141 research outputs found

    Investigations of 5G localization with positioning reference signals

    Get PDF
    TDOA is an user-assisted or network-assisted technique, in which the user equipment calculates the time of arrival of precise positioning reference signals conveyed by mobile base stations and provides information about the measured time of arrival estimates in the direction of the position server. Using multilateration grounded on the TDOA measurements of the PRS received from at least three base stations and known location of these base stations, the location server determines the position of the user equipment. Different types of factors are responsible for the positioning accuracy in TDOA method, such as the sample rate, the bandwidth, network deployment, the properties of PRS, signal propagation condition, etc. About 50 meters positioning is good for the 4G/LTE users, whereas 5G requires an accuracy less than a meter for outdoor and indoor users. Noteworthy improvements in positioning accuracy can be achievable with the help of redesigning the PRS in 5G technology. The accuracy for the localization has been studied for different sampling rates along with different algorithms. High accuracy TDOA with 5G positioning reference signal (PRS) for sample rate and bandwidth hasn’t been taken into consideration yet. The key goal of the thesis is to compare and assess the impact of different sampling rates and different bandwidths of PRS on the 5G positioning accuracy. By performing analysis with variable bandwidths of PRS in resource blocks and comparing all the analyses with different bandwidths of PRS in resource blocks, it is undeniable that there is a meaningful decrease in the RMSE and significant growth in the SNR. The higher bandwidth of PRS in resource blocks brings higher SNR while the RMSE of positioning errors also decreases with higher bandwidth. Also, the number of PRS in resource blocks provides lower SNR with higher RMSE values. The analysis with different bandwidths of PRS in resource blocks reveals keeping the RMSE value lower than a meter each time with different statistics is a positivity of the research. The positioning accuracy also analyzed with different sample sizes. With an increased sample size, a decrease in the root mean square error and a crucial increase in the SNR was observed. From this thesis investigation, it is inevitable to accomplish that two different analyses (sample size and bandwidth) done in a different way with the targeted output. A bandwidth of 38.4 MHz and sample size N = 700 required to achieve below 1m accuracy with SNR of 47.04 dB

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Indoor Positioning Trends in 5G-Advanced: Challenges and Solution towards Centimeter-level Accuracy

    Full text link
    After robust connectivity, precise positioning is evolving into an innovative component of 5G service offerings for industrial use-cases and verticals with challenging indoor radio environments. In this direction, the 3GPP Rel-16 standard has been a tipping point in specifying critical innovations, followed by enhancements in Rel-17+. In this article, we follow this path to elaborate on the 5G positioning framework, measurements, and methods before shifting the focus to carrier-phase (CP) measurements as a complementary measure for time- and angular-based positioning methods toward achieving centimeter-level accuracy. As this path is not without challenges, we discuss these and outline potential solutions. As an example of solutions, we study how phase-continuous reference signaling can counter noisy phase measurements using realistic simulations in an indoor factory (InF) scenario.Comment: 5 figures, 1 table, under review for possible publication in IEEE Communications Magazin

    5G Positioning: An Analysis of Early Datasets

    Get PDF
    : Global Navigation Satellite Systems (GNSSs) are nowadays the prevailing technology for positioning and navigation. However, with the roll-out of 5G technology, there is a shift towards 'hybrid positioning': indeed, 5G time-of-arrival (ToA) measurements can provide additional ranging for positioning, especially in environments where few GNSS satellites are visible. This work reports a preliminary analysis, the processing, and the results of field measurements collected as part of the GINTO5G project funded by ESA's EGEP programme. The data used in this project were shared by the European Space Agency (ESA) with the DICA of Politecnico di Milano as part of a collaboration within the ESALab@PoliMi research framework established in 2022 between the two organizations. The ToA data were collected during a real-world measurement campaign and they cover a wide range of user environments, such as indoor areas, outdoor open sky, and outdoor obstructed scenarios. Within the test area, eleven self-made replica 5G base stations were set up. A trolley, carrying a self-made 5G receiver and a data storage unit, was moved along predefined trajectories; the trolley's accurate trajectories were determined by a total station, which provided benchmark positions. In the present work, the 5G data are processed using the least squares method, testing and comparing different strategies. Therefore, the primary goal is to evaluate algorithms for position determination of a user based on 5G observations, and to empirically assess their accuracy. The results obtained are promising, with positional accuracy ranging from decimeters to a few meters in the worst cases

    Design Considerations of Dedicated and Aerial 5G Networks for Enhanced Positioning Services

    Get PDF
    Dedicated and aerial fifth generation (5G) networks, here called 5G overlay networks, are envisaged to enhance existing positioning services, when combined with global navigation satellite systems (GNSS) and other sensors. There is a need for accurate and timely positioning in safety-critical automotive and aerial applications, such as advanced warning systems or in urban air mobility (UAM). Today, these high-accuracy demands can partially be satisfied by GNSS, though not in dense urban conditions or under GNSS threats (e.g. interference, jamming or spoofing). Temporary and on-demand 5G network deployments using ground and flying base stations (BSs) are indeed a novel solution to exploit hybrid GNSS, 5G and sensor algorithms for the provision of accurate three-dimensional (3D) position and motion information, especially for challenging urban and suburban scenarios. Thus, this paper first analyzes the positioning technologies available, including signals, positioning methods, algorithms and architectures. Then, design considerations of 5G overlay networks are discussed, by including simulation results on the 5G signal bandwidth, antenna array and network deployment.Peer reviewe

    LTE NLOS Navigation and Channel Characterization

    Get PDF
    Navigation with terrestrial wireless infrastructure is appealing to overcome geometrical limitations of satellite navigation for users in environments with limited sky views. However, terrestrial signals are also prone to multipath that can result in angular and range estimates that are not representative of actual transmitter-receiver geometry. In this paper, some of these propagation effects are quantified for a particular urban non line-of-sight (NLOS) scenario, based on measurements of downlink reference symbols transmitted by a commercial Long Term Evolution (LTE) base station (eNodeB) and received by a massive antenna array mounted on a passenger vehicle. Empirical results indicate that large-scale statistics for a user making multiple passes through the same urban environment look similar when represented in terms of angles and delays despite changes in orientation and drive direction. Additionally, it is demonstrated that multipath effects can be utilized advantageously; it is possible to estimate not only user position but also orientation through wireless fingerprinting

    NTN-based 6G Localization: Vision, Role of LEOs, and Open Problems

    Full text link
    Since the introduction of 5G Release 18, non-terrestrial networks (NTNs) based positioning has garnered significant interest due to its numerous applications, including emergency services, lawful intercept, and charging and tariff services. This release considers single low-earth-orbit (LEO) positioning explicitly for location verification\textit{location verification} purposes, which requires a fairly coarse location estimate. To understand the future trajectory of NTN-based localization in 6G, we first provide a comprehensive overview of the evolution of 3rd Generation Partnership Project (3GPP) localization techniques, with specific emphasis on the current activities in 5G related to NTN location verification. We then delineate the suitability of LEOs for location-based services and emphasize increased interest in LEO-based positioning. In order to provide support for more accurate positioning in 6G using LEOs, we identify two NTN positioning systems that are likely study items for 6G: (i) multi-LEO positioning, and (ii) augmenting single-LEO and multi-LEO setups with Global Navigation Satellite System (GNSS), especially when an insufficient number of GNSS satellites (such as 2) are visible. We evaluate the accuracy of both systems through a 3GPP-compliant simulation study using a Cram\'{e}r-Rao lower bound (CRLB) analysis. Our findings suggest that NTN technology has significant potential to provide accurate positioning of UEs in scenarios where GNSS signals may be weak or unavailable, but there are technical challenges in accommodating these solutions in 3GPP. We conclude with a discussion on the research landscape and key open problems related to NTN-based positioning.Comment: 7 pages, 6 figures, submitted to IEEE Wireless Communications Magazin
    corecore