606 research outputs found

    Outage Probability of the EH-based Full-Duplex AF and DF Relaying Systems in α-μ Environment

    Get PDF
    Wireless power transfer and energy harvesting have attracted a significant research attention in terms of their application in cooperative relaying systems. Most of existing works in this field focus on the half-duplex (HD) relaying mechanism over certain fading channels, however, in contrast, this paper considers a dual-hop full-duplex (FD) relaying system over a generalized independent but not identically distributed αμ fading channel, where the relay node is energy-constrained and entirely depends on the energy signal from the source node. Three special cases of the α-μ model are investigated, namely, Rayleigh, Nakagami-m and Weibull fading. As the system performance, we investigate the outage probability (OP) for which we derive exact unified closed-form expressions. The provided Monte Carlo simulations validate the accuracy of our analysis. Moreover, the results obtained for the FD scenario are compared to the ones related to the HD. The results demonstrate that the decode-andforward relaying outperforms the amplify-and-forward relaying for both HD and FD scenarios. It is also shown that the FD scenario performs better than the HD relaying systems. Finally, we analyzed the impact of the fading parameters α and μ on the achievable OP

    Outage performance of underlay cognitive radio networks over mix fading environment

    Get PDF
    In this paper, the underlay cognitive radio network over mix fading environment is presented and investigated. A cooperative cognitive system with a secondary source node S, a secondary destination node D, secondary relay node Relay, and a primary node P are considered. In this model system, we consider the mix fading environment in two scenarios as Rayleigh/Nakagami-m and Nakagami-m/Rayleigh Fading channels. For system performance analysis, the closed-form expression of the system outage probability (OP) and the integral-formed expression of the ergodic capacity (EC) are derived in connection with the system's primary parameters. Finally, we proposed the Monte Carlo simulation for convincing the correctness of the system performance
    • …
    corecore