2,539 research outputs found

    A Sharing- and Competition-Aware Framework for Cellular Network Evolution Planning

    Get PDF
    Mobile network operators are facing the difficult task of significantly increasing capacity to meet projected demand while keeping CAPEX and OPEX down. We argue that infrastructure sharing is a key consideration in operators' planning of the evolution of their networks, and that such planning can be viewed as a stage in the cognitive cycle. In this paper, we present a framework to model this planning process while taking into account both the ability to share resources and the constraints imposed by competition regulation (the latter quantified using the Herfindahl index). Using real-world demand and deployment data, we find that the ability to share infrastructure essentially moves capacity from rural, sparsely populated areas (where some of the current infrastructure can be decommissioned) to urban ones (where most of the next-generation base stations would be deployed), with significant increases in resource efficiency. Tight competition regulation somewhat limits the ability to share but does not entirely jeopardize those gains, while having the secondary effect of encouraging the wider deployment of next-generation technologies

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Techno-economic viability of integrating satellite communication in 4G networks to bridge the broadband digital divide

    Get PDF
    Bridging the broadband digital divide between urban and rural areas in Europe is one of the main targets of the Digital Agenda for Europe. Though many technological options are proposed in literature, satellite communication has been identified as the only possible solution for the most rural areas, due to its global coverage. However, deploying an end-to-end satellite solution might, in some cases, not be cost-effective. The aim of this study is to give insights into the economic effectiveness of integrating satellite communications into 4G networks in order to connect the most rural areas (also referred to as white areas) in Europe. To this end, this paper proposes a converged solution that combines satellite communication as a backhaul network with 4G as a fronthaul network to bring enhanced broadband connectivity to European rural areas, along with a techno-economic model to analyse the economic viability of this integration. The model is based on a Total Cost of Ownership (TCO) model for 5 years, taking into account both capital and operational expenditures, and aims to calculate the TCO as well as the Average Cost Per User (ACPU) for the studied scenarios. We evaluate the suggested model by simulating a hypothetical use case for two scenarios. The first scenario is based on a radio access network connecting to the 4G core network via a satellite link. Results for this scenario show high operational costs. In order to reduce these costs, we propose a second scenario, consisting of caching the popular content on the edge to reduce the traffic carried over the satellite link. This scenario demonstrates a significant operational cost decrease (more than 60%), which also means a significant ACPU decrease. We evaluate the robustness of the results by simulating for a range of population densities, hereby also providing an indication of the economic viability of our proposed solution across a wider range of areas

    Achieving Ultra-Low Latency in 5G Millimeter Wave Cellular Networks

    Full text link
    The IMT 2020 requirements of 20 Gbps peak data rate and 1 millisecond latency present significant engineering challenges for the design of 5G cellular systems. Use of the millimeter wave (mmWave) bands above 10 GHz --- where vast quantities of spectrum are available --- is a promising 5G candidate that may be able to rise to the occasion. However, while the mmWave bands can support massive peak data rates, delivering these data rates on end-to-end service while maintaining reliability and ultra-low latency performance will require rethinking all layers of the protocol stack. This papers surveys some of the challenges and possible solutions for delivering end-to-end, reliable, ultra-low latency services in mmWave cellular systems in terms of the Medium Access Control (MAC) layer, congestion control and core network architecture

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft
    corecore