2,236 research outputs found

    Polar Codes over Fading Channels with Power and Delay Constraints

    Full text link
    The inherent nature of polar codes being channel specific makes it difficult to use them in a setting where the communication channel changes with time. In particular, to be able to use polar codes in a wireless scenario, varying attenuation due to fading needs to be mitigated. To the best of our knowledge, there has been no comprehensive work in this direction thus far. In this work, a practical scheme involving channel inversion with the knowledge of the channel state at the transmitter, is proposed. An additional practical constraint on the permissible average and peak power is imposed, which in turn makes the channel equivalent to an additive white Gaussian noise (AWGN) channel cascaded with an erasure channel. It is shown that the constructed polar code could be made to achieve the symmetric capacity of this channel. Further, a means to compute the optimal design rate of the polar code for a given power constraint is also discussed.Comment: 6 pages, 6 figure

    Throughput Analysis of Buffer-Constrained Wireless Systems in the Finite Blocklength Regime

    Get PDF
    In this paper, wireless systems operating under queueing constraints in the form of limitations on the buffer violation probabilities are considered. The throughput under such constraints is captured by the effective capacity formulation. It is assumed that finite blocklength codes are employed for transmission. Under this assumption, a recent result on the channel coding rate in the finite blocklength regime is incorporated into the analysis and the throughput achieved with such codes in the presence of queueing constraints and decoding errors is identified. Performance of different transmission strategies (e.g., variable-rate, variable-power, and fixed-rate transmissions) is studied. Interactions between the throughput, queueing constraints, coding blocklength, decoding error probabilities, and signal-to-noise ratio are investigated and several conclusions with important practical implications are drawn

    Delay Constrained Throughput Analysis of a Correlated MIMO Wireless Channel

    Full text link
    The maximum traffic arrival rate at the network for a given delay guarantee (delay constrained throughput) has been well studied for wired channels. However, few results are available for wireless channels, especially when multiple antennas are employed at the transmitter and receiver. In this work, we analyze the network delay constrained throughput of a multiple input multiple output (MIMO) wireless channel with time-varying spatial correlation. The MIMO channel is modeled via its virtual representation, where the individual spatial paths between the antenna pairs are Gilbert-Elliot channels. The whole system is then described by a K-State Markov chain, where K depends upon the degree of freedom (DOF) of the channel. We prove that the DOF based modeling is indeed accurate. Furthermore, we study the impact of the delay requirements at the network layer, violation probability and the number of antennas on the throughput under different fading speeds and signal strength.Comment: Submitted to ICCCN 2011, 8 pages, 5 figure

    Distortion Minimization in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. The expected distortion is minimized by optimally allocating the transmit power among the source layers. For two source layers, the allocation is optimal when power is first assigned to the higher layer up to a power ceiling that depends only on the channel fading distribution; all remaining power, if any, is allocated to the lower layer. For convex distortion cost functions with convex constraints, the minimization is formulated as a convex optimization problem. In the limit of a continuum of infinite layers, the minimum expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. As the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the one that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 103{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog
    corecore