
Performance and Scalability of Indexed Subgraph Query
Processing Methods

Foteini Katsarou
School of Computing Science

University of Glasgow, UK

f.katsarou.1@
research.gla.ac.uk

Nikos Ntarmos
School of Computing Science

University of Glasgow, UK

nikos.ntarmos@
glasgow.ac.uk

Peter Triantafillou
School of Computing Science

University of Glasgow, UK

peter.triantafillou@
glasgow.ac.uk

ABSTRACT
Graph data management systems have become very popular
as graphs are the natural data model for many applications.
One of the main problems addressed by these systems is sub-
graph query processing; i.e., given a query graph, return all
graphs that contain the query. The naive method for pro-
cessing such queries is to perform a subgraph isomorphism
test against each graph in the dataset. This obviously does
not scale, as subgraph isomorphism is NP-Complete. Thus,
many indexing methods have been proposed to reduce the
number of candidate graphs that have to underpass the sub-
graph isomorphism test. In this paper, we identify a set of
key factors-parameters, that influence the performance of
related methods: namely, the number of nodes per graph,
the graph density, the number of distinct labels, the number
of graphs in the dataset, and the query graph size. We then
conduct comprehensive and systematic experiments that an-
alyze the sensitivity of the various methods on the values of
the key parameters. Our aims are twofold: first to derive
conclusions about the algorithms’ relative performance, and,
second, to stress-test all algorithms, deriving insights as to
their scalability, and highlight how both performance and
scalability depend on the above factors. We choose six well-
established indexing methods, namely Grapes, CT-Index,
GraphGrepSX, gIndex, Tree+∆, and gCode, as representa-
tive approaches of the overall design space, including the
most recent and best performing methods. We report on
their index construction time and index size, and on query
processing performance in terms of time and false positive
ratio. We employ both real and synthetic datasets. Specifi-
cally, four real datasets of different characteristics are used:
AIDS, PDBS, PCM, and PPI. In addition, we generate a
large number of synthetic graph datasets, empowering us to
systematically study the algorithms’ performance and scal-
ability versus the aforementioned key parameters.

1. INTRODUCTION

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Graphs show great representative power for complex rela-
tionships, such as social networks [8], chemical compounds
and proteins [1, 18, 14, 12], etc. Relevant datasets vary
wildly on several key characteristics, such as the number
of graphs in the dataset, the number of nodes per graph,
the average density of the graphs in the dataset, and the
size of the set of distinct node labels. One of the most
frequently arising query types in such systems is subgraph
queries, where a graph q is given as a query and the sys-
tem must return those graphs in the dataset that contain
the query graph. A naive way to solve this problem, is to
perform subgraph isomorphism testing on all the graphs in
the dataset. However, the subgraph isomorphism problem
is NP-complete and by taking into consideration the num-
ber of the graphs in the dataset, this often proves to be too
computationally expensive. To this end, many, so-called
filter-and-verification methods have been proposed to allevi-
ate the problem. These solutions utilize an index based on
features (i.e., substructures) of the graphs to filter out some
of those that definitely do not contain q; however, the graphs
remaining after the filtering – called the candidate set – may
not actually contain q (i.e., the filtering process can produce
false positives). Due to this, a verification stage is required,
during which q is tested for subgraph isomorphism against
all of these remaining graphs. The main premise of these
algorithms is that the candidate set is usually much smaller
in size than the complete dataset.

Given the importance of the problem and the large at-
tention it has received in the research community, with this
paper we provide a systematic and comprehensive evaluation
of the performance and scalability of a representative set of
related methods, which includes the most recent and most
competitive approaches and approaches representing differ-
ent key decisions in the design space. More specifically, the
contributions of this paper are:

1. Algorithm Performance. A comprehensive study of
the performance of related methods. A set of meth-
ods is selected to represent different key design deci-
sions with respect to the type of graph features in-
dexed (i.e., paths, trees, cycles, subgraphs) and the
method for generating graph features (i.e., based on
frequency mining or exhaustive enumeration of graph
features). Further, this set of methods includes the
most recent and higher-performing methods (such as
GraphGrepSX, Grapes, and CT-Index). Our perfor-
mance metrics include query indexing time and space,
as well as query processing time and false positives.

2. Algorithm Scalability. Our experiments also aim to

stress-test the above methods, deriving conclusions on
the methods’ scalability. The existing work focuses
only on performance issues – i.e., time and space com-
parison of the algorithms – and fails to look at scal-
ability issues – i.e., what is the performance of the
algorithm when both the dataset and the graphs grow
large and/or more complex.

3. A systematic evaluation of performance and scalabil-
ity. We employ both real and synthetic graph datasets.
Specifically, four real datasets of different characteris-
tics are used: AIDS, PDBS, PCM, and PPI (see [9]).
Furthermore, a very large number of synthetic datasets
are generated that facilitate a systematic study on the
dependence of the algorithms’ performance and scala-
bility on the key problem parameters (e.g., number of
nodes, graph density, number of distinct labels, num-
ber of graphs, and query graph size).

Such a scalability and performance showdown is currently
very much lacking. Most related works are tested against the
AIDS antiviral dataset[14] and synthetic datasets, formed of
many small graphs. These sets are not adequate to provide
definitive conclusions on how an algorithm is influenced by
the characteristics of the graphs. Of these works, Grapes
[9] alone used several real datasets; however, the authors
did not evaluate scalability. Also, their performance evalu-
ation did not include a systematic exploration of the effect
of the key problem parameters. The iGraph comparison
framework [10], which implements several such techniques,
compared the performance of older algorithms (up to 2010).
Since then, several, more efficient algorithms have been pro-
posed (e.g., GraphGrepSX[2], Grapes[9], CT-Index[13]). Fi-
nally, virtually all of these works report on different metrics;
thus, no concrete conclusion can be reached regarding their
relative scalability. In order to address all above problems,
we conducted a systematic and comprehensive evaluation on
existing implementations and we report the results.

The remainder of the paper is organized as follows. Sec-
tion 2 provides useful definitions about the subgraph query
problem and a brief summarization of the related work. Sec-
tion 3 provides a detailed presentation of the competing al-
gorithms chosen for this paper. Section 4 describes the setup
of the experiments, the configuration of the algorithms, and
the characteristics of each dataset and query workload. Sec-
tion 5 discusses the results of our performance evaluation.
Finally, Section 6 summarizes key insights gained through
our evaluation and concludes the paper.

2. BACKGROUND

2.1 Definitions
All of the related indexing algorithms can in theory sup-

port arbitrary graphs with labels on both vertices and edges;
however, the available implementations of several of them
can only handle undirected graphs with labels on vertices.
We thus focus on graph datasets with such graphs.

Definition 1 (Graph). A graph G = (V,E, L) is de-
fined as the triplet consisting of the set V = {vi}, i = 1, ..., n
of vertices of the graph, the set E = {(vj , vk)}, j, k = 1, ..., n
of edges between vertices in the graph, and a function L :
V → L assigning a label l ∈ L (L being the set of all possi-
ble labels) to each vertex v ∈ V .

In this work we consider undirected graphs. We assume
that, in each graph, each vertex has a unique identifier. Note
that, by the above definition, each node in a graph can have
only one label, but any given label can be assigned to mul-
tiple nodes in a graph.

Definition 2 (Graph Isomorphism). Two graphs G
= (V,E, L) and G′ = (V ′, E′, L′) are isomorphic iff there
exists a bijection I : V → V ′ that maps each vertex of G to
a vertex of G′, such that if (u, v) ∈ E then (I(u), I(v)) ∈ E′,
L(u) = L′(I(u)), L(v) = L′(I(v)), and vice versa.

Definition 3 (Subgraph Isomorphism). A graph G
= (V,E, L) is subgraph isomorphic to a graph G′ = (V ′, E′,
L′), denoted by G ⊆ G′, iff there exists an injective function
I : V → V ′ such that if (u, v) ∈ E then (I(u), I(v)) ∈ E′

and L(u) = L′(I(u)) and L(v) = L′(I(v)). Graph G is then
called a subgraph of G′ and G′ is called a supergraph of G;
equivalently, we say that G is contained in G′. Note that
subgraph isomorphism is injective and thus there may exist
edges in E′ for which there are no corresponding edges in E.

Definition 4 (Graph Density). The density d of a
graph G = (V,E, L) is defined as the quotient of the division
of the number |E| of edges in the graph over the number of
edges in a complete graph with the same number of vertices.
In an undirected graph with |V | vertices, the latter is equal

to |V |×(|V |−1)
2

edges, and thus:

d =
2× |E|

|V | × (|V | − 1)
, d ∈ [0, 1] (1)

Definition 5 (Average Degree). The degree of a node
v in a graph G = (V,E, L) is defined as the number of edges
in the graph having v as an endpoint. The average degree
avgdeg of graph G is then defined as the average of the de-
grees of all vertices in the graph. For undirected graphs:

avgdeg = 2× |E||V | (2)

2.2 Related Work
As mentioned previously, a naive way to process a sub-

graph query is to check the query graph for subgraph isomor-
phism against each graph in the dataset. As subgraph iso-
morphism is an NP-complete problem, and graph datasets
may contain a large number of graphs, this procedure of-
ten gets too time consuming. To this end, many indexing
methods have been proposed over the years, attempting to
reduce the set of graphs against which to test for contain-
ment. [23] provides an extensive discussion of related meth-
ods (although some of the methods considered in our work
were not mentioned in [23]).

The design space is characterised through a classification
of related works in 4 major categories: (i) type of indexed
features1: paths, trees, simple cycles, or graphs; (ii) ap-
proach for extracting said features from indexed graphs: i.e.,
exhaustive enumeration or frequent mining techniques; (iii)
index data structure: hash table, tree, trie; and (iv) whether
the index stores location information or not. Moreover, all

1In this work we use the term “feature” to refer to substruc-
tures of indexed graphs used to produce the index, indepen-
dently of whether these are then stored in the index.

such algorithms operate in three stages: (a) index construc-
tion, (b) filtering and creation of a set of candidate match-
ing graphs, and (c) verification of containment of the query
graph in the latter.

Index Construction. In this stage, features are ex-
tracted from the dataset graphs and indexed in an appro-
priate data structure. Depending on the algorithm, these
features can be (a) simple paths[2, 7, 9, 28], (b) trees[15, 11,
25], (c) graphs[5, 19, 20, 21, 23, 27], or (d) a combination of
trees and graphs/cycles[13, 27]. Additionally, the features
can be extracted from the graphs by either (i) exhaustively
enumerating all such features across all graphs[2, 13, 19, 28],
or (ii) mining the dataset graphs for frequent patterns[5, 11,
20, 21, 23, 25, 27]. [23] reuses the frequent feature extrac-
tion primitives of previous algorithms (e.g., [5, 15, 21, 27]),
and is thus able to function with several feature types.

In the case of frequent feature mining algorithms, the sup-
port ratio of a feature is defined as the percentage of graphs
in the dataset containing it, and a feature is considered fre-
quent if its support ratio is above some algorithm-specific
threshold. Moreover, the discriminative ratio of a feature is
a metric characterizing the pruning power of a feature com-
pared to its sub-features. All frequent mining-based works
mentioned above provide differing formulae for this metric;
we thus do not provide a formula here but rather refer in-
terested readers to the cited papers for more details.

In all cases, a limit is imposed on the size of the indexed
features, where the size of a feature is defined as the num-
ber of edges comprising it. Features are identified by their
canonical label; i.e., a unique representation of each feature,
computed on the labels of the vertices of the feature using
an algorithm appropriate for the feature’s structure (path,
tree, etc.). A list of the IDs of graphs containing a feature
is also associated with that feature and stored in the index.
Additionally, some of the algorithms choose to maintain lo-
cation information, such as the id of the first node in each
path feature [9], or the id of the node at the center of a tree
feature [25]. Last, all this is organized in algorithm-specific
structures, such as hash tables, prefix trees, tries, or lattices.

Filtering. In this stage, the query graph is first looked up
in the index. If an exact match is found, the related graph
IDs are returned. Otherwise, the query graph is broken up
into features of the same form as those used to create the in-
dex. These are then matched against the information in the
index structure, resulting in a set of graphs possibly contain-
ing the query graph, called the candidate set for the given
query. In most algorithms the candidate set is computed as
the intersection of the sets of graphs containing each fea-
ture of the query graph. Additionally, the algorithms that
also store location information take advantage of this added
knowledge at this stage for further filtering.

Verification. The above filtering stage may well produce
false positives as graphs in the dataset may contain all (size-
limited) features of a query graph but not the graph itself.
To this end, a final verification step is necessary, consisting of
testing the query graph for subgraph isomorphism against
the graphs in its candidate set. Most algorithms perform
this test using the VF2 algorithm[6], with the exception of
[13] and [25] which employ algorithm-specific tests.

All aforementioned algorithms reported performance re-
sults against datasets consisting of a larger number of small
graphs (e.g., the AIDS antiviral dataset containing 40,000

graphs each consisting of 45 nodes and 47 edges on aver-
age, the PubChem dataset containing 1 million graphs each
consisting of 24 nodes and 26 edges on average, etc.), often
providing no proper insight on the performance and scal-
ing of the algorithms against considerably larger and more
complex datasets and query workloads. Of these works,
Grapes[9] was the only one to provide results against data-
sets with larger graphs (PDBS, PCM, PPI, to be discussed
shortly), but the number of graphs in these datasets was
quite small (PDBS contains 600 graphs, PCM contains 200
graphs, and PPI only 20 graphs). Moreover, virtually all
such works reported a different set of metrics, making com-
parisons between the various algorithms a very hard task.

iGraph[10] provided a comprehensive comparison of in-
dexing methods for subgraph query processing. Our work
replicates some of the experiments in [10]. However, our
work complements and surpasses iGraph in several ways.
First, we consider several indexing algorithms that were
published after [10] and were proven to be significantly su-
perior to those tested by the latter (often by orders of mag-
nitude). Second, in iGraph, scalability was not addressed;
all the previous papers, and specifically iGraph, focus on
performance evaluation against small graphs (especially in
terms of number of nodes), while their “large datasets” are
typically only large in terms of the number of graphs in the
dataset and not with respect to the size/complexity of the
graphs. Third, we performed a systematic study on perfor-
mance and scalability based on 5 characteristics of a graph
dataset/workload: the number of nodes, the density of the
graphs, the number of distinct labels, the number of graphs
in the dataset, and the query size.

[16] has looked at subgraph query processing for datasets
consisting of a single very large (billion-node) graph. This
work takes a totally different approach, by not building
an index at all and instead utilizing a memory cloud and
massively parallel computing primitives. Its authors moti-
vate their approach by claiming that index-based solutions
do not scale, and by providing theoretical arguments based
on the asymptotic complexity of the latter (but no exper-
imental evaluation of their approach against index-based
techniques). Our work complements and substantiates this
claim, by providing hard numbers and a systematic exami-
nation of the breaking points of each index algorithm type,
across a large number of datasets of varying characteristics.

Last, there has been considerable work on the subjects
of approximate graph pattern matching and of supergraph
query processing. In the first case, related techniques (e.g,
[11, 13, 17, 19, 22, 26], etc.) do perform subgraph matching,
but with support for wildcards and/or approximate matches.
In the second case, the related algorithms (e.g., [24, 3]) re-
turn those graphs in the dataset which are contained in the
query graph (as opposed to containing the query graph; see
[24] for an overview of related approaches). All these al-
gorithms are not directly related to our work, as we focus
on exact-match index-based subgraph query processing, and
have thus been omitted from our evaluation.

3. COMPETING ALGORITHMS
In order to cover as much of the design space as possi-

ble, we opted to perform an extensive comparison of six of
the above algorithms. These algorithms were purposefully
selected to represent different points in the design space,

characterised by their use of: different feature types, dif-
ferent feature extraction approaches, different index data
structures, and different filtering and verifications processes.
We chose to evaluate a set of representatives of the various
regions in the design space, as opposed to providing an ex-
haustive (and unwieldy) examination of all subgraph query
processing algorithms to date (amounting to dozens). More
specifically, we compare CT-index[13], GCode[28], gIndex
[21], Grapes[9], GraphGrepSX[2], and Tree+∆[27]. We jus-
tify our selection of algorithms and discuss their character-
istics below.

gIndex[21] uses a frequent mining approach, with graph-
structured features. It uses both the features’ support ratio
and discriminative ratio to decide whether a feature is fre-
quent or not, and indexes these features in a prefix tree. It
uses no location information, and thus it only stores a graph
ID list per feature. During query processing, [21] enumer-
ates all graph-structured fragments of the query graph up
to a maximum fragment size, in a way that ensures that
(a) smaller fragments are enumerated before larger ones,
by starting with fragments of size one and expanding each
fragment with one additional edge at a time, and (b) if a
fragment does not appear in the index, no supergraphs of
that fragment will be produced. Then, the candidate set of
the query is computed as the intersection of the graph ID
lists of the largest fragments along each expansion path. Fi-
nally, the verification is performed by comparing the query
graph against all candidate graphs using the VF2 algorithm.
gIndex was chosen to represent the frequent subgraph min-
ing algorithms, as its performance exhibited the same trends
as other algorithms of its type ([5, 23]) while its implemen-
tation was relatively stabler, e.g., compared to that of [5],
which proved quite problematic, for larger datasets.

Tree+∆[27] also uses a frequent mining approach, but ini-
tially only indexes tree-structured features of up to a pre-
defined size. The feature information is stored in a hash
table. Like [21], no location information is maintained. In
the query processing phase, all tree-structured fragments
of the query graphs are enumerated and looked up in the
index; the candidate set is then computed as the intersec-
tion of the graph ID lists corresponding to these fragments,
and a final verification step is performed using the VF2 al-
gorithm. However, [27] takes an extra step: in addition
to trees, the algorithm also enumerates simple cycles found
in query graphs, which it then extends by adjacent edges.
Those cycle-based structures that are found to be discrim-
inative enough (based on a predefined threshold on their
discriminative ratio) are added to the index structure and
used just like tree-structured features for subsequent queries.
[27] was chosen over related frequent tree mining algorithms
([11, 25]) due to its being the best overall performer.

gCode[28] takes a different route and chooses an exhaus-
tive enumeration approach. First, it enumerates all paths of
up to a predefined size. Given these paths, it then produces
vertex signatures, consisting of three components. The first
two components are a counter-string encoding of the labels
of vertices in each path, and a counter-string encoding the
neighbors of each vertex in each path. The third compo-
nent is computed as follows: (i) first, for each node in the
dataset, the algorithm creates a “level-N path tree” rooted
at said node and consisting of all length-N paths starting at
that node; (ii) this tree is encoded in an adjacency matrix
form; (iii) the eigenvalues of the matrix are computed and

sorted by value; and (iv) the top-m such values (for some
user-configurable m) are used as the third component of the
vertex signature. For every graph in the dataset, all these
vertex signatures are then combined to form the graph’s
code. All graph codes are finally stored in a balanced search
tree. When a query comes in, first [28] follows the same pro-
cess as above to construct a graph code for the query graph.
This code is then compared against the codes of graphs in
the dataset. This results in a first set of candidate graphs,
which is then further pruned by comparing the individual
vertex signatures of the query graph and candidate graphs.
Finally, verification is performed by comparing the query
graph against all graphs in the final candidate set using the
VF2 algorithm. gCode was chosen to represent algorithms
encoding (but not storing) exhaustively enumerated path-
based features, as it is rather unique in this sense; it is also
a prime example of an algorithm which, albeit considerably
slower than its competitors, manages to outscale them for
certain very large input cases.

CT-Index[13] also uses exhaustive enumeration to build
its index. It uses path-, tree- and cycle-structured features
(of up to a user-configurable size). The canonical labels of
all such features are then combined and hashed, produc-
ing a fixed-size bit array fingerprint for each graph in the
dataset. Neither this algorithm maintains any location in-
formation. During query processing, a similar fingerprint is
created for the query graph and is then compared against
the fingerprints of all graphs in the dataset via a bitwise-
AND operation. This produces a candidate set which is then
fed to a verification stage utilizing a modified VF2 algorithm
with additional heuristics. [13] was chosen to represent algo-
rithms encoding (but not storing) exhaustively enumerated
features whose structure is more complex than that of [28]
above; [13] is also rather interesting in that it showcases the
impact of trading off filtering power for a very fast match-
ing approach and a low memory overhead, and offsetting the
former with a very fast subgraph isomorphism algorithm.

GraphGrepSX[2] (GGSX for short) enumerates all paths
up to a maximum length using depth first search and or-
ganizes them in a suffix tree. Each node of the suffix tree
also stores the graph-id list and the number of occurrences
of the corresponding path feature in each graph it appears
in. During query processing, maximal paths (of the same
maximum length as above) of the query graph are extracted
and organized in a query suffix tree, which is then compared
against the index structure. Unmatched branches of the in-
dex are pruned away, and a further filtering is performed
based on the frequencies of features in each graph. This
process produces the candidate set, which then undergoes
a verification stage using VF2. GraphGrepSX was chosen
over related algorithms due to its superior performance.

Finally, Grapes[9] also uses an exhaustive enumeration
approach, indexing paths of up to a maximum length. How-
ever, in addition to the paths’ canonical labels, Grapes also
maintains location information in the form of the ID of the
starting node of each path for each graph it appears in, as
well as a counter denoting how many times each feature ap-
pears in each such graph. This information is then indexed
using a trie. An added benefit of Grapes is that it is the only
of the above algorithms which was designed specifically to
support parallel execution of both its indexing and query
processing chores. In the former case, this is accomplished
via a smart assignment of graph nodes to threads so that

AIDS PDBS PCM PPI
D

a
ta

se
t # graphs 40000 600 200 20

#disconnected 3157 360 200 20
graphs
#labels 62 10 21 46

P
er

G
ra

p
h

Avg #nodes 45 2939 377 4942
StdDev #nodes 21.7 3215 186.7 2648
Avg #edges 46.95 3064 4340 26667
Avg density 0.0475 0.0007 0.0612 0.0022
Avg degree 2.09 2.06 23.01 10.87
Avg #labels 4.4 6.4 18.9 28.5

Table 1: Characteristics of real datasets

each thread can produce a complete and disjoint part of
the final trie, without needing to synchronize with the rest.
During query processing, the query graph also undergoes
the same (parallel) process of path enumeration and trie
construction. The query trie is then compared against the
index trie and non-matching parts are pruned away. The
“surviving” parts of the trie are further reduced by tak-
ing into account the aforementioned location information,
and then translated into a set of connected components per
graph. This set then consists the candidate set of this al-
gorithm. In the verification stage, the query graph is tested
for subgraph isomorphism against each of these connected
components in parallel, with each such component assigned
to a different thread. Although [9] is in the same (concep-
tual) region of the design space as [2] above, it was chosen to
showcase the effects of parallelized computation and of trad-
ing off space to maintain location information for a higher
filtering capability. Moreover, [9] is a prime example of a
high performer – being one of the fastest algorithms regard-
ing query processing times across most of our scenarios –
which is however occasionally outscaled by “inferior” algo-
rithms when some problem dimensions become large.

4. THE EXPERIMENTAL FRAMEWORK

4.1 Setup
All experiments were conducted on a Windows 7 SP1

host, featuring 2 Intel Xeon E5-2660 CPUs (2.20GHz, 20MB
Cache, 8 cores/16 threads per CPU) and 128GB of RAM.
For each experiment, a time limit of 8 hours2 was imposed,
after which the experiment was terminated.

For Tree+∆, gIndex and gCode we used the implemen-
tations provided by [10]. For all remaining algorithms, we
used the implementations provided by their respective au-
thors. In the case of [9], we had to alter the source code so
that the VF2 verification step returns after the first match
of the query graph against a connected component for an
indexed graph, as opposed to the original implementation
which was returning all possible matches; this was necessary
as all other algorithms return the first match by default.

We used the default values for the input parameters of
compared algorithms, as they were defined by their respec-
tive authors in the relevant publications and/or in their im-
plementation code. More specifically:

2As a matter of fact, we waited for more than 24 hours
before terminating those experiments exceeding the 8-hour
limit, but to no avail.

• For gIndex, the maximum feature size was set to 10,
the support ratio to 0.1, and the discriminative ratio to
2.0. The same parameters were used for both indexing
and query processing.
• For Tree+∆ the maximum feature size was set to 10,

the support ratio to 0.1, and the discriminative ratio3

to 0.1. For query processing, the support ratio thresh-
old to add new features to the index is set to 0.8.
• For gCode, paths of up to size 2 were used to construct

the vertex signatures, and the top 2 eigenvalues are
maintained. Additionally, vertex label and neighbor
label bit-strings were both 32 bits long.
• For CT-Index, we created 4096-bit fingerprints by ex-

haustively enumerating trees and cycles of up to length
4. Note that [13] uses trees of size 6 and cycles of size
8, but [9] showed that a size of 4 for the features results
in a somewhat worse filtering power but a significantly
lower indexing and query processing time.
• For GGSX, we enumerated paths of up to a size of 4.
• For Grapes, we used 6 threads and enumerated paths

of up to a size of 4.

4.2 Real and Synthetic Datasets
We tested the performance and scalability of these algo-

rithms against (a) a set of real datasets provided by [9] (i.e.,
AIDS, PDBS, PCM, PPI), and (b) synthetic datasets cre-
ated using the widely used GraphGen[4] generator.

Table 1 summarizes the characteristics of the real datasets.
All four datasets differ across all of the characteristics which
we identified as significant; specifically, AIDS consists of a
large number of small and low average degree graphs, PDBS
contains a moderate number of large but low average degree
graphs, PCM is comprised of a moderate number of medium-
sized but high average degree graphs, and PPI includes few
large but medium average degree graphs. Thus, they pro-
vide individual data points across the evaluation space, but
are not adequate to examine the algorithms’ scaling across
datasets of varying sizes and complexities.

Concerning the synthetic datasets’ generation, we took a
rather systematic approach. First, we examined the val-
ues of the core input parameters for the four real datasets
(AIDS, PDBS, PCM, PPI) and established an initial set of
relevant values:
• Mean number of nodes per graph: {50, 200, 400, 4000},
• Mean graph density: {0.005, 0.025, 0.05, 0.075},
• Number of labels in the dataset: {10, 20, 40, 60},
• Number of graphs in the dataset: {1000, 10000}.
• Query size: {4, 8, 16, 32}.

We then tested the algorithms using all possible combi-
nations of these parameter values (4 ∗ 4 ∗ 4 ∗ 2 = 128 cases
in the indexing phase and 4 ∗ 128 = 512 in the query pro-
cessing phase). Alas, the results revealed that many of the
algorithms could not produce an index or process queries
for most of these combinations. We then computed a set
of “sane defaults”, so that they represent a challenging case
but for which all algorithms could produce results; namely,
200 nodes per graph, average density 0.025, 20 distinct la-
bels and 1000 graphs in the dataset. We then executed
several experiments to study the scalability of the various
algorithms, varying one parameter at a time to examine its
effect on the various metrics and algorithms.

3Tree+∆ uses a different formula than gIndex to compute
the discriminative ratio, hence the different parameter value.

GraphGen allows the parametrization of all above men-
tioned key parameters. Specifically, it creates graphs through
the following steps:

1. The user specifies the number of distinct labels, of dis-
tinct edges, and of graphs in the dataset, as well as the
average graph density and graph size;

2. GraphGen produces an alphabet of distinct edges, con-
sisting of all possible pairs of distinct node labels;

3. Then, for every new graph, GraphGen computes a ran-
dom size (number of edges) and density, following a
normal distribution around the aforementioned aver-
ages and a standard deviation of 5 and 0.01 respec-
tively, and iteratively selects a (uniformly distributed)
random edge from the alphabet, adding it to the cur-
rent graph, until the requested size/density is reached
or the system runs out of edges to use.

It is also worth mentioning that several of the graphs in
the real datasets are disconnected, whereas all graphs in
the synthetic datasets are connected. Moreover, for the vast
majority of the input parameter values considered in our set-
ting, the datasets generated by GraphGen consisted almost
exclusively – more than 95% of the graphs in the dataset
– of graphs with cycles (i.e., not trees or paths). There
were only two exceptions to this rule: datasets with only 50
nodes per graph, where almost half of the graphs were tree-
shaped, and datasets with average graph density of 0.005,
where 8.5% of the graphs contained no cycles.

4.3 Query Workloads
Given the number of query graphs and their desired size

(in number of edges), queries are constructed as follows:
1. Select a graph uniformly at random from the dataset;
2. Select a node uniformly at random from said graph;
3. Starting from that node, perform a random walk;
4. Maintain the graph created by the union of visited

nodes and travelled edges;
5. When the desired query graph size is reached, termi-

nate and return the above graph as the new query.
We created query graphs with 4, 8, 16, and 32 edges, to
match the query graph sizes used by related work. As these
query graphs are actually subgraphs of the various datasets,
they have the same characteristics (on average) as the latter
with regard to density and distribution of labels.

In order to evaluate the filtering power of the algorithms,
we use the false positive ratio, defined as:

FP =
1

|Q|
∑
q∈Q

|C{q}| − |A{q}|
|C{q}| (3)

where |·| denotes set cardinality, Q is the set of all queries in
each query workload, and C{q} and A{q} are the candidate
set and answer set respectively for query q.

5. EVALUATION RESULTS

5.1 Real Datasets
Figures 1(a) and 1(b) present the time and size require-

ments to perform the index creation with all algorithms.
Grapes and GGSX are the only algorithms which managed
to complete indexing for all datasets in the 8-hour time
limit. Grapes consistently outperformed the other methods
in terms of indexing time, often by at least one order of mag-
nitude; conversely, its index size grows quite large compared

to all but Tree+∆’s. Figures 1(c) and 1(d) present the query
processing time and false positive ratio respectively. Again,
Grapes outperforms all contenders in processing time, with
the sole exception of GGSX on the PPI dataset. The fact
that there is no result for gCode for the PDBS dataset, is due
to its implementation not being able to handle signatures of
the size required for this dataset and thus crashing.

5.2 Synthetic datasets
We will now focus on stress-testing the various algorithms

using synthetic datasets, with the intent of both covering the
space of possible parameter value combinations, and explor-
ing the breaking points of the various indexing and query
processing algorithms. Unless otherwise noted, we are us-
ing the sane defaults mentioned above to generate the graph
datasets and query workloads.

5.2.1 Number of nodes
First, we vary the number of nodes per graph in the

dataset; more specifically, we have created datasets consist-
ing of graphs with 50, 75, 100, 125, 150, 175, 200, 250, 300,
400, 500, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000
nodes. Please note that, given a fixed value for the aver-
age graph density, a linear increase in the number of nodes
translates to a quadratic increase in the number of edges in
the graph (see equation (1)).

Figures 2(a) and 2(b) present the time and size results
for the index construction for each algorithm. For small
graphs (less than 175 nodes), Tree+∆ is marginally bet-
ter than Grapes in index construction time. For larger
graphs, Grapes takes the lead, being faster than the rest
by at least one order of magnitude. GGSX comes second,
with gCode and CT-Index being third and fourth; gIndex
and Tree+∆ fail to produce an index even for as few as
250-300 nodes per graph. This result is a direct artefact of
the complexity of the indexed features and the methods of
feature extraction. Frequent feature mining is known to be
a very computationally costly process[10] and thus gIndex
and Tree+∆ have the worst running times; moreover, as
graphs are more complex (and more numerous) than trees,
gIndex fairs worse than Tree+∆. CT-Index and gCode ex-
haustively enumerate their features and are thus faster than
the frequent mining approaches; however, the computation
of fingerprints/signatures is non-trivial and this shows in
the results. Moreover, tree features are more complex (and
numerous) than paths, and thus CT-Index fairs worse than
gCode. Last, Grapes and GGSX both exhaustive enumerate
paths (leading to the lowest running times), with the former
having an edge due to its multi-threaded implementation.

On the index size front, CT-Index and gCode have the
smallest indices since these algorithms only store fixed-size
fingerprints/signatures per graph (gCode’s index is larger
as it also stores node signatures). The index size for GGSX
and Grapes levels out after some point; as these algorithms
use a prefix tree/trie to store indexed paths, as soon as all
possible paths up to the size limit have been produced, the
index structure doesn’t grow any further (other than loca-
tion/frequency information being recorded). Last, the fre-
quent mining algorithms start off with a small index, but
the larger the graphs the more the frequent features, and
this exponential increase is evident in both of these figures.

Figures 2(c) and 2(d) depict the query processing time
and false positive ratio. The x-axis extends only up to 800

 1

 10

 100

 1000

 10000

 100000

AIDS PDBS PCM PPI

ti
m

e
(s

ec
)

databases

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 10000

AIDS PDBS PCM PPI

si
ze

 (
M

B
)

databases

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(b) Index Size

 0.001

 0.01

 0.1

 1

 10

 100

AIDS PDBS PCM PPI

ti
m

e
(s

ec
)

databases

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(c) Query Processing Time

 0.01

 0.1

 1

AIDS PDBS PCM PPI

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

databases

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(d) Query Processing False Positive Ratio

Figure 1: Indexing (a, b) and query processing (c, d) results over the real datasets

nodes due to the fact that no algorithm could handle queries
on datasets with larger graphs within the 8-hour limit. Al-
though Grapes managed to complete the indexing stage for
larger cases (up to 1800-node graphs), in the query process-
ing phase the increase in the number of candidates and in
the average size of each candidate graph made the subgraph
isomorphism time take more than the 8-hour limit. More-
over, gCode was failing for graphs larger than 200 nodes
with error messages indicating the implementation was un-
able to handle signatures of the produced sizes. Trend-wise,
the “simple” algorithms (exhaustive enumeration of paths)
were the clear winners, with the other algorithms follow-
ing in a similar order as in the indexing time case. The
exception here is gCode, whose convoluted signature gener-
ation algorithm resulted in a larger execution time than even
the frequent mining algorithms. In conclusion, the order of
the algorithms from the fastest to the slowest is: (Grapes,
GGSX) < CT-Index < (Tree+∆, gIndex) < gCode.

Last, as far as the algorithms’ filtering power is concerned,
Figure 2(d) shows an interesting trend: for all algorithms,
the false positive ratio increases initially with the number
of nodes, but then decreases again after some point: This
“knee” appears around the 100-node mark for CT-Index and
Tree+∆, around the 200-node mark for gIndex and gCode,
on the 500-node mark for GGSX, while Grapes doesn’t reach
its turning point in the x-axis range depicted in the figure.

5.2.2 Density
Next, we vary the density of the graphs in the dataset.

Specifically, we used the following density values: 0.005,
0.006, 0.007, 0.008, 0.009, 0.01, 0.015, 0.02, 0.025, 0.03,
0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3.

Figures 3(a) and 3(b) depict the indexing time and size re-
sults, while Figures 3(c) and 3(d) show the query processing
results. Apart from Grapes and GGSX, no other algorithm
could produce an index for density values above 0.1 within
the 8-hour limit, and Grapes was the only one capable of
dealing with densities above 0.2. Please note that, as afore-
mentioned, with a fixed number of graph nodes, increasing
density results in a proportional increase in the number of
graph edges (see equation (1)). We would thus expect to see
similar behavior for both indexing and query processing as
in the previous case, only with a less dramatic effect as the
dependency is now proportional, not quadratic, and this is
exactly what can be seen in these figures.

The astute reader will note that although GGSX and
Grapes did produce an index for density values up to 0.3,
the x-axis in Figures 3(c) and 3(d) does not extend beyond
the 0.1 point. This was due to the fact that, when increasing
densities, these algorithms didn’t manage to produce results
for densities above 0.1 within the 8-hour limit. To this end,
we also show per-query-size query processing time results
in Figure 4. An interesting observation stemming from this
figure is that, for density values up to 0.1, the exhaustive
enumeration approaches are rather insensitive to the size of
the queries, whereas the frequent mining approaches show a
small but noticeable increase in their query processing times.
Grapes was the only algorithm capable of producing some
query results for densities above 0.1. Moreover, we can see
how the increase in query processing time becomes more
abrupt the larger the query size, with Grapes producing re-
sults within the 8-hour limit for density values up to only 0.2
for 16-edge queries, and only up to 0.1 for 32-edge queries.

5.2.3 Number of distinct node labels

 0.1

 1

 10

 100

 1000

 10000

 100000

 500 1000 1500 2000

ti
m

e
(s

ec
)

number of nodes

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 100000

 500 1000 1500 2000

si
ze

 (
M

B
)

number of nodes

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(b) Index Size

 0.001

 0.01

 0.1

 1

 10

 100

 100 200 300 400 500 600 700 800

ti
m

e
(s

ec
)

number of nodes

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(c) Query Processing Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

number of nodes

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(d) Query Processing False Positive Ratio

Figure 2: Indexing (a, b) and query processing (c, d) performance results for varying number of nodes

Varying the number of nodes per graph or the average
graph density, resulted in larger graphs with more nodes
and more edges. However, other than the graph size, the
number of distinct labels in the dataset can also affect the in-
dexing and query processing performance of the algorithms.
More specifically, the alphabet of edges produced by Graph-
Gen grows quadratically to the number of distinct labels.
With the rest of the parameters constant, a larger alphabet
translates to less overlap in the edges across graphs of any
given dataset, inadvertently affecting approaches based on
frequent fragment mining. Thus, we performed an evalua-
tion ranging the number of distinct labels from 10 to 80.

Figures 5(a) and 5(b) present the indexing time and in-
dex size for all algorithms. True to our above intuition,
the indexing time of approaches using exhaustive enumera-
tion is relatively unaffected by the increase in the number
of distinct labels. On the other hand, the two frequent-
mining algorithms are definitely affected, albeit curiously in
completely opposite ways; whereas gIndex’s indexing time
increases with more distinct labels, that of Tree+∆’s de-
creases. We attribute this discrepancy in the different heuris-
tics implemented by each algorithm, the fact that the former
mines graphs while the latter mines trees and the discrimina-
tive ratio set by the algorithms. Also note that tree canoni-
cal labels are less computationally expensive to be produced
than graph canonical labels and require less space for stor-
age. Also notably, the frequent mining techniques could not
construct an index within the 8-hour limit for the case of
10 distinct labels. We speculate the following: these mining
techniques start from small features of size 1 (1 edge), that
are expanded by one edge at every stage. If all features are
found to be frequent because of the small number of labels,
then they all need to be expanded in the next step, leading

to an exponential increase of combinations to be considered.
Figures 5(c) and 5(d) present the query processing time

and false positive ratio results, averaged over all different
query sizes. We can see that the processing time of all algo-
rithms seems to improve with more distinct labels, with the
sole exception of gIndex. Similary, the filtering power of the
algorithms also improves with more distinct labels, with the
exception of Tree+∆ and CT-Index. Intuitively, the more
the distinct labels the less repetition there is of distinct edges
(i.e., pairs of labels) from the alphabet, so the number of
false positives is expected to decrease. CT-Index again has
the worst filtering power of all contenders, since its fixed-
size hash-based fingerprints seem to suffer from “collisions”
(considerably different graphs producing very similar finger-
prints); however, what it loses in filtering power it gains in
processing time, with the simplicity of its hash-based ap-
proach and its tweaked verification algorithm. Again, the
general pattern regarding query processing time is: (Grapes,
GGSX) < CT-Index < (Tree+∆, gIndex) < gCode.

5.2.4 Number of graphs in the dataset
Last, we vary the number of graphs in the dataset. This

parameter takes on values of 1000, 2500, 5000, 7500, 10000,
25000, 50000, 100000 and 500000 graphs. We would expect
all performance metrics (indexing time, index size, process-
ing time) to scale linearly to the number of graphs, as the
latter does not affect in any way the complexity or size of
individual graphs in the dataset. Along the same lines, we
would expect the query processing false positive ratio to be
relatively unaffected, for the exact same reason. These in-
tuitions are indeed verified by the results depicted in figure
6, where these tendencies are rather prominent and clear.

Although the increase in performance metrics is linear

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1

ti
m

e
(s

ec
)

densities

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1

si
ze

 (
M

B
)

densities

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(b) Index Size

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1

ti
m

e
(s

ec
)

densities

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(c) Query Processing Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1
av

g
 f

al
se

 p
o

si
ti

v
e

ra
ti

o
densities

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(d) Query Processing False Positive Ratio

Figure 3: Indexing (a, b) and query processing (c, d) performance results for varying density values

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1

ti
m

e
(s

ec
)

densities

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(a) Query Size: 4

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1

ti
m

e
(s

ec
)

densities

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(b) Query Size: 8

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1

ti
m

e
(s

ec
)

densities

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(c) Query Size: 16

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1

ti
m

e
(s

ec
)

densities

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(d) Query Size: 32

Figure 4: Query processing times for individual query graph sizes and varying density values

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

ti
m

e
(s

ec
)

labels

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

si
ze

 (
M

B
)

labels

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(b) Index Size

 0.001

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

ti
m

e
(s

ec
)

labels

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(c) Query Processing Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

labels

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(d) Query Processing False Positive Ratio

Figure 5: Indexing and query processing performance results for varying number of distinct labels

to the number of graphs, we can see that all algorithms
other than GGSX didn’t manage to produce an index for
very large numbers of graphs. For gCode, CT-Index, and
Tree+∆, this was a case of the indexing process taking more
than 8 hours for datasets with more than 50,000 graphs
(actually the breaking points of individual algorithms were
spread in the 50,000-100,000 node range, but we decided to
forego adding individual data points for each algorithm for
the sake of presentation consistency). gIndex also failed to
produce indices due to excessive indexing time; moreover, its
average time was much higher than that of other algorithms
(an artefact of frequent mining and graph features) and thus
exceeded the 8-hour limit much earlier than the rest (around
the 10,000-node mark). Furthermore, this is the only case
in our experiments where Grapes didn’t manage to com-
plete all indexing chores; the reason for this was excessive
memory usage (its index size curve alludes to this), leading
to thrashing even in our 128GB RAM host. However, for
the cases where it managed to produce an index, its query
processing performance was on par with that of GGSX and
considerably better than the rest. Last, we can see again the
same paradox as before for CT-Index; although its filtering
power was the worst by a large margin, its query process-
ing time was second only to Grapes and GGSX, due to the
speed of using hash-based fingerprints and implementing a
smarter subgraph isomorphism algorithm. Once again, the
general pattern regarding query processing time is: (Grapes,
GGSX) < CT-Index < (Tree+∆, gIndex) < gCode.

6. LESSONS LEARNED & CONCLUSIONS
Effect of key dataset/workload characteristics. Our

findings are summarized below:

• As indicated by equation (1), a linear increase in the
number of nodes results in a quadratic increase in the
number of edges; along the same lines, given a con-
stant number of nodes, the number of edges increases
linearly to the graph density. As the number of fea-
tures is superlinear to the size of a graph, the increase
of the above two factors leads to a detrimental increase
in the indexing time, with the frequent mining tech-
niques being more severely affected.
• The number of graphs increases the overall complexity

only linearly (albeit the frequent mining techniques
are more sensitive because more features have to be
located across more graphs).
• The increase in the number of distinct labels leads to an

easier dataset to index and an easier query workload
to process, as it results in fewer occurrences of any
given feature and thus a decrease in the false positive
ratio of the various algorithms. Even relatively small
changes in this characteristic affected drastically the
performance of some of the algorithms.
• The size of query graphs affects all methods, even more

so when the datasets consist of dense graphs. This
effect is more pronounced for frequent mining tech-
niques, even for moderately dense or even sparse graphs.

Sancta Simplicitas. Our findings give rise to the follow-
ing adage: “Keep It Simple and Smart”. The general ten-
dency is that, the simpler the feature structure and extrac-
tion process, the faster the indexing and query processing
algorithm. Although seemingly counterintuitive, this conclu-
sion is easily justifiable. Graphs are indeed more expressive
than trees, which are in turn more expressive than paths,
and thus a graph-based index would have a higher filtering
power and lower processing time than a tree-based index etc.

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

ti
m

e
(s

ec
)

number of graphs

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

si
ze

 (
M

B
)

number of graphs

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(b) Index Size

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

ti
m

e
(s

ec
)

number of graphs

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(c) Query Processing Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

number of graphs

Grapes
GGSX

CTindex
gIndex

tree+delta
gCode

(d) Query Processing False Positive Ratio

Figure 6: Indexing and query processing performance results for varying number of graphs in the dataset

However, the number of subgraphs of size n in a graph is sig-
nificantly larger than the number of trees of size n, and the
trees of size n is significantly larger than the number of paths
of size n. Due to this, indexes utilizing more features with
complex structures are forced to maintain only a subset of
them (frequent mining techniques) or apply some compres-
sion upon them (CT-index), and thus the expressive power
gained by the more complex features is offset by the de-
crease in coverage and/or the introduction of yet more false
positives in the filtering stage. Moreover, the more complex
features also translate to higher indexing times and similarly
higher filtering times. On the other hand, algorithms with
simpler feature structures, resorting to exhaustive enumera-
tion during their index construction, enjoy low indexing and
filtering times, at the expense of considerably larger indexes.

Choosing the right index method for user needs.
The various solutions tend to optimize different aspects of
their operation. Answering which algorithm is best fit for
any given case requires choosing an optimization criterion.

If index size is of importance, algorithms utilizing fixed-
width encodings (CT-Index, gCode) should be chosen first;
this is especially true as the size and complexity of the input
grows. Frequent mining algorithms (gIndex, Tree+∆) may
be competitive for small/sparse datasets, but they quickly
lose their edge as the datasets grow. Last, techniques using
exhaustive enumeration and no encoding of features (Grapes,
GGSX) have by far the largest indexes in size. This is par-
ticularly important if the index is to reside in main memory,
as is usually desirable in most realistic use cases.

For the lowest indexing time, one should first look at
techniques exhaustively enumerating their features (Grapes,
GGSX, gCode, CT-Index), with approaches utilizing sim-
pler features (paths; i.e., Grapes, GGSX) being consider-

ably faster compared to those using more complex features
(trees, cycles; i.e., CT-Index) and/or encoding (i.e., CT-
Index, gCode); again, frequent mining approaches (gIndex,
Tree+∆) are competitive only for small/sparse datasets, but
their indexing times grow very high very fast.

For query processing time, again the approaches using ex-
haustive enumeration (Grapes, GGSX, CT-Index) are the
clear winners, with those indexing simple features (paths;
i.e., Grapes, GGSX) having the edge over those with more
complex features (trees, cycles; i.e., CT-Index). Frequent
mining approaches (gIndex, Tree+∆) are usually an order
of magnitude slower than that. GCode here is the odd one
out, as its encoding scheme seems to dominate the query
processing time, hence it appears to be the slowest.

From a scalability point of view interesting trends evolve as
the input grows larger and/or denser. For example, gCode,
usually by far the slowest of the lot in query processing
time, wins over the initially much faster frequent mining ap-
proaches as the dataset and graphs grow in size and density,
as it exhibits a much better scaling. Conversely, Grapes,
usually a very fast algorithm, fails to produce an index
for certain very large datasets, and is routinely outscaled
by GGSX. Notably, when the number of graphs goes be-
yond a few thousand, Grapes is also outscaled by Tree+∆,
gCode and CT-Index, as the additional location information
in Grapes’ index causes it not to fit in main memory.

Scalability limits. When dataset size (in number of
nodes or density per graph and/or in number of dataset
graphs) grows very large, none of the above methods can
cope. Specifically, our results show that no method can
scale beyond graph datasets with 1000 graphs, with each
graph having 800 nodes, of medium (0.025) density. Reduc-
ing the average number of nodes per graph to 200 allows

GGSX to scale up to 100,000 graphs. At larger scales, one
should either (i) rethink anew indexing methods, (ii) adopt
an index-less approach (e.g., [16]), or (iii) turn to algorithms
providing approximate answers.

Finally, let us compare our conclusions against those reached
by the iGraph study. For the smaller datasets that iGraph
studied and for algorithms common in iGraph and our pa-
per, our results are in agreement. Specifically, the results for
the index construction of gCode, gIndex and Tree+∆ show
the same relative order and trends. Furthermore, our query
processing results also coincide.

However, our work systematically studied the algorithms
as they depend on key workload and dataset characteristics
and further stress-tested them using 4 real and many syn-
thetic datasets. This revealed the all new insights outlined
above. Furthermore, with respect to the common algorithms
with iGraph, gCode, although can be up to orders of magni-
tude worse than gIndex and Tree+∆ at smaller scales, it can
outscale both gIndex and Tree+∆, as density increases and
can outscale gIndex and match the scalability of Tree+∆
as the number of dataset graphs increases. More impor-
tantly, in contrast to iGraph’s conclusion, our study reveals
2 methods, GGSX and Grapes, one of which is always the
clear winner for query processing time and scalability!

7. REFERENCES
[1] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland,

T. Bhat, H. Weissig, I. N. Shindyalov, and P. E.
Bourne. The protein data bank. Nucleic acids
research, 28(1):235–242, 2000.

[2] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and
D. Shasha. Enhancing graph database indexing by
suffix tree structure. In Proc. IAPR PRIB, pages
195–203. 2010.

[3] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and
X. Gu. Towards graph containment search and
indexing. In Proc. VLDB, pages 926–937, 2007.

[4] J. Cheng, Y. Ke, and W. Ng. GraphGen.
http://www.cse.ust.hk/graphgen/.

[5] J. Cheng, Y. Ke, W. Ng, and A. Lu. FG-index:
towards verification-free query processing on graph
databases. In Proc. ACM SIGMOD, 857-872, 2007.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
A (sub) graph isomorphism algorithm for matching
large graphs. IEEE TPAMI, 26(10):1367–1372, 2004.

[7] R. Di Natale, A. Ferro, R. Giugno, M. Mongiov̀ı,
A. Pulvirenti, and D. Shasha. Sing: Subgraph search
in non-homogeneous graphs. BMC Bioinformatics,
11(1):96, 2010.

[8] Facebook Graph API.
https://developers.facebook.com/docs/graph-api.

[9] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti,
A. Ferro, and D. Shasha. GRAPES: A Software for
Parallel Searching on Biological Graphs Targeting
Multi-Core Architectures. PloS One, 8(10):e76911,
2013.

[10] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. iGraph:
a framework for comparisons of disk-based graph
indexing techniques. PVLDB, 3(1-2):449–459, 2010.

[11] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In Proc. IEEE ICDE,
pages 38–38, 2006.

[12] Y. He, F. Lin, P. R. Chipman, C. M. Bator, T. S.
Baker, M. Shoham, R. J. Kuhn, M. E. Medof, and
M. G. Rossmann. Structure of decay-accelerating
factor bound to echovirus 7: a virus-receptor complex.
Proc. National Academy of Sciences of the United
States of America, 99:10325–10329, 2002.

[13] K. Klein, N. Kriege, and P. Mutzel. CT-index:
Fingerprint-based graph indexing combining cycles
and trees. In Proc. IEEE ICDE, pages 1115–1126,
2011.

[14] National Cancer Institute - DTP AIDS antiviral
screen dataset. http:
//dtp.nci.nih.gov/docs/aids/aids_data.html.

[15] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming
verification hardness: an efficient algorithm for testing
subgraph isomorphism. PVLDB, 1(1):364–375, 2008.

[16] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li.
Efficient subgraph matching on billion node graphs.
PVLDB, 5(9):788–799, 2012.

[17] Y. Tian and J. M. Patel. Tale: A tool for approximate
large graph matching. In Proc. IEEE ICDE, pages
963–972, 2008.

[18] C. Vehlow, H. Stehr, M. Winkelmann, J. M. Duarte,
L. Petzold, J. Dinse, and M. Lappe. CMView:
Interactive contact map visualization and analysis.
Bioinformatics, 27:1573–1577, 2011.

[19] D. W. Williams, J. Huan, and W. Wang. Graph
database indexing using structured graph
decomposition. In Proc. IEEE ICDE, pages 976–985,
2007.

[20] Y. Xie and P. Yu. CP-Index: on the efficient indexing
of large graphs. In Proc. ACM CIKM, pages
1795–1804, 2011.

[21] X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In Proc. ACM
SIGMOD, pages 335–346, 2004.

[22] X. Yan, F. Zhu, P. S. Yu, and J. Han. Feature-based
similarity search in graph structures. ACM TODS,
31(4):1418–1453, 2006.

[23] D. Yuan and P. Mitra. Lindex: a lattice-based index
for graph databases. VLDBJ, 22(2):229–252, 2013.

[24] D. Yuan, P. Mitra, and C. L. Giles. Mining and
Indexing Graphs for Supergraph Search. PVLDB,
6(10):829–840, 2013.

[25] S. Zhang, M. Hu, and J. Yang. TreePi: A Novel
Graph Indexing Method. In Proc. IEEE ICDE, pages
966–975, 2007.

[26] S. Zhang, J. Yang, and W. Jin. SAPPER: subgraph
indexing and approximate matching in large graphs.
PVLDB, 3(1-2):1185–1194, 2010.

[27] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree
+ delta >= graph. In Proc. VLDB, pages 938–949,
2007.

[28] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel
spectral coding in a large graph database. In Proc.
ACM EDBT, pages 181–192, 2008.

