312 research outputs found

    Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in WiMAX Systems

    Get PDF

    Advanced Access Schemes for Future Broadband Wireless Networks

    Get PDF
    International audienc

    Performance Study of Hybrid Spread Spectrum Techniques

    Get PDF
    This thesis focuses on the performance analysis of hybrid direct sequence/slow frequency hopping (DS/SFH) and hybrid direct sequence/fast frequency hopping (DS/FFH) systems under multi-user interference and Rayleigh fading. First, we analyze the performance of direct sequence spread spectrum (DSSS), slow frequency hopping (SFH) and fast frequency hopping (FFH) systems for varying processing gains under interference environment assuming equal bandwidth constraint with Binary Phase Shift Keying (BPSK) modulation and synchronous system. After thorough literature survey, we show that hybrid DS/FFH systems outperform both SFH and hybrid DS/SFH systems under Rayleigh fading and multi-user interference. Also, both hybrid DS/SFH and hybrid DS/FFH show performance improvement with increasing spreading factor and decreasing number of hopping frequencies

    Distributed Digital Radios for Land Mobile Radio Applications

    Get PDF
    The main objective of this dissertation is to develop the second generation of Distributed Digital Radio (DDR) technology. A DDR II modem provides an integrated voice/data service platform, higher data rates and better throughput performance as compared to a DDR I modem. In order to improve the physical layer performance of DDR modems an analytical framework is first developed to model the Bit Error Rate (BER) performance of Orthogonal Frequency Division Multiplexing over Frequency Modulation (OFDM/FM) systems. The use of OFDM provides a spectrally efficient method of transmitting data over LMR channels. However, the high Peak-to-Average (PAR) of OFDM signals results in either a low Signal-to-Noise Ratio (SNR) at FM receiver or a high non-linear distortion of baseband signal in the FM transmitter. This dissertation presents an analytical framework to highlight the impact of high PAR of OFDM signal on OFDM/FM systems. A novel technique for reduction of PAR of OFDM called Linear Scaling Technique (LST) is developed. The use of LST mitigates the signal distortion occurring in OFDM over FM systems. Another important factor which affects the throughput of LMR networks is the Push-to-Talk (PTT) delay. A PTT delay refers to the delay between the instant when a PTT switch on a conventional LMR radio is keyed/unkeyed and a response is observed at the radio output. It can be separated into a Receive-To-Transmit Switch Interval (RTSI) or a Transmit-To-Receive Switch Interval (TRSI). This dissertation presents the typical RTSI delay values, distributions and their impact on throughput performance of LMR networks. An analytical model is developed to highlight the asymmetric throughput problem and the unintentional denial of service (UDOS) occurring in heterogeneous LMR networks consisting of radios with different PTT delay profiles. This information will be useful in performance and capacity planning of LMR networks in future

    Opportunistic Access Schemes for Multiuser OFDM Wireless Networks

    Get PDF
    International audienc

    Resource management in QoS-aware wireless cellular networks

    Get PDF
    2011 Summer.Includes bibliographical references.Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study two types of resource allocation problems in QoS-aware wireless cellular networks. First, we develop a rigorous framework to study opportunistic scheduling in multiuser OFDM systems. We derive optimal opportunistic scheduling policies under three common QoS/fairness constraints for multiuser OFDM systems--temporal fairness, utilitarian fairness, and minimum-performance guarantees. To implement these optimal policies efficiently, we provide a modified Hungarian algorithm and a simple suboptimal algorithm. We then propose a generalized opportunistic scheduling framework that incorporates multiple mixed QoS/fairness constraints, including providing both lower and upper bound constraints. Next, taking input queues and channel memory into consideration, we reformulate the transmission scheduling problem as a new class of Markov decision processes (MDPs) with fairness constraints. We investigate the throughput maximization and the delay minimization problems in this context. We study two categories of fairness constraints, namely temporal fairness and utilitarian fairness. We consider two criteria: infinite horizon expected total discounted reward and expected average reward. We derive and prove explicit dynamic programming equations for the above constrained MDPs, and characterize optimal scheduling policies based on those equations. An attractive feature of our proposed schemes is that they can easily be extended to fit different objective functions and other fairness measures. Although we only focus on uplink scheduling, the scheme is equally applicable to the downlink case. Furthermore, we develop an efficient approximation method--temporal fair rollout--to reduce the computational cost

    Channel-aware and Queue-aware Scheduling for Integrated WiMAX and EPON

    Get PDF
    By envisioning that the future broadband access networks have to support many bandwidth consuming applications, such as VoIP, IPTV, VoD, and HDTV, the integration of WiMAX and EPON networks have been taken as one of the most promising network architecture due to numerous advantages in terms of cost-effectiveness, massive-bandwidth provisioning, Ethernet-based technology, reliable transmissions, and QoS guarantee. Under the EPON-WiMAX integration, the development of a scheduling algorithm that could be channel-aware and queue-aware will be a great plus on top of the numerous merits and flexibility in such an integrated architecture. In this thesis, a novel two-level scheduling algorithm for the uplink transmission are proposed by using the principle of proportional fairness for the transmissions from SSs over the WiMAX channels, while a centralized algorithm at the OLT for the EPON uplink from different WiMAX-ONUs. The scheduler at the OLT receives a Report message from each WiMAX-ONU, which contains the average channel condition per cell, queues length, and head-of-line (HOL) delay for rtPS traffic. The EPON data frame is then scheduled based on these Report messages. Numerical results show that the proposed scheme could satisfy the end-to-end real-time QoS requirements. In addition, the centralized scheduler at the OLT can achieve high throughput in presence of traffic load variation

    Comparison Study of Resource Allocation Strategies for OFDM Multimedia Networks

    Get PDF

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore