the
proposed techniques is.

Actually, this big magnitude is mostly given by the high amount of Monte Carlo realiza-
tions. In Figure 18, we can see a graphic that illustrates the additional dimension provided
by the use of multiple Monte Carlo iterations in the MassiveCoop-Sim simulator. As indi-
cated in this figure, the other dimensions are given by the pseudorange code error standard
deviation σ and also by N and K. The values N and K are grouped together because
we assume that for each user we need to calculate as many pseudorange measurements as
satellites in view in the scenario.

For the generation of GNSS pseudorange measurements, the small angle approximation is
applied to the rotation of the Earth during the signal transit time as suggested in (8.35)
from [3]. This way, the output GNSS measurements are closer to the ones we would obtain
in a real scenario under the same conditions. This matrix is used to increase the accuracy
of the satellite position when computing the Euclidean distance between the satellite and
the user.

4.2.5 Position Estimation

The main contribution of this research is included in the module that tackles the user
position estimation. This module is able to work with both of the algorithms presented
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Figure 17: 3D norms of the inter-user distances dm,n in a simulated scenario with N = 4.

in next section: the User-Centric Single Differentiation (UCSD) algorithm and the Mas-
sive User-Centric Single Differentiation (MUCSD) algorithm. The proposed techniques
make use of Single Differentiation (SD) of pseudorange code measurements. Thus, the
first step to be performed in the position estimation is the computation of the difference
of pseudorange measurements of the users. The number of GNSS measurements single
differentiations computed in a code execution corresponds to N ×K ×M ×S. For exam-
ple, in a scenario with 6 satellites in view, 20 user pairs (therefore we take into account
that we have a total of 21 users), 1000 Monte Carlo realizations and 10 values of code
error standard deviation under study, we will calculate 1.2e6 differentiations of pseudo-
range measurements. Although this sounds computationally expensive, this step is only
subtracting the values that have been already computed in the previous step.

The step that is key corresponds to the actual estimator of the module. As the Weighted
Least Squares (WLS) estimator is derived from a full matrix observation model that
contains the SD of all the available user pairs (see (30)), we do not need to compute an
Iterative LSE solution for each SD value obtained. The amount of LSE solutions that are
to be computed is simply M ×S. If we had not integrated Monte Carlo to our system, we
would be obtaining only one solution per value of code error standard deviation tested.
Thanks to the integration of Monte Carlo in the MassiveCoop-Sim simulator, we can
properly evaluate the performance of the proposed techniques.

Nevertheless, it is important to avoid being mistaken with regard to the computational
expense of the estimation module of the MassiveCoop-Sim simulator. Although the num-
ber of position solutions is not affected by the number of additional/cooperative users
introduced in the scenario N or the number of satellites K, these parameters have a very
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Figure 18: Graphic that illustrates the additional dimension provided by the use of Monte
Carlo iterations in the MassiveCoop-Sim simulator. The other dimensions are given by the
pseudorange code error standard deviation, the number of additional users added to the

scenario N and the number of satellites in view K.

strong impact on the dimensions of the matrices used by these algorithms. The compu-
tational expense of the UCSD and MUCSD algorithms is strongly impacted by the error
of the position of the cooperative users σγn . When this error is high, the algorithm strug-
gles more to converge and the running time increases. Doubtlessly, the number of users
introduced to the scenario is a parameter that strongly affects the computational expense
of the MUCSD algorithm. Overall, the four parameters have an impact on the algorithm
efficiency. It is of our interest to study in depth how to implement the proposed UCSD
and MUCSD in an efficient manner, as this will be necessary if wanting to test them in a
real scenario. In Section 6, this has been propoed as a future line of research.

4.2.6 Benchmark: CRB Calculation

The objective of this subsection is to stress the fact that in order to verify that results
obtained with the LSE are correct, we have also computed the CRB of the proposed
estimation problem. In the final experiments, we have plotted RMSE results obtained
with the LSE together with the CRB, in order to show that the estimated position error
matches the CBR. Mathematical derivation of the CRB is provided in Sections 3.2.3 and
3.3.3.

The CRB can be used with benchmarking purposes when comparing our results to the
ones obtained with other techniques, in further lines of research. The CRB equations are
also of our interest because they help when interpreting how errors introduced in the
model affect the position estimation RMSE. Errors introduced in the model are the ones
that help the modeling of noisy observations of the position and clock bias of cooperative
users, and also GNSS pseudorange code errors.
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For example, in Section 5.2.2, we describe how, depending on the ratio between σ and σ2
γn ,

the term that dominates the covariance matrix Σ changes, and how this has an impact
on the comparative between the MUCSD algorithm and DGNSS.

4.3 Experimental Setup

Three experiments have been conducted in this Master Thesis. Table 6 provides a link to
the figures and tables of the results and setup of each experiment. The difference between
Experiment B.1 and B.2 relies on the value of the error in the noisy observations of
the cooperative users. The standard deviation of this error is higher for Experiment B.2
(10 meters), while in Experiment B.2 we assume that we have perfect knowledge of the
cooperative user positions.

Table 6: Summary of the setup of the three experiments conducted in this research. A link to
the corresponding result figures and experimental setup is provided in this table.

ID Section Experimental Setup Results
A 5.2.1 Table 7 Figure 22
B 5.2.2 Table 8 and Table 10 Figure 23, Table 9 and Figure 24
C 5.2.3 Table 11 Figure 25

Experiment A is conducted with N = 1, which means that the executed algorithm is
USCD (no massive scenario), while experiments B and C are conducted for higher values
ofN . The objective of Experiment A is to introduce the motivation of extending the UCSD
model into the massive case, with the MUCSD. With Experiment B.1 and B.2 we see that
bringing N users to the scenario allows us to have DGNSS performance without the need
of a reference station, for realistic error in the noisy observations in the cooperative users.
Finally, we see that for very pessimistic scenarios, with very high value of the noise in the
position of cooperative users, our algorithm would need a too large value of N to provide
this improvement in the performance. Table 12 summarizes conclusions extracted from
the conducted experiments.

4.3.1 Performance Evaluation Metric (RMSE)

The metric used to evaluate the performance of the proposed algorithms is the position
and clock bias estimation Root-Mean-Square Error (RMSE). Result figures provide values
of estimation RMSE of both position cartesian coordinates and clock bias, which has been
computed as

RMSE (γ̂m) =
√

MSE (γ̂m) =
√
E
[
∥γ̂m − γm∥

2], (50)

where γm =
[
pT
m, cδtm

]T, being pm = [xm, ym, zm]
T the cartesian coordinates of the

reference user m and δtm its clock bias.

51



5 Results and Discussion
Experimental results are provided in this section. First, heatmap figures of the error
covariance matrices from the UCSD and MUCSD models are provided. After that, position
estimation RMSE values for Experiments A, B and C are shown. The lower bounds on
the variance of the proposed estimators, which have been calculated with the CRB, are
also presented.

5.1 Error Covariance Matrix

Heatmap figures created from the error covariance matrices of the UCSD and MUCSD
algorithms are given in this subsection for different scenarios. The UCSD error covariance
matrix, Σm,n is defined in (26), while the MUCSD error covariance matrix, Σ is defined
in (35).

5.1.1 UCSD (Σm,n)

Figure 19: Error covariance matrix derived for the UCSD algorithm, with expression
Σm,n = 2σ2IK + σ2

γn
HHT, for different values of σγn

. From left to right: σγn = 0, σγn = 1 and
σγn = 10. We see that the diagonal pattern of Σm,n declines with the increase of σγn with

respect to σ.

In Figure 19, we can see the contribution of the pseudorange code error and the error
given by the noisy observations of user n to the covariance matrix Σm,n. From left to
right, we have values of σγn = 0, σγn = 1 and σγn = 10 in meters. In the case with σ = 1
and σγn = 0, we see how Σm,n is a diagonal matrix, which is useful for computational
efficiency when implementing the UCSD algorithm and also can bring simplicity to its
mathematical derivation. By increasing the value of σγn , the error covariance matrix loses
its diagonal pattern and it becomes more colored with the increase of σγn with respect to
σ. It would be interesting to focus on the computational efficiency of the UCSD algorithm
implementation and, when doing that, the diagonal or non-diagonal pattern of the Σm,n

matrix for high values of σγn should be taken into account.
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Figure 20: Heatmap of Σ showing the contribution of the pseudorange code error to the
MUCSD error covariance matrix for K = 6, N = 3, σ = 5 and σγn = 0. Σ is a Toeplitz matrix.

5.1.2 MUCSD (Σ)

In this subsection, two figures with the heatmap of matrix Σ are provided for different
scenarios. The contribution of the pseudorange code error to the error covariance matrix
is shown in Figure 20 for K = 6, N = 3 and σ = 5. This contribution is computed as
σ2(JN×N ⊗ IK + INK), or equivalently, calculating the Σ matrix for σγn = 0. For this
configuration, it can be seen that Σ is a Toeplitz matrix.

When ηγn
is also considered, the resulting error covariance matrix Σ is colored as shown

in Figure 21 for σγn = 10. For low values of σ with respect to σγn , Σ can be assumed
to be a block diagonal matrix, as in the case of Figure 21. However, in cases where
σ has high values with respect to σγn , the Σ matrix cannot be assumed to be block
diagonal. Instead, Σ would be a block Toeplitz matrix. The fact that the error covariance
matrix follows either a block diagonal or a block Toeplitz pattern is beneficial for the
computational efficiency of the MUCSD algorithm, given the matrix sparse nature. We
consider relevant to highlight that Σ is a symmetric matrix and that consequently its
inverse is also symmetric, which means that Σ−1 = (Σ−1)T. This property might be
helpful for simplifying further mathematical analysis and also when implementing the
MUCSD algorithm.

5.2 Position Estimation RMSE

Position estimation RMSE values obtained with the UCSD and MUCSD algorithms are
provided in this subsection. General details regarding the three conducted experiments are
given in Table 6. A final discussion on the interpretation of the results via the inspection
of the CRB expression is provided.
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Figure 21: Heatmap of Σ for K = 6, N = 3, σ = 5 and σγn = 10, computed as
Σ = σ2(JN×N ⊗ IK + INK) + σ2

γnIN ⊗HHT. For values of σ under 10 meters, Σ is a block
diagonal matrix. For high values of σ with respect to σγn , Σ is a block Toeplitz matrix.

5.2.1 Experiment A

In this section, results obtained with the implementation of the UCSD algorithm for
different values of σγn are provided in Figure 22. This corresponds to Experiment A from
Table 3. The experiment-dependent parameter values set for this experiment are listed in
Table 7.

We can see how the results with DGNSS are better, as the ionospheric and tropospheric
delays are fully cancelled because we are assuming a short-baseline scenario. With UCSD,
these delays are also completely cancelled, but the variances of the code track error of
the users are added up, giving worse performance. Even in the case where σγn = 0, the
UCSD gives a worse performance than DGNSS. We see how the performance of the UCSD
algorithm is inversely proportional to the value of σγn . For σγn = 10, the UCSD is slightly
worse than for σγn = 0, mostly for high values of σ. However, when it is assumed that the
position of the cooperative receivers is known with 100 meters of variance, which means
that the user m is provided with very noisy observations, the performance of the UCSD
algorithm is extremely low.

Results shown in Figure 22 are not surprising as in this experiment we are not exploiting
the ability of our simulator to include additional users in the scenario, as we do with the
MUCSD algorithm. Given the obtained results, and in a natural manner, we can reach the
conclusion that this performance would improve extending the model to N cooperative
users. This is the reason why the UCSD algorithm is upgraded into its massive version.
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Figure 22: RMSE results obtained with Experiment A. The experiment-dependent parameter
values set for this experiment are listed in Table 7. The code track error corresponds to the

pseudorange measurement error, with standard deviation σ.

Table 7: Experiment-dependent parameter values set for Experiment A. N corresponds to the
number of cooperative users introduced in the experiment, K corresponds to the number of

satellites in view given the experiment geometry, M corresponds to the number of Monte Carlo
realizations set in the simulator and S corresponds to the amount of σ values tested (exact

values are also given in a vector).

Parameter Value
Algorithm UCSD

N 0
K 7
M 1e4
S 10
σ [1, 3.1, 5.2, 7.3, 9.4, 11.5, 13.6, 15.7, 17.8, 20] (in meters)
σγn [0, 10, 100] (in meters)

5.2.2 Experiment B

The aim of this experiment is to test whether by expanding the model in UCSD to N
users we can get a performance that is comparable to the one of a system using DGNSS.
For this, we have conducted Experiments B.1 and B.2.
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Results obtained with Experiment B.1 can be found in Figure 23. The experiment-
dependent parameter values user in Experiment B.1 can be found in Table 8. With the
results in this figure we can state that the MUCSD achieves the goal of increasing the
positioning performance by bringing more users into the scenario. We see that for σγn = 0,
which is the scenario where we assume that we have perfect knowledge of the coordinates
of the cooperative users, we start seeing a performance of the MUCSD for N=2. When
N=50, meaning that the number of users introduced in the scenario is considerably high,
the MUCSD performance is comparable to the one of a DGNSS system. By inspecting
the numerical values, we see that the difference in performance is of around 1 meter maxi-
mum. It is assumed that if N is further increased, this meter difference will become closer
to zero.

Results obtained with Experiment B.2 can be found in Figure 24. The experiment-
dependent parameter values user in Experiment B.2 can be found in Table 10. In this
experiment, we are testing the performance of the MUCSD algorithm for a relatively high
value of σγn = 10 meters. This means that in this scenario we are assuming that the refer-
ence user m is given coordinates from the cooperative receivers that can be wrong up to
10 meters. As we considered that this would be a challenging scenario for our algorithm,
we used higher values of N for this experiment.

As seen in Figure 24, when σγn = 10, we are not able obtain a good performance by intro-
ducing only one cooperative user to the scenario. However, when increasing the amount
of cooperative users to 25 we already see an improvement of the performance. In Figure
24, results for N=25, N=50 and the DGNSS scenario are very close. To properly inspect
the results, we have provided numerical values in Table 9. The numerical results in Table
9 suggest that the obtained position errors are higher for the MUCSD algorithm than for
DGNSS.

The conclusion of Experiment B.2 is that the MUCSD algorithm is actually working
towards providing a performance that is comparable to the one provided by DGNSS.
Moreover, it is very clear how the performance of MUCSD is better with N=50 than with
N=25. This induces to think that if N had been increased even more, the DGNSS would
be met by MUCSD even for low values of σ.
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Figure 23: RMSE results obtained with Experiment B.1. The experiment-dependent parameter
values set for this experiment are listed in Table 8. The code track error corresponds to the

pseudorange measurement error, with standard deviation σ.

Table 8: Experiment-dependent parameter values set for Experiment B.1.

Parameter Value
Algorithm MUCSD

N 1, 2, 50
K 7
M 1e4
S, σ Same as Experiment A (see Table 7)
σγn 0 (in meters)
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Figure 24: RMSE results obtained with Experiment B.2. The experiment-dependent parameter
values set for this experiment are listed in Table 10. As the three configurations in orange, red

and blue color give a non-distinguishable performance in this figure, numerical results are
provided in Table 9. The code track error corresponds to the pseudorange measurement error,

with standard deviation σ.

Table 9: RMSE results obtained with Experiment B.2 for the configurations that give similar
performance in Figure 24.

σ 2 4 6 8 10 12 14 16 18
Error for N = 25 6.6 10.6 15.3 20 24.8 29.7 34.6 39.25 44.1
Error for N = 50 5.75 10.1 14.9 19.6 24.4 29.3 34.1 38.8 43.8

DGNSS 4.75 9.6 14.45 19.2 24 28.9 33.6 38.2 43.2

Table 10: Experiment-dependent parameter values set for Experiment B.2.

Parameter Value
Algorithm MUCSD

N 1, 25, 50
K 7
M 1e4
S, σ Same as Experiment A (see Table 7)
σγn 10 (in meters)

58



5.2.3 Experiment C

Results of Experiment C can be found in Figure 25, together with the experiment-
dependent parameters used in Table 11. With this experiment, we clearly see how the
MUCSD cannot achieve the performance of DGNSS when σγn is very high.

We consider that these results make sense and they are not discouraging. This is because,
in the proposed scenario, we have σγn = 100 meters, which means that the reference
user m is given N positions of cooperative users which can be wrong up to 100 meters.
Observations that are corrupted by such a high error are of course not contributing in a
positive way to the MUCSD algorithm. However, it is relevant to highlight the improving
performance of MUCSD with the increase of N . The results in Figure 25 suggest that for
an extremely high value of N , the performance of MUCSD would be comparable to the
one of DGNSS.
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Figure 25: RMSE results obtained with Experiment C. The experiment-dependent parameter
values set for this experiment are listed in Table 11. The code track error corresponds to the

pseudorange measurement error, with standard deviation σ.
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Table 11: Experiment-dependent parameter values set for Experiment C.

Parameter Value
Algorithm MUCSD

N 25, 50, 100
K 7
M 1e4
S, σ Same as Experiment A (see Table 7)
σγn 100 (in meters)

5.2.4 Interpretation of results via CRB inspection

The difference between DGNSS and MUCSD becomes lower with the increase of the code
error standard deviation σ. This can be understood by inspecting the CRB expression in
(41), which is proportional to the error covariance matrix Σ defined in (35).

On the one hand, when the value of σ is high, the term σ2(JN×N ⊗ IK + INK) dominates
the expression, meaning that the pseudorange inaccuracy corresponds to the main error
source of the model. In this case, Σ is a block diagonal matrix. Consequently, the perfor-
mance of DGNSS becomes more similar to the one of the MUCSD algorithm. This can be
understood by acknowledging that DGNSS includes the contribution of the pseudorange
errors but not the one of the noisy observations from the cooperative users.

On the other hand, when the value of σ is lower in comparison to the value assigned to
σ2
γn , the term σ2

γnIN ⊗HHT becomes dominant in the error covariance matrix. As a conse-
quence, the cooperative user position error has a strong impact on MUCSD performance
and it differs more from the one provided by DGNSS. This happens when Σ is a block
Toeplitz matrix.

It is very beautiful to understand how the CRB expression, which contains the error
covariance matrix of the proposed model, can explain the relationship between the widely
used DGNSS technique and the algorithm we are proposing in this Master Thesis.
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6 Conclusion
In the first subsection of the conclusion, we review the previously described results in
order to list which are the most important findings. A summary of the findings of the
research can be found in Table 12. Finally, some motivating future lines of research for
this thesis are proposed by the authors.

6.1 Final Results

The main conclusions extracted from the experiment results that have been previously
described can be found in Table 12. With Experiment A, we have seen that the UCSD algo-
rithmn is not able to give a performance comparable to DGNSS. Although the ionospheric
and tropospheric errors are equally cancelled for short-baseline scenarios, the variance of
the code error of the users is added up. Consequently the LSE estimation error increases.

With Experiment B, we have seen that the MUCSD algorithm is able to provide a perfor-
mance comparable to DGNSS when the number of cooperative receivers in the scenario
is increased. The amount of additional users required in the setup depends on how noisy
the observations provided by these users are. In Experiment B.1, we assumed that the
observations were not noisy at all. This is the reason why we see such an increase of
performance with N=2 with respect to N=1 (almost 10 meters less of error for high val-
ues of σ = 18 m). Furthermore, we see with the MassiveCoop-Sim simulator that when
N = 10, the MUCSD algorithm is able to counteract the addition of the variances of
cooperative users and the performance is comparable to DGNSS. When the observations
of the cooperative users are assumed to be noisy, with Experiment B.2, we still get a good
performance for high values of N .

Finally, with Experiment C, we have seen that for very high values of γn our algorithm is
not able to provide DGNSS performance even with 50 users having been introduced into
the scenario. However, we consider that this makes sense, as it would not make sense to
implement a cooperative positioning algorithm where we receive observations that might
be up to 100 meters wrong.

In conclusion, we have proven the hypothesis stated in Section 2.4, as we have provided
a novel algorithm for Massive Single Differentiation that achieves DGNSS performance
without the need of having a precise knowledge of the coordinates of other receivers.
Instead, we can work with noisy observations of these receivers, always maintaining the
noise under a threshold that will depend on the power of the scenario (proportional to the
value of N). The higher the value of N , the higher this noise can be so that the MUCSD
algorithm performs as a system with DGNSS.

6.2 Future Research

In this section, we have described the lines of research that are to be explored in the fu-
ture. We first propose to improve the performance of the UCSD and MUCSD algorithms
in terms of estimation error by including the use of carrier-phase measurements and Dou-
ble Differentition (DD), as the well-known Real Time Kinematic (RTK) algorithm does.
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Table 12: Main conclusions extracted from the experiments conducted to test the performance
of the UCSD and MUCSD algorithms, which are listed in Table 3

ID Conclusion
A The UCSD algorithm does not provide DGNSS performance.
B The MUCSD algorithm provides DGNSS performance

for realistic values of γn.
C The MUCSD algorithm does not provide DGNSS performance

for unrealistically high values of γn.

Afterwords, we propose several lines of research which are mostly related to implementing
the UCSD and MUCSD algorithms in a system that allows us to test its performance
in a realistic scenario. These lines of research would be a computational efficiency eval-
uation, the centralization of the proposed system into the cloud and the exploration of
communication protocols to be used in our system, as feedback between users is needed
in a massive cooperative positioning algorithm.

6.2.1 Use of Carrier Phase Measurements and Double Differentiation)

Traditional SPP algorithms use only GNSS pseudorange code measurements of the re-
ceiver and give positioning accuracy at meter level. The same happens with systems im-
plementing DGNSS, as although most of the error sources are cancelled, the performance
is still at the level of meters. It is necessary to use carrier-phase measurements in order to
achieve high accuracy positioning results. The Precise Point Positioning (PPP) and RTK
techniques make use of both pseudorange and carrier-phase measurements, leading to very
accurate cm-level performances. Consequently, we would like to continue this research by
proposing an algorithm that also makes use of carrier-phase measurements. With RTK,
the key procedure is the Double Differentiation (DD) of GNSS mesurements between re-
ceivers and satellites. When following this line of research, we would like to compare the
estimation error obtained with our technique to the one provided by the RTK algorithm.

DD is, from a computational perspective, more demanding than SD. However, it would
be very interesting for the authors to include this analysis, from a theoretical and math-
ematical point of view.

6.2.2 Computational Efficiency Evaluation

Although having listed the computational resources used in order to run the .m scripts
of the MassiveCoop-Sim simulator, we have not conducted a study on the computational
efficiency of the implementation of the UCSD and MUCSD algorithms. This would be
essential when wanting to bring these algorithms into a real scenario in order to test it
in a realistic environment. When doing this, we should also consider the implications of
implementing these algorithms on Real-Time Systems (RTS). With RTS, the processing
of data and occurring events implies critical time constraints that have not been taken
into account in this document.
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6.2.3 Centralization of the System

With the proposed UCSD and MUCSD algorithms, all the computational load is being
taken by the reference m. Considering the high dimensional data processed by the al-
gorithms, mostly when a large number of users N are introduced into the scenario, it
would be of our interest to consider the possibility of centralizing the system. For ex-
ample, an interesting line of research would be to describe a realistic scenario where the
MassiveCoop-Sim simulator operates in a cloud.

6.2.4 Selection of a Communication Protocol

As it has been introduced in Section 1.4, in cooperative positioning techniques, the pres-
ence of communication between devices is key. This happens mostly in systems where
different technologies are used (what we call, hybrid systems). However, as we have seen,
in only-GNSS systems such as the ones using DGNSS, there is the need of communication
between terminals. In the case of DGNSS, as it has been explained beforehand, DGNSS
corrections are sent from the referene or base station to the user. It is therefore necessary
to define which communication protocol is used when sending, in this case, the DGNSS
corrections.

Having understood the need of a communicatios protocol in a cooperative system, and
after comprehending the core of the proposed UCSD and MUCSD algorithms, we can
state that our system requires a protocol so that the N users in the scenario can send
their measurements to the reference user m, to the cloud, or even between them. In some
literature presented in Section 1.4, Dedicated Short-Range Communications (DSRC) are
mentioned, as users are assumed to be at short distances from each other [25]. This
would actually be the case of a scenario like the one proposed in Figure 10 when the
baseline distances are short. In [25], they state that with the assistance of DSRC, the
implementation of CP algorithms does not necessarily rely on any specialized sensors or
infrastructures, making it an inexpensive and practical solution. The interested reader
may refer to Section 1.4.4 to read more about this matter.
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