

warwick.ac.uk/lib-publications

Original citation:
Katsarou, F., Ntarmos, N. and Triantafillou, P. (2017) Hybrid algorithms for subgraph pattern
queries in graph databases. In: 2017 IEEE International Conference on Big Data (IEEE BigData
2017), Boston, MA, USA, 11-14 Dec 2017

Permanent WRAP URL:
http://wrap.warwick.ac.uk/93846

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/110168733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/93846
mailto:wrap@warwick.ac.uk

Hybrid Algorithms for Subgraph Pattern Queries in Graph Databases

Foteini Katsarou
School of Computing Science
University of Glasgow, UK

f.katsarou.1@research.gla.ac.uk

Nikos Ntarmos
School of Computing Science
University of Glasgow, UK

nikos.ntarmos@glasgow.ac.uk

Peter Triantafillou
Department of Computer Science

University of Warwick, UK
p.triantafillou@warwick.ac.uk

Abstract—Numerous methods have been proposed over the
years for subgraph query processing, as it is central to
graph analytics. Existing work is fragmented into two major
categories. Methods in the filter-then-verify (FTV) category
first construct an index of the DB graphs. Given a query, the
index is used to filter out graphs that cannot contain the query.
On the remaining graphs, a subgraph isomorphism algorithm
is applied to verify whether each graph indeed contains the
query. A second category of algorithms is mainly concerned
with optimizing the Subgraph Isomorphism (SI) testing process
(an NP-Complete problem) in order to find all occurrences of
the query within each DB graph, also known as the matching
problem. The current research trend is to totally dismiss FTV
methods, because SI methods have been shown to enjoy much
shorter query execution times and because of the alleged high
costs of managing the DB graph index in FTV methods. Thus,
a number of new SI methods are being proposed annually.

In the current work, we initially study the performance of
the latest SI algorithms over datasets consisting of a large
number of graphs. With our study, we evaluate the algorithms’
performance and we provide comparison details with former
studies. As a second step, we combine the powerful filtering of
a top-performing FTV method, with the various SI methods,
which leads to the best practice conclusion that SI and FTV
shouldn’t be thought of as disjoint types of solutions, as their
union achieves better results than any one of them individually.
Specifically, we experimentally analyze and quantify the (posi-
tive) impact of including the essence of indexed FTV methods
within SI methods, showing that query processing times can
be significantly improved at modest additional memory costs.
We show that these results hold over a variety of well-known
SI methods and across several real and synthetic datasets. As
such, hybrids of the type reveal a missing opportunity and a
blind spot in related literature and trends.

Keywords-Graph DB, graph query processing, subgraph
isomorphism

I. INTRODUCTION

Graphs are ideal for representing complex entities and
their relationships. Finding the occurrence(s) of a pattern
graph within the various graphs in a graph DB is essential
to graph analytics. In subgraph querying, given a pattern
graph (query) and a graph DB, we want to know whether
the query graph is contained in each graph (the decision
problem) and/or find all its occurrences within one or more
stored graphs (the matching problem). Subgraph querying
entails the NP-complete subgraph isomorphism problem
(abbreviated as sub-iso). Over the years, subgraph querying

has received and continues to receive a lot of attention, as
is evident by the numerous new methods proposed annually.
Additionally, four recent experimental analysis papers ([1]–
[4]) compare and stress-test the proposed methods and pro-
vide interesting insights about the performance of various so-
lutions. Related work is segregated in two major categories:
the filter-then-verify (FTV) and the subgraph isomorphism
(SI) methods. Specifically, FTV methods mainly focus on
filtering out graphs that do not contain a query graph as
an answer and then employ a “standard” SI algorithm for
verification, whereas for SI methods indexing/filtering is
usually neglected in favor of better/faster SI heuristics. The
more recent works, e.g. [3], [5], [6], dismiss the FTV
methods with the claim that the fast sub-iso test of the
SI methods significantly outperforms the index-based FTV
methods. Thus, all recently published methods follow the SI
paradigm.

In the current work, our goal is to identify the best
practices for processing subgraph pattern queries. In turn
this rests on two pillars: The first is a head-to-head com-
parison and evaluation of the state-of-the-art SI methods.
Our findings will allow a direct comparison with [3] for the
common algorithms, but will also include interesting insights
for 2 notable and high performing SI methods proposed after
the publication of [3]. Second, and more importantly, armed
with the knowledge of the above conclusions, we investigate
best practices for subgraph pattern querying in graph DBs
by combining the main assets of the FTV and SI methods
to derive hybrid FTV-SI methods. Perhaps surprisingly, no
prior research has considered to study the impact of hybrid
FTV-SI solutions, whereby the benefits of a top-performing
graph DB index are combined with the fast sub-iso heuristics
offered by the SI methods. This paper shows that such
approaches can be very beneficial and suggests how to
address the key shortcomings of such hybrid solutions.

Overall, we provide answers to the following central
questions: (1) Does a head-to-head comparison reveal a
single winner among the top-performing SI algorithms?
(2) Noting that even SI methods utilize a pruning (index-
like) structure, how much time/space is required to create
the index from the FTV methods and the corresponding
SI methods? (3) How effective is the index from the SI
methods versus FTV in terms of filtering away candidate

graphs? (4) What are the time/space trade-offs involved in
this process? (5) Finally, the dominant question is “can we
achieve significant speedups by using hybrid solutions and
quantify the speedups given memory and time constraints
for the index?” With a typical graph dataset consisting of
many large graphs and the actual answer set consisting of a
small portion of graphs, with this work we show that large
performance gains are possible. We employ three real and
a synthetic dataset generated with GraphGen. Finally, we
consider five popular, recent and efficient SI methods for
our evaluation and a top-performing filtering approach from
an FTV method to construct our best practice hybrids.

II. BACKGROUND

A. Related work

Related work examines two versions of the subgraph
querying problem: the decision and the matching versions.
In the decision version, given a DB of many (typically small)
graphs and a query/pattern graph q, the method decides
whether q is contained in any graph in the dataset and returns
the IDs of those graphs. In the matching version, the method
finds all embeddings of the query graph q in a typically
large, stored graph g or in each graph of a graph DB.

Proposed methods can be classified as filter-then-verify
(FTV) or direct sub-iso (SI). Popular FTV methods include
[7]–[15]. These methods need to first build an index. To do
so, stored graphs are decomposed into features which are
then indexed, along with graph-ID lists; i.e., lists of graphs
that contain the feature. The features can be paths, trees,
subgraphs, cycles or a combination of the above and are ob-
tained either through an exhaustive enumeration or frequent
mining. Query processing consists of two stages. In the first,
filtering stage, query graphs are similarly decomposed into
features; DB graphs that do not contain one or more of
these features definitely do not contain the query and are
pruned away. On the remaining graphs, an intersection of
the graph-ID lists is performed to form the candidate set. In
the verification stage, the query graph is tested for sub-iso
against each graph in the candidate set to produce the final
answer set. Proposed methods try to optimize 4 criteria: (i)
indexing time, (ii) index size, (iii) query processing time
and (iv) candidate set size. The methods’ design options
reflect on their scalability, i.e., the ability of constructing
the index in reasonable time and size and answering queries
in reasonable time. FTV methods are extensively discussed
in [1], [2]. [2] concluded that Grapes[9] and GGSX[7]
are the best solutions in terms of index construction time,
query processing time, and scalability limitations. It was also
showed that both Grapes and GGSX enjoy similar filtering
power for datasets consisting of relatively small graphs.
However, when the graph sizes increase, Grapes outperforms
GGSX in filtering power.

The focus of SI methods, is not to filter out graphs
in the dataset that definitely do not contain the query as

an answer, but for each DB graph (i) to locate the best
candidate vertices to expedite the sub-iso test, and (ii) to
decide the optimal join plan to follow; i.e., the sequence
in which the query vertices will be matched to those of
the stored graph. Thus, proposed SI methods, apart from
the sub-iso heuristic algorithm, additionally contain a pre-
processing/indexing step where they maintain a feature-
based index, along with vertex label lists and additional
information to facilitate the sub-iso test. Popular SI methods
include [11], [16]–[19]. During query processing, they apply
different heuristics and define different join operations to
match the query. A number of such methods were presented
and compared in [3], concluding that (i) although there
was no single algorithm to outperform all others in all
occasions, GraphQL[18] was the only one that managed
to complete all tested query workloads; (ii) GraphQL and
sPath[17] showed very good performance; but also that (iii)
all existing algorithms have weaknesses in the way they
apply their join selection and pruning heuristics, leading to
the need for new SI methods. Following the publication of
[3], several sub-iso tests were proposed. TurboIso[5] rewrites
the query by merging vertices that share the same label
and neighborhoods. BoostIso[20] applies the aforementioned
rewriting technique to the stored graph and dynamically
reduces the duplicate computations. Thus, BoostIso claims
it can accelerate all proposed sub-iso techniques. CFL-
Match[16] applies decomposition of the query in dense
subgraph and forest and unlike other methods, CFL-Match
processes the dense subgraph first. Finally, Peng et al.[21]
decompose the query in adjacent edge pairs or star-style
patterns and propose an Edge Join algorithm.

A recent work [4] provided key insights about the perfor-
mance of both FTV and SI methods. Specifically, [4] showed
that all existing sub-iso algorithms suffer from straggler-
queries; i.e., queries whose processing time is many orders
of magnitude worse compared to the rest. Secondly, that
isomorphic queries can have widely and wildly different ex-
ecution times. Thus, straggler queries may have isomorphic
instances which are not stragglers. Finally, that stragglers are
algorithm-specific, i.e. a straggler-query on one algorithm
can be a typical query on the other algorithm. These findings
yielded the Ψ-framework, which executes in parallel threads
of different query rewritings and/or alternative algorithms to
achieve large performance gains on both research camps.

In addition to the above directly relevant research, recent
research has expanded its scope in various directions. Be-
low we refer to some interesting representative examples.
Methods, such as TwinTwig[22], sTwig[6] and SEED[23]
deal with a single, very large graph, stored in a distributed
infrastructure, and rely on parallel computing algorithms and
infrastructures to perform the sub-iso testing. Methods, like
iGQ[24] and GraphCache[25], employ caching on top of any
proposed FTV method to improve performance and study
the architecture, system and algorithms for a graph cache

for subgraph queries for FTV and SI methods. Similarly,
PatternTreeISO[26] utilizes pattern correlations of preceding
queries to expedite subgraph isomorphism for subsequent
ones. [10], [27] perform subgraph matching, but with the ad-
ditional support for wildcards and/or approximate matches,
and Lin et al.[28] address the problem of generalized
subgraph query processing. Finally, Semertzidis et al.[29]
considered pattern queries over time-evolving graphs.

Contributions: We evaluate top-performing SI methods
against datasets consisting of a large number of graphs to
provide insights about their performance. Our findings com-
pare with [3] for the 3 common algorithms and complement
it with inclusion of 2 notable SI methods proposed after
the publication of [3]. In parallel, we thoroughly investigate
the current community wisdom which tends to dismiss FTV
methods based on the fact that the fast sub-iso test of the
more recent SI methods can significantly outperform the
index-based FTV methods [3], [5], [6]. This is indeed a
claim we have verified as well: when comparing a fast SI
algorithm (even if not the fastest one, such as GraphQL)
against a top-performing FTV algorithm (such as Grapes)
for queries run over a single graph DB, SI methods are the
winners. However, this fact requires further analysis which
has not as of yet been performed. Note that: (1) No analysis
for the reasons of this fact has ever been provided. (2)
SI methods also essentially develop and utilize indexes for
pruning the search space during matching; no one has ever
really provided any insights as to how costly in time and in
memory space this is. And, combined with (1) above, (3)
No evidence exists so far that relates the efficacy of FTV-
indexes versus SI-indexes in terms of reducing the search
space. Finally, FTV algorithms utilize both a filtering and
a verification stage. Hence, if FTV-type indexing is more
powerful than SI-type indexing, this implies that the sub-iso
heuristics of SI methods must significantly outperform the
verification of FTV methods. Therefore, combining the FTV
pruning power with the great efficiency of SI algorithms
appears to be a promising avenue for new performance
gains. So, the real issue becomes to (4) Investigate and
quantify what are the expected performance gains of hybrid
FTV-SI solutions. With this paper, we will tackle the above
issues and we will show that dismissing completely indexed
FTV methods leads to missing an opportunity for significant
performance gains, revealing thus a blind research spot. This
we hope will motivate new research into hybrid FTV-SI
combinations and new indexes and/or new sub-iso heuristic
algorithms for such hybrids.

B. Definitions

Definition 1 (Graph): A graph G = (V,E,L) is defined
as the triplet consisting of the set V = {vi}, i = 1, ..., n
of vertices of the graph, the set E ⊆ {(v, u) : v, u ∈ V }
of edges between vertices in the graph, and a function L :
V |E → L assigning a label l ∈ L (L being the set of all

possible labels) to each vertex v ∈ V and each edge e ∈ E.
Definition 2 (Graph Isomorphism): Two graphs G =

(V,E, L) and G′ = (V ′, E′, L′) are isomorphic iff there
exists a bijection I : V → V ′ that maps each vertex of G to a
vertex of G′, such that if (u, v) ∈ E then (I(u), I(v)) ∈ E′,
L(u) = L′(I(u)), L(v) = L′(I(v)), and vice versa.

Definition 3 (Subgraph Matching Problem): Given a set
of graphs D = G1, ..., Gn, and a query graph q, the subgraph
matching problem determines all graphs Gi ∈ D such that
q ⊆ Gi and finds all the occurrences of q within each Gi.

III. EXPERIMENTAL SETUP

A. Algorithms

We opted for methods (i) whose code is publicly available
or made available to us by the authors upon request, so
any conclusions would not be implementation dependent
and (ii) that were well recognized as well performing. From
the FTV methods, we chose Grapes[9], which was declared
top-performing in terms of indexing time, query processing
time, false ratio and scalability in [2]. Reagrding the SI
methods, we selected GraphQL[18], sPath[17], QuickSI[11],
TurboIso[5], and BoostIso[20] over TurboIso. With respect
to CFL-Match[16]: we did not employ the algorithm as its
authors did not respond to our request for their code.

1) FTV method: Grapes[9] (GR) indexes simple paths of
up to a maximum length, along with location information, in
a trie, enumerated in DFS order. GR can work with multiple
threads for both indexing and query processing. In query
processing, maximal paths of the query are extracted to form
the query index which is matched against the DB index,
pruning away unmatched branches. Then, the search space
is further pruned using frequencies of the indexed features
and the maintained location information is used to extract
the relevant connected components of DB graphs, against
which sub-iso testing is performed using VF2[30].

2) SI methods: In GraphQL[18] (GQL), the vertex labels
along with the neighborhood signatures, which capture the
labels of neighboring nodes in a radius i in lexicographical
order, are indexed. In the subgraph matching phase, the
algorithm starts by retrieving all possible matches for each
node in the pattern. Then, 3 rules are applied in order to
prune the search space. First, the indexed vertex labels and
neighborhood signatures are used to prune away infeasible
matches. Then a pseudo sub-iso algorithm is applied itera-
tively up to level l; i.e., for every pair of possible graph-
query vertex matches, the nodes adjacent to the query node
should be matched to the corresponding neighbors of the
graph. Finally, the algorithm optimizes the search order in
the query before proceeding with the actual sub-iso test,
which in turn consists of a number of joins of the candidate
node lists. This optimization is based on an estimation of
the result-set size of intermediate joins, and as it would be
very expensive to enumerate all possible search orders, only
left-deep query plans are considered.

sPath[17] (SP), similarly to GQL, also maintains a neigh-
borhood signature encoding where shortest paths are orga-
nized in a compact indexing structure. In order to reduce
space, shortest paths are not really maintained, but are
decomposed in a distance-wise structure. In the query pro-
cessing, the query is initially decomposed in shortest paths
that are then matched to the shortest paths from each DB
graph. From all possible candidate shortest paths, those that
(i) can cover the query and (ii) provide good selectivity, i.e.,
minimize the estimated result-set size of each join operation,
are selected as candidates. An edge-by-edge verification is
used to perform the sub-iso test against the latter.

QuickSI[11] (QSI), gives priority to the vertices with
infrequent labels and infrequent adjacent edge labels. In the
indexing phase, QSI pre-computes the frequencies of labels
and edges and uses them to compute the “average inner
support” of a vertex or an edge; i.e., the average number of
possible mappings of the vertex or edge in the graph, which
is later used in the graph matching process to assign weights
on the edges of the query graph and construct a rooted
minimum spanning tree (MST). In case of symmetries, edges
are added in such a way that will make the MST denser. The
order in which vertices are inserted to the MST defines the
order in which they are then matched in the sub-iso test.

TurboIso[5] (TI), utilizes 2 data structures as its index:
(i) an inverse vertex label list that allows easy access to the
vertices that share the same label, and (ii) a list of adjacent
vertices for every vertex. TI defines the Neighborhood
Equivalent Class (NEC) as the class of vertices that share the
same structure; i.e., the same labels. In the query processing,
for a given query a starting (root) vertex is chosen based on a
ranking function that favors low label frequencies and high
node degrees and the query is rewritten to the equivalent
NECtree. Initiating from the root query vertex, TI identifies
candidate regions (CR) to the stored graph by performing a
DFS search on the query’s NECtree. The matching sequence
for the query vertices is again chosen as to minimize the
intermediate candidate results. However, TI defines a better
matching order because of the more precise CR estimation.
Specifically, TI exploits the paths of the NECtree from
the starting vertex to every leaf node of the NECtree, and
calculates the cardinalities of their CR. Based on that, a
matching order is defined in ascending order to the vertices
of the NECtree.

BoostIso[20] (BI) can be applied on top of every proposed
back-tracking algorithm and is based on the use of 4 types
of relationships: (i) syntactic containment (SC), (ii) syntactic
equivalence (SE), (iii) query-dependent containment (QDC),
and (iv) query-dependent equivalence (QDE). The first 2 are
used to transform the stored graph to the adapted hypergraph
Gsh, whereas the rest further reduce duplicate computations
in query processing. Empirically, SC is evident in the case
that 2 nodes have the same label and the neighboring set of
nodes on the second node is contained in the first node. In

SE, 2 nodes share the same label and the same neighboring
set of nodes. QDC and QDE rule similar conditions to
SC and SE between the nodes of the query and the nodes
of the stored graph. As a pre-processing step, BI employs
graph adaptation to transform a stored graph to the adapted
hypergraph, by utilizing the Syntactic Equivalence Class
(SEC). Note that, vertices in the same SEC form a clique
or are pairwise adjacent (they are either 1-step or 2-step
reachable from each other respectively), and thus the adapted
hypergraph captures the structure of the original graph along
with the SE and SC relationships between vertices. In the
query processing, BI searches for hyperembeddings of the
query graph in the adapted hypergraph which are translated
to embeddings. Duplicates can be further reduced using
QDC and QDE relations along with the SC and SE relations.
For our experiments, we employ BI over TI (BTI for short).

B. Setup

All the experiments were conducted on a Windows 7 SP1
host, with 2 Intel Xeon E5-2660 CPUs (2.20GHz, 20MB
cache) with 8 cores/16 vcores per CPU, 128GB of RAM,
and 3.5TB disk. We ran our experiments individually and
one at a time to avoid any interference across runs.

For GR we used the implementation provided by its
authors. For GQL, SP, and QSI, we used the implementation
provided by [3]. For TI we obtained the binary code from
the authors and for BTI we obtained the source code from
GitHub1. We used the default values for the input parameters
of the compared algorithms, as they were defined by their
respective authors in the relevant publications and/or in their
implementation code. Specifically:
• For GR, we enumerated paths of up to size of 4. We

used 1 and 4 threads; results for executions with 1 (resp.
4) threads are denoted by GR/1 (resp. GR/4).

• For GQL, we used a refined level of iterations of
pseudo-subgraph isomorphism r = 4.

• For SP, we used a neighborhood radius of 4 and
maximum path length 4.

• TI and BTI do not require any input parameter. How-
ever, for TI we were able to execute queries of only
up to 25 vertices, due to an inherent limitation in
the executable provided to us (and we were unable to
amend this because we were only provided with the
binary).

• For all SI methods the number of searched embeddings
of the pattern graph in the stored graph is capped at
1000; i.e., after finding the first 1000 matches, the
algorithms terminate.

C. Datasets

Table I summarizes the characteristics of the employed
datasets. PDBS, PCM and PPI are 3 real datasets that

1https://github.com/UltraHector/BoostIsoGraphAdaptation

PDBS PCM PPI Synthetic
D

at
as

et

graphs 600 200 20 1000
#disconnected 360 200 20 0
graphs
#labels 10 21 46 20

Pe
r

G
ra

ph

Avg #nodes 2939 377 4942 1100
StdDev #nodes 3215 186.7 2648 483
Avg #edges 3064 4340 26667 12487
Avg density 0.0007 0.0612 0.0022 0.020
Avg degree 2.06 23.01 10.87 24.5
Avg #labels 6.4 18.9 28.5 20

Table I
DATASET CHARACTERISTICS

were previously used in [2], [9]. PDBS and PCM represent
chemical compounds comprising of 600 and 200 graphs
respectively, whereas PPI represents 20 protein-protein in-
teraction networks. The majority of existing real datasets
comprise of relatively small and sparse graphs, and thus in
the lack of real datasets publicly available that preserve the
required properties (i.e., many large graphs), we additonally
employ a synthetic dataset of 1000 graphs generated with
GraphGen[8] a standard tool for constructing datasets suit-
able for graph mining techniques and subgraph queries, as it
allows the parametrisation of various parameters of interest;
namely, number of graphs, average number of nodes and
density per graph, number of labels in the dataset, etc.

D. Query Workloads

To generate each of the queries, we select a graph from
the dataset uniformly and at random, and from that graph
we select a node uniformly at random. Starting from said
node, we generate a query graph by incrementally adding
edges chosen uniformly at random from the set of all edges
adjacent to the resulting query graph, until the desired size
is reached. For PDBS and PCM, we used queries of size 20
and 24 edges. For PPI, we used queries of size 16, 20, 24,
and 32 edges. For the synthetic dataset, we used queries of
size 24, 32 and 40 edges. For every query size we used 200
queries for PDBS and PCM and 100 queries for PPI and
the Synthetic dataset. Finally, as we already mentioned, we
were unable to execute queries > 25 vertices on TI. Thus,
in the presentation of our results in the subsequent figures
for TI we only present results for queries up to 24 edges, as
to qualify with this restriction.

IV. INDEX CONSTRUCTION

As we already mentioned, both FTV and SI methods rely
on an index but to fulfill different purposes. For the FTV
methods, the index construction facilitates the pruning of
graphs in the dataset that definitely do not contain the query
graph as an answer. For the SI methods the index purpose
is to locate the candidate vertices on the stored graph to
expedite the sub-iso test. Thus, SI methods require less time
and space to construct and store their index respectively.

 1

 10

 100

 1000

 10000

ti
m

e
(s

)

GQL
SP

QSI
TI

BTI
GR/1

GR/4

SyntheticPPIPCMPDBS

(a) Indexing time

 1

 10

 100

 1000

 10000

 100000

si
ze

 (
M

B
)

GQL SP QSI TI BTI GR

SyntheticPPIPCMPDBS

(b) Index size

Figure 1. Indexing time and size

Fig. 1 presents the results from the index construction
phase for all datasets and used algorithms. Please note that
for GR, the index size is independent of the number of
threads and thus only one bar/line is used in corresponding
fig. 1(b) for this algorithm. Among the SI methods, we notice
the following trend in the index sizes: SizeQSI > SizeSP >
SizeGQL > SizeTI > SizeBTI and this trend is also
followed by the indexing time, with sole exception of BTI
where the indexing time is comparable to that of QSI. In the
majority of algorithms, this is somewhat expected because
of the structures used by each algorithm to maintain the
index. Specifically, based on the code we had available, we
note that GQL and SP along with the additional information
they require to store their index – i.e. labels of neighbouring
nodes in radius i shorted in lexicographical order for GQL,
and shortest paths for SP – they also store the actual graphs
in a convenient format as presented in TI (§IV). Our results
come in agreement with [3] for GQL and SP but not for QSI.
Finally BTI’s index consists of 2 distinct files that store the
hypergraph and containment graph (as described in §III-A)
and even though their size is already small enough, it could
be diminished if index files were in a binary format.

We note that both GR and SP work with paths and SP
constructs the second largest in size index. However, SP
maintains only the shortest paths whereas GR enumerates all
paths up to maximum length and additionally maintains lo-
cation and frequency information. Thus, as it was expected,
GR/1 constructs up to 1 order of magnitude bigger indices
than SP and it requires up to 1 order of magnitude more
time to achieve this, with the sole exception of PDBS. To
justify the results in PDBS, we need to look at the dataset
characteristics in table I. PDBS is a very sparse dataset,
with only 10 labels totally and an average number of only
6.4 distinct labels per graph. As a result, the enumerated
distinct paths are well compressed in the trie utilized by GR
and less time and space are required to build/store the index.

 0

 20

 40

 60

 80

 100

av
g

 %
 g

ra
p

h
s

GQL_CSS SP_CSS GR_CSS ASS

SyntheticPPIPCMPDBS

(a) Candidate and answer sets for all algorithms

 0

 0.2

 0.4

 0.6

 0.8

 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

GQL SP GR

SyntheticPPIPCMPDBS

(b) False Positive Ratio

Figure 2. Pruning Power

V. FILTERING POWER

To quantify the filtering power, we utilize 2 different
metrics: (1) the percentage of graphs that constitute the
candidate set for each algorithm, before proceeding with the
final sub-iso test, (2) the false positive ratio, defined as:

FPR =
1

|Q|
∑
q∈Q

|C{q}| − |A{q}|
|C{q}|

(1)

where |·| denotes set cardinality, Q is the set of all queries in
each query workload, and C{q} and A{q} are the candidate
set and answer set respectively for query q, with A{q} ⊆
C{q}. We note that FPR = 0 means that the candidate set
is exactly the same as the answer set and FPR = 1 that
although some/all of the graphs in the dataset belong in the
candidate set none of them is found to be an answer in the
query, i.e. the answer set size is 0.

Fig. 2 presents the results for the pruning power of used
algorithms. CSS stands for Candidate Set Size and ASS
stands for Answer Set Size. QSI, TI, and BTI are not
included in the presented results as they do not perform any
filtering and proceed directly to the sub-iso test. GR provides
the same filtering power independently of the number of
threads that are executed and thus on the corresponding
figures we do not distinguish the results. For comparison
purposes, we report the percentage of graphs that constitute
the avg ASS along with the percentage of graphs that
constitute the avg CSS for each algorithm in fig. 2(a).

Different number of graphs were filtered out by all 3
different methods. Although it is not presented in the above
figures, the filtering power of the SI methods is slightly
improved as the query size increases and the same effect
holds for GR. In the majority of cases GR was able to filter
out at least double the amount of graphs compared to GQL
and SP, leading to candidate sets very close to the actual
answer set. This is also evident in the low FPR. However,
as we already discussed in §IV, GR’ filtering comes at an
extra cost of a much larger index to store and more time

 1

 10

 100

 1000

 10000

 100000

 1x10
6

av
g

 q
u

er
y

 e
x

ec
 t

im
e

(m
s)

GQL SP QSI TI BTI

SyntheticPPIPCMPDBS

Figure 3. Avg query exec time (ms) of SI methods

to construct, with the sole exception of PDBS. SP, that
constructs a slightly more elaborate index compared to GQL,
was also able to achieve an up to 10% better filtering than
GQL. A very interesting observation is the fact that in very
rare cases the graphs that were filtered out by the SI methods
were not always a subset of the graphs filtered out by GR.
This occurred in <1% of a graph-query pair and was more
evident when increasing the query size. Finally, we note
that it is important to observe the FPR in combination with
the CSS and ASS. To showcase this, we note that although
PDBS is the only dataset where the avg CSS are among the
biggest for all 3 algorithms reported, the corresponding FPR
are the lowest for all datasets because of the high ASS.

VI. PERFORMANCE OF SI METHODS

The current tendency in recent work is to totally dismiss
FTV methods with the claim that the fast sub-iso test of
the SI methods outperforms the index-based FTV methods.
Before proceeding with further investigating this claim, we
provide in fig. 3 a head-to-head comparison of the avg query
execution time of SI algorithms across all datasets. Please
note that because of the restriction mentioned in §III-B, for
TI and for PPI and Synthetic dataset only results with queries
≤ 24 edges are presented.

As it can be seen, there is no winner algorithm across
all datasets. This finding comes in agreement with [3]. TI
and BTI, the newest additions in the set of SI algorithms, are
favored particularly in datasets consisting of a small number
of labels because of the smart rewritings applied on the query
graph (and on the stored graph in the case of BTI). The least
promising one is QSI, but outperforms BTI on PPI where the
number of distinct labels is more abundant. Finally, although
we do not present results for different query sizes because
of space restrictions, we note that as we increase the query
size, query processing becomes harder for all algorithms,
with the exception of PDBS and PCM where there are no
significant differences for different query sizes.

VII. THE HYBRID FTV-SI METHOD

Having discussed that the filtering of GR is more powerful
than that achieved by the SI methods, we set out to construct
a hybrid FTV-SI solution. The proposed hybrid solution
works as follows: We construct the index for both GR (the in
use FTV method) and for the in use SI method. In the query
processing, we perform the filtering of GR (as discussed

in §III-A1) and till the stage of forming the candidate set.
Subsequently, for those graphs that pass the filtering stage
we use GQL/SP/QSI/TI/BTI, instead of GR’s default (and
expensive) VF2 sub-iso test. Since an extra filtering step is
introduced (namely, the filtering from GR), it is worthwhile
evaluating, analysing, and quantifying the effect of the cost
to perform this additional on-line filtering on the overall
achievable performance. As GR was originally designed to
work in parallel, we utilize (·)/N to denote the in use
number of threads N for GR-[GQL/SP/QSI/TI/BTI] as the
FTV-SI combination of algorithms. In this section we utilize
only one thread; additional parallelism will be discussed in
the following section. Last, for the rest of the discussion,
we assume that the indices are already loaded into main
memory once at the beginning of the execution.

A. Performance Metrics

For every query against a dataset of graphs, we measure
the execution time. For the SI methods the execution time
includes the time for constructing the index of the query, the
matching of the query’s index to the databases’ index (where
applicable) and the time required to perform the sub-iso test.
For our proposed hybrid FTV-SI solution the execution time
includes (i) the time required to perform the filtering of GR
as described in §III-A and (ii) the execution time of the in
use SI method for the graphs that passed the filtering stage.

Let qi be a given query. Let also tMi be the execution
time of qi over method M and tGR−M

i be the execution
time of qi over the hybrid combination of GR with method
M over all the graphs in the dataset. In order to evaluate the
performance of this combination, we utilize the speedup∗

metric defined as: tMi
tGR−M
i

. speedup∗ represents what we
lose in performance if we choose the original method over
the various alternatives; i.e., speedup∗ equals the maximum
attainable speedup over the original method, if we chose the
best of the examined alternatives.

When comparing two sets of measurements A = {Ai}
and B = {Bi}, we can compute their avg ratio in two ways:
• Workload-Level Aggregation (WLA), given by avgi(Bi)

avgi(Ai)
.

When A and B contain query response times, the WLA
computation would give the improvement in the overall
average execution time. This metric is important from
the system perspective as it encapsulates the overall
performance change.

• Query-Level Average (QLA), computed as avgi

(
Bi

Ai

)
.

When applied to query processing times, the QLA
computation would give the average of per-query im-
provements. This metric is user-centric in the sense that
each user cares what the performance improvement for
his query is using different methods.

In both cases, avgi(Xi) is the average over all items Xi

in the set X . Based on this distinction, the aforementioned
speedup∗ metric can have a QLA or WLA version, denoted

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

av
g

 s
p

ee
d

u
p

*
Q

L
A

(GR-GQL)/1
(GR-SP)/1

(GR-QSI)/1
(GR-TI)/1

(GR-BTI)/1

SyntheticPPIPCMPDBS

(a) Avg speedup∗QLA

 0

 1

 2

 3

 4

 5

 6

av
g

 s
p

ee
d

u
p

*
W

L
A

(GR-GQL)/1
(GR-SP)/1

(GR-QSI)/1
(GR-TI)/1

(GR-BTI)/1

SyntheticPPIPCMPDBS

(b) Avg speedup∗WLA

Figure 4. Avg speedup∗QLA & speedup∗WLA

with a matching subscript; e.g., speedup∗QLA. These two
variants also carry over to other computations; for example,
the standard deviation of the ratio of A and B would be com-
puted as stdDevi(Bi)

stdDevi(Ai)
under WLA, and as stdDevi(Bi/Ai)

under QLA. However, unless stated otherwise, we shall
use QLA and WLA to denote averages. To highlight the
importance of distinction between QLA and WLA metric we
note that the workload-based metric in itself (unavoidably) is
not entirely reliable as such metrics provide only one point
of view: that of the system. However, to the average user,
this is not particularly informative. To her the question is
what is the best method for her query and by how much; or,
put differently, what is the probability that a given method
will perform best for her query. This has the affect of treating
all queries (and thus users) equally, despite the time taken
by each query to execute. Such query-based metrics have
unfortunately so far escaped all related work.

B. Performance Results

Before proceeding with the presentation of the achieved
speedups, we initially discuss the indexing costs we need
to pay for our hybrid FTV-SI solution. The size of the
constructed index for all datasets for the hybrid FTV-SI
solution is the addition of GR’ index with the index of the
in use SI method as presented in fig. 1(b). The same holds
for the corresponding indexing times. The pruning power of
the FTV-SI solution is equal to the pruning power of GR, as
it was presented in fig. 2 and for the corresponding datasets.

Fig. 4 presents the avg QLA and WLA speedups for all
datasets and query sizes and for the hybrid FTV-SI methods.
We were not able to execute queries >25 vertices with
TI (§III-B) and thus in PPI and the Synthetic dataset the
presented speedup for the hybrid GR-TI combination refers
to queries ≤ 24 edges. BTI is the sole algorithm that is
rather hurt than improved by this hybrid combination in
PCM where the size of data graphs is relatively small and
in PDBS where the size of the candidate graph is relatively

1 thread 4 threads
GR-GQL GR-SP GR-QSI GR-TI GR-BTI GR-GQL GR-SP GR-QSI GR-TI GR-BTI

PD
B

S
stdDev 1.783 2.035 2.589 1.556 0.456 2.393 2.838 4.067 2.022 0.829

min 0.777 0.798 0.847 0.682 0.022 1.794 1.924 2.201 1.353 0.022
max 10.361 12.179 15.185 9.107 3.055 13.988 16.847 23.709 11.568 4.278

median 1.937 1.934 2.119 1.915 0.308 5.250 5.616 6.585 4.770 0.397

PC
M

stdDev 3.454 3.093 6.560 3.655 0.218 3.397 2.925 8.550 3.603 0.901
min 1.164 1.182 1.250 1.195 0.053 3.579 3.521 4.453 3.776 0.054
max 14.912 14.029 26.001 17.099 1.078 18.425 17.255 40.317 21.375 3.475

median 5.436 5.153 6.975 5.619 0.776 10.298 9.435 17.664 10.838 1.721

PP
I

stdDev 2.886 7.112 37.603 2.852 119.611 3.280 16.967 61.712 7.481 134.922
min 0.857 0.914 0.001 0.877 0.067 1.001 1.003 1.003 3.403 0.0893
max 24.196 29.198 89.884 18.479 90.6 26.366 5.613 85.818 63.498 297.41

median 1.496 1.416 1.522 1.865 0.993 4.511 4.278 4.409 7.001 1.704

Sy
nt

he
tic stdDev 5.465 9.444 21.386 2.248 15.599 6.184 12.819 30.828 6.639 22.757

min 1.269 1.094 1.168 1.633 0.292 1.318 1.134 1.636 6.153 0.330
max 28.554 65.586 29.042 12.920 61.415 31.975 108.596 96.647 30.388 72.763

median 5.107 3.683 2.777 2.649 0.964 13.613 10.892 8.913 9.491 3.342

Table II
speedup∗QLA STATISTICS FOR FTV-SI COMBINATION WITH 1 AND 4 THREADS

high. In all other cases the achieved speedups are higher as
the query size increases and this effect is more profound in
the Synthetic dataset, because of the much higher number
of graphs that constitute the Synthetic dataset and the higher
percentages of graphs that were filtered out (fig. 2(a)).
In other words, the query graphs in the Synthetic dataset
provide better selectivity than those in the 3 Real datasets
and this is reflected in the achieved speedups. A notable
thing (not presented in the figures) is that the different
achieved speedups for all algorithms bring about significant
rearrangements in their avg query execution times. However,
there is no single winner algorithm yet across all datasets.

Table II presents additional min, max, median and stdDev
statistics of the achieved speedup∗QLA. For all algorithms
except for BTI, we note that the min achieved speedup is
not always > 1, but the median speedup∗QLA is in all cases
> 1. In other words, there are some queries that the time
gained from the filtered out graphs does not pay off. For the
executed queries, this phenomenon occurred when the CSS
was ≥ 500 graphs in PDBS and ≥ 15 graphs in PPI.

VIII. REDUCING FILTERING TIME WITH PARALLELISM

As GR is parallelizable, we addtionally studied this effect.
Specifically, we used GR/4 for the filtering stage, alongside
one of the SI algorithms, on the same set of datasets and
query workloads. We utilize as many different (parallel)
instances of SI algorithms as the number of threads N
utilized by GR. We maintain the graphs that passed GR’
filtering test in a queue and the first N graphs are assigned
to the N threads. Till the graph queue is empty, the first
graph in the queue is assigned to the next available thread.
This choice introduces additional performance improvement.

Fig. 5 presents the corresponding result for all datasets.
As expected, by increasing the number of threads from 1
to 4, we were able to achieve up to 4 times better speedups

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

av
g

 s
p

ee
d

u
p

*
Q

L
A

(GR-GQL)/4
(GR-SP)/4

(GR-QSI)/4
(GR-TI)/4

(GR-BTI)/4

SyntheticPPIPCMPDBS

(a) Avg speedup∗QLA, 4 threads

 0
 2
 4
 6
 8

 10
 12
 14
 16

av
g

 s
p

ee
d

u
p

*
W

L
A

(GR-GQL)/4
(GR-SP)/4

(GR-QSI)/4
(GR-TI)/4

(GR-BTI)/4

SyntheticPPIPCMPDBS

(b) Avg speedup∗WLA, 4 threads

Figure 5. Avg speedup∗QLA & speedup∗WLA, 4 threads

compared to the single-threaded executions. Table II presents
additional statistics for min, max, median and stdDev of the
achieved speedup∗QLA in the case of 4 threads, where in all
datasets and query workloads the achieved speedup is > 1.

IX. INDEX TIME/SIZE - FILTERING POWER TRADEOFF

In our so far discussion we used the default values
of the enumerated features for constructing the index for
GR, as suggested by the respective authors. However, the
constructed index of FTV methods is costly both in size
and in time. Thus, in this section we tweak the size of the
enumerated features maxL and we observe the filtering that
can be achieved and how this affects the gained speedups
in our hybrid solution. For our experiments we have used
maxL = 2, 3, 4, 5. We report that for maxL=5, the index
process was utilizing excessive amount of memory, leading
to thrashing even to our 128GB machine and thus no
numbers are reported for this case. In the subsequent figures,
we utilize GR-Li, i = 2, 3, 4 to denote the maxL value used.

 0.1

 1

 10

 100

 1000

 10000
ti

m
e

(s
)

GQL
SP

QSI

TI
BTI

(GR-L2)/1

(GR-L2)/4
(GR-L3)/1
(GR-L3)/4

(GR-L4)/1
(GR-L4)/4

SyntheticPPIPCMPDBS

(a) Indexing Time

 1

 10

 100

 1000

 10000

 100000

si
ze

 (
M

B
)

GQL
SP

QSI
TI

BTI
GR-L2

GR-L3
GR-L4

SyntheticPPIPCMPDBS

(b) Indexing Size

 0

 20

 40

 60

 80

 100

av
g

 %
 g

ra
p

h
s

GQL_CSS
SP_CSS

GR-L2_CSS
GR-L3_CSS

GR-L4_CSS
ASS

SyntheticPPIPCMPDBS

(c) Candidate and answer sets

 0

 0.2

 0.4

 0.6

 0.8

 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

GQL SP GR-L2 GR-L3 GR-L4

SyntheticPPIPCMPDBS

(d) False Positive Ratio

 0
 2
 4
 6
 8

 10
 12
 14

av
g

 s
p

ee
d

u
p

*
Q

L
A

(GR-L2 - GQL)/1
(GR-L2 - SP)/1

(GR-L2 - QSI)/1
(GR-L2 - TI)/1

(GR-L2 - BTI)/1

(GR-L3 - GQL)/1
(GR-L3 - SP)/1

(GR-L3 - QSI)/1
(GR-L3 - TI)/1

(GR-L3 - BTI)/1

(GR-L4 - GQLI)/1
(GR-L4 - SP)/1

(GR-L4 - QSI)/1
(GR-L4 - TI)/1

(GR-L4 - BTI)/1

SyntheticPPIPCMPDBS

(e) Avg speedup∗QLA, 1 thread

 0

 1

 2

 3

 4

 5

 6

av
g

 s
p

ee
d

u
p

*
W

L
A

(GR-L2 - GQL)/1
(GR-L2 - SP)/1

(GR-L2 - QSI)/1
(GR-L2 - TI)/1

(GR-L2 - BTI)/1

(GR-L3 - GQL)/1
(GR-L3 - SP)/1

(GR-L3 - QSI)/1
(GR-L3 - TI)/1

(GR-L3 - BTI)/1

(GR-L4 - GQLI)/1
(GR-L4 - SP)/1

(GR-L4 - QSI)/1
(GR-L4 - TI)/1

(GR-L4 - BTI)/1

SyntheticPPIPCMPDBS

(f) Avg speedup∗WLA, 1 thread

 0

 5

 10

 15

 20

 25

 30

av
g

 s
p

ee
d

u
p

*
Q

L
A

(GR-L2 - GQL)/4
(GR-L2 - SP)/4

(GR-L2 - QSI)/4
(GR-L2 - TI)/4

(GR-L2 - BTI)/4

(GR-L3 - GQL)/4
(GR-L3 - SP)/4

(GR-L3 - QSI)/4
(GR-L3 - TI)/4

(GR-L3 - BTI)/4

(GR-L4 - GQLI)/4
(GR-L4 - SP)/4

(GR-L4 - QSI)/4
(GR-L4 - TI)/4

(GR-L4 - BTI)/4

SyntheticPPIPCMPDBS

(g) Avg speedup∗QLA, 4 threads

 0
 2
 4
 6
 8

 10
 12
 14
 16

av
g

 s
p

ee
d

u
p

*
W

L
A

(GR-L2 - GQL)/4
(GR-L2 - SP)/4

(GR-L2 - QSI)/4
(GR-L2 - TI)/4

(GR-L2 - BTI)/4

(GR-L3 - GQL)/4
(GR-L3 - SP)/4

(GR-L3 - QSI)/4
(GR-L3 - TI)/4

(GR-L3 - BTI)/4

(GR-L4 - GQLI)/4
(GR-L4 - SP)/4

(GR-L4 - QSI)/4
(GR-L4 - TI)/4

(GR-L4 - BTI)/4

SyntheticPPIPCMPDBS

(h) Avg speedup∗WLA, 4 threads

Figure 6. Tweaking the maxL parameter

Fig. 6(a) and 6(b) report the indexing time and size
for GR and the different maxL tried. For comparison,
we additionally include the corresponding values for SI
methods. For all datasets, except PDBS, there is a difference
of up to 3 orders of magnitude for both indexing time and
size and for maxL from 2 to 4, leading to times and sizes
even much smaller than the in use SI methods. For PDBS,
the small number of labels and thus the small variation
of enumerated paths leads to up to 1 order of magnitude
difference of the index size from maxL = 2 to 4.

Fig. 6(c) and 6(d) present the pruning power of GR
utilizing different feature sizes on all datasets. As it was
expected, as we increase the size of the features, the CSS
decreases and it affects accordingly the FPR. However, in all
occasions the filtering power is better than that achieved by
the SI methods. This is particularly evident in PPI, PCM and
the Synthetic dataset. For these datasets and for all feature
sizes, the CSS is very close to the ASS and we also get
relatively small FPR values. PDBS follows the same trends
but with less steep divergence from the SI methods because
of the high ASS. This leads to the conclusion that we can

still achieve high speedups with smaller feature sizes.
Fig. 6(e) - 6(h) report the achieved QLA and WLA

speedups by tweaking the maxL value of GR for the used
datasets for our hybrid FTV-SI solution when utilizing 1 and
4 threads and all query sizes. A notable thing here is that in
some cases, with the sole exception of PDBS and PCM, the
achieved speedups with smaller maxL values outperform
the speedups with larger maxL values. We attribute this to
the fact that for smaller maxL values less time is required to
construct the index of the query and match it to the dataset’s
index. Additionally, the fact that the candidate set sizes that
are formed after GR’s filtering are close for the various
maxL values, constitutes to this end.

X. CONCLUSIONS

The current research trend for subgraph pattern queries
dismisses FTV methods since the fast sub-iso heuristics
of SI methods significantly outperform FTV methods. We
experimentally analyzed the problem by answering a set of
fundamental questions. We showed that the filtering power
of a top FTV algorithm (GR) is significantly better compared

against that of SI methods. Having that in mind and knowing
that the sub-iso testing can be very expensive as the graph
DB grows large (in number or size of graphs), we set
out to initially evaluate the performance of well known SI
methods. Our experiments reveal no single winner across all
datasets. We then evaluate the performance of a hybrid FTV-
SI solution, which proves to be a better practice compared to
the traditional SI methods over datasets consisting of a large
number of graphs by bringing about significant speedups
and rearrangements in algorithms’ relative performance with
not yet a single winner. However gained benefits come at
the extra costs of index space and time. Thus, we further
analyzed this hybrid method in 2 dimensions: First, to reduce
the index costs, we lowered the size of indexed features.
Our results revealed that the filtering power of the FTV
index is still much higher than that of SI methods and that
high speedups can be achieved, even with smaller indexes,
which are in turn even smaller than the SI ones. Second,
as the time to perform index-based filtering is substantial,
we studied the positive effects of doing this in parallel. Our
results showed that expected speedups can be significantly
boosted. We note that parallelizing this filtering step is a
much easier task than parallelizing the actual SI method.
Overall, this work surfaces new promising possibilities for
expediting subgraph queries in graph DBs by experimentally
revealing a blind spot in current thinking. We hope this will
inspire new research targeting new FTV-style indexes and/or
SI-style sub-iso algorithms for FTV-SI hybrids.

Acknowledgment. This work was co-funded by the Eras-
mus+ Programme of the European Union under the PRIMES
project (no. 2016-1-UK01-KA201-024631). The contents of
this publication are the sole responsibility of the authors and
can in no way be taken to reflect the views of the National
Agency and the Commission.

REFERENCES

[1] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu, “iGraph:
a framework for comparisons of disk-based graph indexing
techniques,” PVLDB, vol. 3, no. 1-2, 2010.

[2] F. Katsarou, N. Ntarmos, and P. Triantafillou, “Performance
and scalability of indexed subgraph query processing meth-
ods,” PVLDB, vol. 8, no. 12, pp. 1566–1577, 2015.

[3] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-
depth comparison of subgraph isomorphism algorithms in
graph databases,” PVLDB, vol. 6, no. 2, 2012.

[4] F. Katsarou, N. Ntarmos, and P. Triantafillou, “Subgraph
Querying with Parallel Use of Query Rewritings and Alter-
native Algorithms,” in Proc. ACM EDBT, 2017.

[5] W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: towards ultrafast
and robust subgraph isomorphism search in large graph
databases,” in Proc. SIGMOD, 2013, pp. 337–348.

[6] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient
subgraph matching on billion node graphs,” PVLDB, vol. 5,
no. 9, pp. 788–799, 2012.

[7] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and D. Shasha,
“Enhancing graph database indexing by suffix tree structure,”
in Proc. IAPR PRIB. Springer, 2010.

[8] J. Cheng, Y. Ke, W. Ng, and A. Lu, “FG-index: towards
verification-free query processing on graph databases,” in
Proc. SIGMOD, 2007, pp. 857–872.

[9] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro,
and D. Shasha, “GRAPES: A software for parallel searching
on biological graphs targeting multi-core architectures,” PloS
One, vol. 8, no. 10, 2013.

[10] K. Klein, N. Kriege, and P. Mutzel, “CT-index: Fingerprint-
based graph indexing combining cycles and trees,” in Proc.
ICDE, 2011, pp. 1115–1126.

[11] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verifi-
cation hardness: an efficient algorithm for testing subgraph
isomorphism,” PVLDB, vol. 1, no. 1, pp. 364–375, 2008.

[12] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent
structure-based approach,” in Proc. SIGMOD, 2004.

[13] D. Yuan and P. Mitra, “Lindex: a lattice-based index for graph
databases,” VLDBJ, vol. 22, no. 2, pp. 229–252, 2013.

[14] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree + delta
>= graph,” in PVLDB, 2007, pp. 938–949.

[15] L. Zou, L. Chen, J. X. Yu, and Y. Lu, “A novel spectral coding
in a large graph database,” in EDBT, 2008.

[16] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient
subgraph matching by postponing cartesian products,” in
Proc. SIGMOD, 2016.

[17] P. Zhao and J. Han, “On graph query optimization in large
networks,” PVLDB, vol. 3, no. 1-2, pp. 340–351, 2010.

[18] H. He and A. K. Singh, “Graphs-at-a-time: query language
and access methods for graph databases,” in Proc. SIGMOD,
2008, pp. 405–418.

[19] S. Zhang, S. Li, and J. Yang, “GADDI: Distance Index Based
Subgraph Matching in Biological Networks,” in Proc. ACM
EDBT, 2009, pp. 192–203.

[20] X. Ren and J. Wang, “Exploiting vertex relationships in
speeding up subgraph isomorphism over large graphs,”
PVLDB, vol. 8, no. 5, pp. 617–628, 2015.

[21] P. Peng, L. Zou, L. Chen, X. Lin, and D. Zhao, “Answering
subgraph queries over massive disk resident graphs,” WWW,
vol. 19, no. 3, pp. 417–448, 2016.

[22] L. Lai, L. Qin, X. Lin, and L. Chang, “Scalable subgraph
enumeration in mapreduce,” PVLDB, vol. 8, no. 10, 2015.

[23] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang,
“Scalable distributed subgraph enumeration,” PVLDB, vol. 10,
no. 3, pp. 217–228, 2016.

[24] J. Wang, N. Ntarmos, and P. Triantafillou, “Indexing query
graphs to speedup graph query processing,” in Proc. ACM
EDBT, 2016, pp. 41–52.

[25] ——, “GraphCache: A Caching System for Graph Queries,”
in Proc. ACM EDBT, 2017.

[26] M. Zhou, J. Yu, Y. Liu, Q. Dai, and L. Guo, “PatternTreeISO:
A Pattern Graph Correlation Framework for Accelerating
Subgraph Isomorphism over Massive Graphs,” in Proc.
CIKM, 2016.

[27] S. Zhang, J. Yang, and W. Jin, “SAPPER: subgraph indexing
and approximate matching in large graphs,” PVLDB, vol. 3,
no. 1-2, pp. 1185–1194, 2010.

[28] W. Lin, X. Xiao, J. Cheng, and S. S. Bhowmick, “Efficient
algorithms for generalized subgraph query processing,” in
Proc. CIKM, 2012, pp. 325–334.

[29] K. Semertzidis and E. Pitoura, “Durable graph pattern queries
on historical graphs,” in Proc. ICDE, 2016.

[30] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)
graph isomorphism algorithm for matching large graphs,”
IEEE TPAMI, vol. 26, no. 10, pp. 1367–1372, 2004.

