1,191 research outputs found

    Performance and scalability of indexed subgraph query processing methods

    Get PDF
    Graph data management systems have become very popular as graphs are the natural data model for many applications. One of the main problems addressed by these systems is subgraph query processing; i.e., given a query graph, return all graphs that contain the query. The naive method for processing such queries is to perform a subgraph isomorphism test against each graph in the dataset. This obviously does not scale, as subgraph isomorphism is NP-Complete. Thus, many indexing methods have been proposed to reduce the number of candidate graphs that have to underpass the subgraph isomorphism test. In this paper, we identify a set of key factors-parameters, that influence the performance of related methods: namely, the number of nodes per graph, the graph density, the number of distinct labels, the number of graphs in the dataset, and the query graph size. We then conduct comprehensive and systematic experiments that analyze the sensitivity of the various methods on the values of the key parameters. Our aims are twofold: first to derive conclusions about the algorithms’ relative performance, and, second, to stress-test all algorithms, deriving insights as to their scalability, and highlight how both performance and scalability depend on the above factors. We choose six wellestablished indexing methods, namely Grapes, CT-Index, GraphGrepSX, gIndex, Tree+∆, and gCode, as representative approaches of the overall design space, including the most recent and best performing methods. We report on their index construction time and index size, and on query processing performance in terms of time and false positive ratio. We employ both real and synthetic datasets. Specifi- cally, four real datasets of different characteristics are used: AIDS, PDBS, PCM, and PPI. In addition, we generate a large number of synthetic graph datasets, empowering us to systematically study the algorithms’ performance and scalability versus the aforementioned key parameters

    Hybrid algorithms for subgraph pattern queries in graph databases

    Get PDF
    Numerous methods have been proposed over the years for subgraph query processing, as it is central to graph analytics. Existing work is fragmented into two major categories. Methods in the filter-then-verify (FTV) category first construct an index of the DB graphs. Given a query, the index is used to filter out graphs that cannot contain the query. On the remaining graphs, a subgraph isomorphism algorithm is applied to verify whether each graph indeed contains the query. A second category of algorithms is mainly concerned with optimizing the Subgraph Isomorphism (SI) testing process (an NP-Complete problem) in order to find all occurrences of the query within each DB graph, also known as the matching problem. The current research trend is to totally dismiss FTV methods, because SI methods have been shown to enjoy much shorter query execution times and because of the alleged high costs of managing the DB graph index in FTV methods. Thus, a number of new SI methods are being proposed annually. In the current work, we initially study the performance of the latest SI algorithms over datasets consisting of a large number of graphs. With our study, we evaluate the algorithms’ performance and we provide comparison details with former studies. As a second step, we combine the powerful filtering of a top-performing FTV method, with the various SI methods, which leads to the best practice conclusion that SI and FTV shouldn’t be thought of as disjoint types of solutions, as their union achieves better results than any one of them individually. Specifically, we experimentally analyze and quantify the (positive) impact of including the essence of indexed FTV methods within SI methods, showing that query processing times can be significantly improved at modest additional memory costs. We show that these results hold over a variety of well-known SI methods and across several real and synthetic datasets. As such, hybrids of the type reveal a missing opportunity and a blind spot in related literature and trends

    Efficient Subgraph Matching on Billion Node Graphs

    Full text link
    The ability to handle large scale graph data is crucial to an increasing number of applications. Much work has been dedicated to supporting basic graph operations such as subgraph matching, reachability, regular expression matching, etc. In many cases, graph indices are employed to speed up query processing. Typically, most indices require either super-linear indexing time or super-linear indexing space. Unfortunately, for very large graphs, super-linear approaches are almost always infeasible. In this paper, we study the problem of subgraph matching on billion-node graphs. We present a novel algorithm that supports efficient subgraph matching for graphs deployed on a distributed memory store. Instead of relying on super-linear indices, we use efficient graph exploration and massive parallel computing for query processing. Our experimental results demonstrate the feasibility of performing subgraph matching on web-scale graph data.Comment: VLDB201

    Efficient Subgraph Similarity Search on Large Probabilistic Graph Databases

    Full text link
    Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Description Framework (RDF) data management. All these works assume that the underlying data are certain. However, in reality, graphs are often noisy and uncertain due to various factors, such as errors in data extraction, inconsistencies in data integration, and privacy preserving purposes. Therefore, in this paper, we study subgraph similarity search on large probabilistic graph databases. Different from previous works assuming that edges in an uncertain graph are independent of each other, we study the uncertain graphs where edges' occurrences are correlated. We formally prove that subgraph similarity search over probabilistic graphs is #P-complete, thus, we employ a filter-and-verify framework to speed up the search. In the filtering phase,we develop tight lower and upper bounds of subgraph similarity probability based on a probabilistic matrix index, PMI. PMI is composed of discriminative subgraph features associated with tight lower and upper bounds of subgraph isomorphism probability. Based on PMI, we can sort out a large number of probabilistic graphs and maximize the pruning capability. During the verification phase, we develop an efficient sampling algorithm to validate the remaining candidates. The efficiency of our proposed solutions has been verified through extensive experiments.Comment: VLDB201

    Indexing query graphs to speedup graph query processing

    Get PDF
    Subgraph/supergraph queries although central to graph analytics, are costly as they entail the NP-Complete problem of subgraph isomorphism. We present a fresh solution, the novel principle of which is to acquire and utilize knowledge from the results of previously executed queries. Our approach, iGQ, encompasses two component subindexes to identify if a new query is a subgraph/supergraph of previously executed queries and stores related key information. iGQ comes with novel query processing and index space management algorithms, including graph replacement policies. The end result is a system that leads to significant reduction in the number of required subgraph isomorphism tests and speedups in query processing time. iGQ can be incorporated into any sub/supergraph query processing method and help improve performance. In fact, it is the only contribution that can speedup significantly both subgraph and supergraph query processing. We establish the principles of iGQ and formally prove its correctness. We have implemented iGQ and have incorporated it within three popular recent state of the art index-based graph query processing solutions. We evaluated its performance using real-world and synthetic graph datasets with different characteristics, and a number of query workloads, showcasing its benefits

    Distributed Processing of k Shortest Path Queries over Dynamic Road Networks

    Full text link
    The problem of identifying the k-shortest paths (KSPs for short) in a dynamic road network is essential to many location-based services. Road networks are dynamic in the sense that the weights of the edges in the corresponding graph constantly change over time, representing evolving traffic conditions. Very often such services have to process numerous KSP queries over large road networks at the same time, thus there is a pressing need to identify distributed solutions for this problem. However, most existing approaches are designed to identify KSPs on a static graph in a sequential manner (i.e., the (i+1)-th shortest path is generated based on the i-th shortest path), restricting their scalability and applicability in a distributed setting. We therefore propose KSP-DG, a distributed algorithm for identifying k-shortest paths in a dynamic graph. It is based on partitioning the entire graph into smaller subgraphs, and reduces the problem of determining KSPs into the computation of partial KSPs in relevant subgraphs, which can execute in parallel on a cluster of servers. A distributed two-level index called DTLP is developed to facilitate the efficient identification of relevant subgraphs. A salient feature of DTLP is that it indexes a set of virtual paths that are insensitive to varying traffic conditions, leading to very low maintenance cost in dynamic road networks. This is the first treatment of the problem of processing KSP queries over dynamic road networks. Extensive experiments conducted on real road networks confirm the superiority of our proposal over baseline methods.Comment: A shorter version of this technical report has been accepted for publication as a full paper in ACM SIGMOD 2020: International Conference on Management of Dat
    • …
    corecore