2,261 research outputs found

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    Adaptive interference suppression for DS-CDMA systems based on interpolated FIR filters with adaptive interpolators in multipath channels

    Get PDF
    In this work we propose an adaptive linear receiver structure based on interpolated finite impulse response (FIR) filters with adaptive interpolators for direct sequence code division multiple access (DS-CDMA) systems in multipath channels. The interpolated minimum mean-squared error (MMSE) and the interpolated constrained minimum variance (CMV) solutions are described for a novel scheme where the interpolator is rendered time-varying in order to mitigate multiple access interference (MAI) and multiple-path propagation effects. Based upon the interpolated MMSE and CMV solutions we present computationally efficient stochastic gradient (SG) and exponentially weighted recursive least squares type (RLS) algorithms for both receiver and interpolator filters in the supervised and blind modes of operation. A convergence analysis of the algorithms and a discussion of the convergence properties of the method are carried out for both modes of operation. Simulation experiments for a downlink scenario show that the proposed structures achieve a superior BER convergence and steady-state performance to previously reported reduced-rank receivers at lower complexity

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation
    • …
    corecore