5 research outputs found

    A Prediction-Based Replication Algorithm for Improving Data Availability in Frid Environment

    Get PDF
    Data replication is a key optimization technique for reducing access latency and managing large data by storing replica of data in a wisely manner. In this paper, we propose a data replication algorithm, called the Prediction-Base Dynamic Replication (PBDR) algorithm that improves file access time. Restricted by the storage capacity, it is essential to design an effective strategy for the replication replacement task. PBDR deletes files by considering four important factors: the number of requests for the replica in the future times, availability, the size of the replica and the last time the replica was requested. Also, it can minimize access latency by selecting the best replica when various sites hold replicas of datasets. The algorithm is simulated using a data grid simulator, OptorSim, developed by European Data Grid projects. The experiment results show that PBDR strategy gives better performance compared to the other algorithms and prevents unnecessary creation of replica which leads to efficient storage usage

    Choosing between remote I/O versus staging in distributed environments

    Get PDF
    Today, scientifi_x000C_c applications and experiments have become increasingly complex and more demanding in terms of their computational and data requirements. The amount of data generated and used has grown at a very rapid rate. As tens or hundreds of terabytes of data for a single application is very common today; petabytes and even exabytes of data will be very common in a few years. One of the major challenges in distributed computing environments is how to access these large datasets remotely over the network. Data staging and remote I/O are the most widely used data access methods for distributed applications. Application developers generally chose one over the other intuitively without making any scienti_x000C_fic comparison specifi_x000C_c to their applications since there is no generic model available that they can use. In this thesis, we develop generic models and set guidelines for the application developers which would help them to choose the most appropriate data access method for their application. We de_x000C_fine the parameters that potentially aff_x000B_ect the end-to-end performance of the distributed applications which need to access remote data. To achieve our goal, we implement a series of synthetic benchmark applications to simulate di_x000B_fferent data access patterns. We run these benchmark applications on diff_x000B_erent distributed computing settings with di_x000B_fferent parameters, such as network bandwidth, server and client capabilities, and data access ratio. We also use di_x000B_fferent remote I/O protocols to show the importance of the protocol in making a decision. We use regression analysis to develop applicable generic models for comparing diff_x000B_erent data access methods, and test our models in a real life application. The main contribution of our thesis is generic models that can be applied to most data-intensive distributed applications to decide the best data access technique for those applications. Our models provide the scientists and application developers an opportunity to choose the best data access method before actually running the application

    Performance engineering in data Grids

    No full text
    The vision of Grid computing is to facilitate world-wide resource sharing among distributed collaborations. With the help of numerous national and international Grid projects this vision is becoming reality and Grid systems are attracting an ever increasing user base. However, Grids are still quite complex software systems whose efficient use is a difficult and error prone task. In this paper we present performance engineering techniques that aim to facilitate an efficient use of Grid systems, in particular systems that deal with the management of large scale data sets in the tera- and petabyte range (also referred to as Data Grids). These techniques are applicable at different layers of a Grid architecture and we discuss the tools required at each of these layers to implement them. Having discussed important performance engineering techniques we investigate how major Grid projects deal with performance issues particularly related to Data Grids and how they implement the techniques presented. 1
    corecore