331,040 research outputs found

    Inlet Reynolds number and temperature effects on the steady-state performance of a TFE731-2 turbofan engine

    Get PDF
    Effects of varying engine inlet Reynolds number index (0.75, 0.50, 0.25, and 0.12) and temperature (289 and 244 K) on a TFE731-2 turbofan engine were evaluated. Results were classified as either compression system effects or effects on overall performance. Standard performance maps are used to present compression system performance. Overall performance parameters are presented as a function of low rotor speed corrected to engine inlet temperature

    Pushdown Compression

    Get PDF
    The pressing need for eficient compression schemes for XML documents has recently been focused on stack computation [6, 9], and in particular calls for a formulation of information-lossless stack or pushdown compressors that allows a formal analysis of their performance and a more ambitious use of the stack in XML compression, where so far it is mainly connected to parsing mechanisms. In this paper we introduce the model of pushdown compressor, based on pushdown transducers that compute a single injective function while keeping the widest generality regarding stack computation. The celebrated Lempel-Ziv algorithm LZ78 [10] was introduced as a general purpose compression algorithm that outperforms finite-state compressors on all sequences. We compare the performance of the Lempel-Ziv algorithm with that of the pushdown compressors, or compression algorithms that can be implemented with a pushdown transducer. This comparison is made without any a priori assumption on the data's source and considering the asymptotic compression ratio for infinite sequences. We prove that Lempel-Ziv is incomparable with pushdown compressors

    Fast Autocorrelated Context Models for Data Compression

    Full text link
    A method is presented to automatically generate context models of data by calculating the data's autocorrelation function. The largest values of the autocorrelation function occur at the offsets or lags in the bitstream which tend to be the most highly correlated to any particular location. These offsets are ideal for use in predictive coding, such as predictive partial match (PPM) or context-mixing algorithms for data compression, making such algorithms more efficient and more general by reducing or eliminating the need for ad-hoc models based on particular types of data. Instead of using the definition of the autocorrelation function, which considers the pairwise correlations of data requiring O(n^2) time, the Weiner-Khinchin theorem is applied, quickly obtaining the autocorrelation as the inverse Fast Fourier transform of the data's power spectrum in O(n log n) time, making the technique practical for the compression of large data objects. The method is shown to produce the highest levels of performance obtained to date on a lossless image compression benchmark.Comment: v2 includes bibliograph

    Statistical mechanical aspects of joint source-channel coding

    Full text link
    An MN-Gallager Code over Galois fields, qq, based on the Dynamical Block Posterior probabilities (DBP) for messages with a given set of autocorrelations is presented with the following main results: (a) for a binary symmetric channel the threshold, fcf_c, is extrapolated for infinite messages using the scaling relation for the median convergence time, tmed1/(fcf)t_{med} \propto 1/(f_c-f); (b) a degradation in the threshold is observed as the correlations are enhanced; (c) for a given set of autocorrelations the performance is enhanced as qq is increased; (d) the efficiency of the DBP joint source-channel coding is slightly better than the standard gzip compression method; (e) for a given entropy, the performance of the DBP algorithm is a function of the decay of the correlation function over large distances.Comment: 6 page

    Replica Symmetry Breaking in Compressive Sensing

    Full text link
    For noisy compressive sensing systems, the asymptotic distortion with respect to an arbitrary distortion function is determined when a general class of least-square based reconstruction schemes is employed. The sampling matrix is considered to belong to a large ensemble of random matrices including i.i.d. and projector matrices, and the source vector is assumed to be i.i.d. with a desired distribution. We take a statistical mechanical approach by representing the asymptotic distortion as a macroscopic parameter of a spin glass and employing the replica method for the large-system analysis. In contrast to earlier studies, we evaluate the general replica ansatz which includes the RS ansatz as well as RSB. The generality of the solution enables us to study the impact of symmetry breaking. Our numerical investigations depict that for the reconstruction scheme with the "zero-norm" penalty function, the RS fails to predict the asymptotic distortion for relatively large compression rates; however, the one-step RSB ansatz gives a valid prediction of the performance within a larger regime of compression rates.Comment: 7 pages, 3 figures, presented at ITA 201
    corecore