43,014 research outputs found

    Kalman Filter for Moving Object Tracking: Performance Analysis and Filter Design

    Get PDF
    This chapter presents Kalman filters for tracking moving objects and their efficient design strategy based on steady-state performance analysis. First, a dynamic/measurement model is defined for the tracking systems, assuming both position-only and position-velocity measurements. Then, problems with the Kalman filter design in tracking systems are summarized, and an efficient steady-state performance index proposed by the author [termed the root-mean-squared error index (the RMS index)] is introduced to resolve these concerns. The analytical relationship between the proposed RMS index and the covariance matrix of the process noise is shown, leading to a proposed design strategy that is based on this relationship. Theoretical performance analysis is conducted using the performance indices to show the optimality of the design strategy. Numerical simulations show the validity of the theoretical analyses and effectiveness of the proposed strategy in realistic situations. In addition, the optimal performance of the position-only-measured and position-velocity-measured systems is analyzed and compared. This comparison shows that the position-velocity-measured Kalman filter tracking is accurate when compared with the position-only-measured filter

    Trajectory Reconstruction Techniques for Evaluation of ATC Systems

    Get PDF
    This paper is focused on trajectory reconstruction techniques for evaluating ATC systems, using real data of recorded opportunity traffic. We analyze different alternatives for this problem, from traditional interpolation approaches based on curve fitting to our proposed schemes based on modeling regular motion patterns with optimal smoothers. The extraction of trajectory features such as motion type (or mode of flight), maneuvers profile, geometric parameters, etc., allows a more accurate computation of the curve and the detailed evaluation of the data processors used in the ATC centre. Different alternatives will be compared with some performance results obtained with simulated and real data sets

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Challenges with bearings only tracking for missile guidance systems and how to cope with them.

    Get PDF
    This paper addresses the problem of closed loop missile guidance using bearings and target angular extent information. Comparison is performed between particle filtering methods and derivative free methods. The extent information characterizes target size and we show how this can help compensate for observability problems. We demonstrate that exploiting angular extent information improves filter estimation accuracy. The performance of the filters has been studied over a testing scenario with a static target, with respect to accuracy, sensitivity to perturbations in initial conditions and in different seeker modes (active, passive and semi-active)

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles
    • …
    corecore