2,546 research outputs found

    Analyzing the Tradeoff Between Efficiency and Flexibility in Cellular Manufacturing Systems

    Get PDF
    A limitation of Group Technology (GT)-based cellular manufacturing systems is that their limited routing flexibility offsets the setup and material handling efficiencies they offer. Virtual Cellular Manufacturing (VCM) systems do not encounter the problem of limited routing flexibility, but do not yield the same efficiencies as GT-based cellular systems. This study compares the performance of a GT-based cellular manufacturing system that utilizes operations overlapping to further improve material flow efficiency with that of a virtual cellular manufacturing system. Results suggest that while the use of operations overlapping in a GT-based cellular manufacturing system can to some extent compensate for the system’s low routing flexibility, it cannot fully overcome the high flow time variance that results from the permanent dedication of machine resources. As a result, GT-based cellular manufacturing performs comparably to VCM only under a limited set of conditions

    Assessment of shop floor layouts in the context of process plans with alternatives

    Get PDF
    Paper aims: The paper seeks to compare the performance of three layouts in a make to order (MTO) production system with high product variability. Originality: No previous work sought to compare job shop, cellular and virtual cell layouts in an MTO system with high product variability, with just 21 resources, a low amount. The analysis considered models with the same capacities and demand for the three layouts. Research method: The complete factorial design and ANOVA were used with simulation. The main effects plots of the control factors for response variables were obtained (e.g. throughput, lead time, and resource utilization). Main findings: The virtual cell layout had results similar to the job shop, but achieved better outcomes compared with the traditional cell. Implications for theory and practice: The knowledge gap regarding virtual cells signals the importance of this topic, as well as the possibilities not yet investigated about it in manufacturing companies.</br

    Modelling flexible manufacturing systems through discrete event simulation

    Get PDF
    As customisation and product diversification are becoming standard, industry is looking for strategies to become more adaptable in responding to customer’s needs. Flexible manufacturing systems (FMS) provide a unique capability where there is a need to provide efficiency through production flexibility. Full potential of FMS development is difficult to achieve due to the variability of components within this complex manufacturing system. It has been recognised that there is a requirement for decision support tools to address different aspects of FMS development. Discrete event simulation (DES) is the most common tool used in manufacturing sector for solving complex problems. Through systematic literature review, the need for a conceptual framework for decision support in FMS using DES has been identified. Within this thesis, the conceptual framework (CF) for decision support for FMS using DES has been proposed. The CF is designed based on decision-making areas identified for FMS development in literature and through industry stakeholder feedback: set-up, flexibility and schedule configuration. The CF has been validated through four industrial simulation case studies developed as a part of implementation of a new FMS plant in automotive sector. The research focuses on: (1) a method for primary data collection for simulation validated through a case study of material handling robot behaviour in FMS; (2) an approach for evaluation of optimal production set-up for industrial FMS with DES; (3) a DES based approach for testing FMS flexibility levels; (4) an approach for testing scheduling in FMS with the use of DES. The study has supported the development of systematic approach for decision making in FMS development using DES. The approach provided tools for evidence based decision making in FMS

    Simulation in Automated Guided Vehicle System Design

    Get PDF
    The intense global competition that manufacturing companies face today results in an increase of product variety and shorter product life cycles. One response to this threat is agile manufacturing concepts. This requires materials handling systems that are agile and capable of reconfiguration. As competition in the world marketplace becomes increasingly customer-driven, manufacturing environments must be highly reconfigurable and responsive to accommodate product and process changes, with rigid, static automation systems giving way to more flexible types. Automated Guided Vehicle Systems (AGVS) have such capabilities and AGV functionality has been developed to improve flexibility and diminish the traditional disadvantages of AGV-systems. The AGV-system design is however a multi-faceted problem with a large number of design factors of which many are correlating and interdependent. Available methods and techniques exhibit problems in supporting the whole design process. A research review of the work reported on AGVS development in combination with simulation revealed that of 39 papers only four were industrially related. Most work was on the conceptual design phase, but little has been reported on the detailed simulation of AGVS. Semi-autonomous vehicles (SA V) are an innovative concept to overcome the problems of inflexible -systems and to improve materials handling functionality. The SA V concept introduces a higher degree of autonomy in industrial AGV -systems with the man-in-the-Ioop. The introduction of autonomy in industrial applications is approached by explicitly controlling the level of autonomy at different occasions. The SA V s are easy to program and easily reconfigurable regarding navigation systems and material handling equipment. Novel approaches to materials handling like the SA V -concept place new requirements on the AGVS development and the use of simulation as a part of the process. Traditional AGV -system simulation approaches do not fully meet these requirements and the improved functionality of AGVs is not used to its full power. There is a considerflble potential in shortening the AGV -system design-cycle, and thus the manufacturing system design-cycle, and still achieve more accurate solutions well suited for MRS tasks. Recent developments in simulation tools for manufacturing have improved production engineering development and the tools are being adopted more widely in industry. For the development of AGV -systems this has not fully been exploited. Previous research has focused on the conceptual part of the design process and many simulation approaches to AGV -system design lack in validity. In this thesis a methodology is proposed for the structured development of AGV -systems using simulation. Elements of this methodology address the development of novel functionality. The objective of the first research case of this research study was to identify factors for industrial AGV -system simulation. The second research case focuses on simulation in the design of Semi-autonomous vehicles, and the third case evaluates a simulation based design framework. This research study has advanced development by offering a framework for developing testing and evaluating AGV -systems, based on concurrent development using a virtual environment. The ability to exploit unique or novel features of AGVs based on a virtual environment improves the potential of AGV-systems considerably.University of Skovde. European Commission for funding the INCO/COPERNICUS Projec

    Analysis of critical machine reliability in manufacturing cells

    Get PDF
    Purpose: In an increasingly competitive business environment, machine reliability problem merits special attention in operations of manufacturing cells. This is mainly due to flow line nature of the cellular layout, interdependency of downstream and upstream of machines related to each other. This study investigates the effect of critical machine reliability improvement on production capacity and throughput time in manufacturing cells. Design/methodology/approach: A discrete-event simulation model was developed to investigate the effectiveness of a reliability plan focusing on the most critical production machines in improving the performance level as an alternative to increasing the reliability of all machines. Four machine criticality policies are examined in the simulation experiments. Findings: The results of this experimental study indicated that an improvement of reliability of a limited number of machines leads to an increase in overall production capacity and speed in cellular manufacturing operations. A reliability plan, that focuses on a set of critical machines, potentially offers a more economical alternative to increasing the reliability of all machines in such facility. Research limitations/implications: The results demonstrate that to achieve higher production capacity and shorter throughput times, managers should consider directing more resources to increase the reliability of critical machines, particularly, those with shorter mean time to failure and higher utilization. Originality/value: The designed simulation model is unique in representing the dynamics of a real world manufacturing cell environment by encoding operational functions such as machine failure, maintenance resource allocation, material flow, job sequencing and scheduling. A new machine availability metric is defined as well.Peer Reviewe

    Heuristic search methods and cellular automata modelling for layout design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Spatial layout design must consider not only ease of movement for pedestrians under normal conditions, but also their safety in panic situations, such as an emergency evacuation in a theatre, stadium or hospital. Using pedestrian simulation statistics, the movement of crowds can be used to study the consequences of different spatial layouts. Previous works either create an optimal spatial arrangement or an optimal pedestrian circulation. They do not automatically optimise both problems simultaneously. Thus, the idea behind the research in this thesis is to achieve a vital architectural design goal by automatically producing an optimal spatial layout that will enable smooth pedestrian flow. The automated process developed here allows the rapid identification of layouts for large, complex, spatial layout problems. This is achieved by using Cellular Automata (CA) to model pedestrian simulation so that pedestrian flow can be explored at a microscopic level and designing a fitness function for heuristic search that maximises these pedestrian flow statistics in the CA simulation. An analysis of pedestrian flow statistics generated from feasible novel design solutions generated using the heuristic search techniques (hill climbing, simulated annealing and genetic algorithm style operators) is conducted. The statistics that are obtained from the pedestrian simulation is used to measure and analyse pedestrian flow behaviour. The analysis from the statistical results also provides the indication of the quality of the spatial layout design generated. The technique has shown promising results in finding acceptable solutions to this problem when incorporated with the pedestrian simulator when demonstrated on simulated and real-world layouts with real pedestrian data.This study was funded by the University Science of Malaysia and Kementerian Pengajian Tinggi Malaysia

    Computer-aided design of cellular manufacturing layout.

    Get PDF

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction
    • 

    corecore