223 research outputs found

    A Neurophysiologic Study Of Visual Fatigue In Stereoscopic Related Displays

    Get PDF
    Two tasks were investigated in this study. The first study investigated the effects of alignment display errors on visual fatigue. The experiment revealed the following conclusive results: First, EEG data suggested the possibility of cognitively-induced time compensation changes due to a corresponding effect in real-time brain activity by the eyes trying to compensate for the alignment. The magnification difference error showed more significant effects on all EEG band waves, which were indications of likely visual fatigue as shown by the prevalence of simulator sickness questionnaire (SSQ) increases across all task levels. Vertical shift errors were observed to be prevalent in theta and beta bands of EEG which probably induced alertness (in theta band) as a result of possible stress. Rotation errors were significant in the gamma band, implying the likelihood of cognitive decline because of theta band influence. Second, the hemodynamic responses revealed that significant differences exist between the left and right dorsolateral prefrontal due to alignment errors. There was also a significant difference between the main effect for power band hemisphere and the ATC task sessions. The analyses revealed that there were significant differences between the dorsal frontal lobes in task processing and interaction effects between the processing lobes and tasks processing. The second study investigated the effects of cognitive response variables on visual fatigue. Third, the physiologic indicator of pupil dilation was 0.95mm that occurred at a mean time of 38.1min, after which the pupil dilation begins to decrease. After the average saccade rest time of 33.71min, saccade speeds leaned toward a decrease as a possible result of fatigue on-set. Fourth, the neural network classifier showed visual response data from eye movement were identified as the best predictor of visual fatigue with a classification accuracy of 90.42%. Experimental data confirmed that 11.43% of the participants actually experienced visual fatigue symptoms after the prolonged task

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Neonatal seizure detection based on single-channel EEG: instrumentation and algorithms

    Get PDF
    Seizure activity in the perinatal period, which constitutes the most common neurological emergency in the neonate, can cause brain disorders later in life or even death depending on their severity. This issue remains unsolved to date, despite the several attempts in tackling it using numerous methods. Therefore, a method is still needed that can enable neonatal cerebral activity monitoring to identify those at risk. Currently, electroencephalography (EEG) and amplitude-integrated EEG (aEEG) have been exploited for the identification of seizures in neonates, however both lack automation. EEG and aEEG are mainly visually analysed, requiring a specific skill set and as a result the presence of an expert on a 24/7 basis, which is not feasible. Additionally, EEG devices employed in neonatal intensive care units (NICU) are mainly designed around adults, meaning that their design specifications are not neonate specific, including their size due to multi-channel requirement in adults - adults minimum requirement is ≥ 32 channels, while gold standard in neonatal is equal to 10; they are bulky and occupy significant space in NICU. This thesis addresses the challenge of reliably, efficiently and effectively detecting seizures in the neonatal brain in a fully automated manner. Two novel instruments and two novel neonatal seizure detection algorithms (SDAs) are presented. The first instrument, named PANACEA, is a high-performance, wireless, wearable and portable multi-instrument, able to record neonatal EEG, as well as a plethora of (bio)signals. This device despite its high-performance characteristics and ability to record EEG, is mostly suggested to be used for the concurrent monitoring of other vital biosignals, such as electrocardiogram (ECG) and respiration, which provide vital information about a neonate's medical condition. The two aforementioned biosignals constitute two of the most important artefacts in the EEG and their concurrent acquisition benefit the SDA by providing information to an artefact removal algorithm. The second instrument, called neoEEG Board, is an ultra-low noise, wireless, portable and high precision neonatal EEG recording instrument. It is able to detect and record minute signals (< 10 nVp) enabling cerebral activity monitoring even from lower layers in the cortex. The neoEEG Board accommodates 8 inputs each one equipped with a patent-pending tunable filter topology, which allows passband formation based on the application. Both the PANACEA and the neoEEG Board are able to host low- to middle-complexity SDAs and they can operate continuously for at least 8 hours on 3-AA batteries. Along with PANACEA and the neoEEG Board, two novel neonatal SDAs have been developed. The first one, termed G prime-smoothed (G ́_s), is an on-line, automated, patient-specific, single-feature and single-channel EEG based SDA. The G ́_s SDA, is enabled by the invention of a novel feature, termed G prime (G ́) and can be characterised as an energy operator. The trace that the G ́_s creates, can also be used as a visualisation tool because of its distinct change at a presence of a seizure. Finally, the second SDA is machine learning (ML)-based and uses numerous features and a support vector machine (SVM) classifier. It can be characterised as automated, on-line and patient-independent, and similarly to G ́_s it makes use of a single-channel EEG. The proposed neonatal SDA introduces the use of the Hilbert-Huang transforms (HHT) in the field of neonatal seizure detection. The HHT analyses the non-linear and non-stationary EEG signal providing information for the signal as it evolves. Through the use of HHT novel features, such as the per intrinsic mode function (IMF) (0-3 Hz) sub-band power, were also employed. Detection rates of this novel neonatal SDA is comparable to multi-channel SDAs.Open Acces

    Adaptive wake and sleep detection for wearable systems

    Get PDF
    Sleep problems and disorders have a serious impact on human health and wellbeing. The rising costs for treating sleep-related chronic diseases in industrialized countries demands efficient prevention. Low-cost, wearable sleep / wake detection systems which give feedback on the wearer's "sleep performance" are a promising approach to reduce the risk of developing serious sleep disorders and fatigue. Not all bio-medical signals that are useful for sleep / wake discrimination can be easily recorded with wearable systems. Sensors often need to be placed in an obtrusive location on the body or cannot be efficiently embedded into a wearable frame. Furthermore, wearable systems have limited computational and energetic resources, which restrict the choice of sensors and algorithms for online processing and classification. Since wearable systems are used outside the laboratory, the recorded signals tend to be corrupted with additional noise that influences the precision of classification algorithms. In this thesis we present the research on a wearable sleep / wake classifier system that relies on cardiorespiratory (ECG and respiratory effort) and activity recordings and that works autonomously with minimal user interaction. This research included the selection of optimal signals and sensors, the development of a custom-tailored hardware demonstrator with embedded classification algorithms, and the realization of experiments in real-world environments for the customization and validation of the system. The processing and classification of the signals were based on Fourier transformations and artificial neural networks that are efficiently implementable into digital signal controllers. Literature analysis and empiric measurements revealed that cardiorespiratory signals are more promising for a wearable sleep / wake classification than clinically used signals such as brain potentials. The experiments conducted during this thesis showed that inter-subject differences within the recorded physiological signals make it difficult to design a sleep / wake classification model that can generalize to a group of subjects. This problem was addressed in two ways: First by adding features from another signal to the classifier, that is, measuring the behavioral quiescence during sleep using accelerometers. Conducted research on different feature extraction methods from accelerometer data showed that this data generalizes well for distinct subjects in the study group. In addition, research on user-adaptation methods was conducted. Behavioral sleep and wake measures, notably the measurement of reactivity and activity, were developed to build up a priori knowledge that was used to adapt the classification algorithm automatically to new situations. This thesis demonstrates the design and development of a low-cost, wearable hardware and embedded software for on-line sleep / wake discrimination. The proposed automatic user-adaptive classifier is advantageous compared to previously suggested classification methods that generalize over multiple subjects, because it can take changes in the wearer's physiology and sleep / wake behavior into account without adjustment from a human expert. The results of this thesis contribute to the development of smart, wearable, bio-physiological monitoring systems which require a high degree of autonomy and have only low computational resources available. We believe that the proposed sleep / wake classification system is a first promising step toward a context-aware system for sleep management, sleep disorder prevention, and reduction of fatigue

    An Enhanced Dynamic Signature Verification using the X and Y Histogram Features

    Get PDF
    Dynamic signature verification by using histogram features is a well-known signature forgery detection technique due to its high performance. However, this technique is often limited to angular histograms derived from vectors containing two adjacent points. We propose additional new features from the X and Y histograms to overcome the limitation.  Our experiments indicate that our technique produced Under Curve Area AUC values 0.80 to detect skilled forgery and 0.91 for random forgery. Our method performed best when the verification system uses 12 of the most dominant features.  This setup produced AUC values of 0.80 to detect skilled forgery and 0.93 for random forgery. These results outperformed the original technique when the X and Y histogram features are not used that produced AUC values of 0.78 to detect skilled forgery and 0.90 for random forgery

    Non-Contact Sleep Monitoring

    Get PDF
    "The road ahead for preventive medicine seems clear. It is the delivery of high quality, personalised (as opposed to depersonalised) comprehensive medical care to all." Burney, Steiger, and Georges (1964) This world's population is ageing, and this is set to intensify over the next forty years. This demographic shift will result in signicant economic and societal burdens (partic- ularly on healthcare systems). The instantiation of a proactive, preventative approach to delivering healthcare is long recognised, yet is still proving challenging. Recent work has focussed on enabling older adults to age in place in their own homes. This may be realised through the recent technological advancements of aordable healthcare sen- sors and systems which continuously support independent living, particularly through longitudinally monitoring deviations in behavioural and health metrics. Overall health status is contingent on multiple factors including, but not limited to, physical health, mental health, and social and emotional wellbeing; sleep is implicitly linked to each of these factors. This thesis focusses on the investigation and development of an unobtrusive sleep mon- itoring system, particularly suited towards long-term placement in the homes of older adults. The Under Mattress Bed Sensor (UMBS) is an unobstrusive, pressure sensing grid designed to infer bed times and bed exits, and also for the detection of development of bedsores. This work extends the capacity of this sensor. Specically, the novel contri- butions contained within this thesis focus on an in-depth review of the state-of-the-art advances in sleep monitoring, and the development and validation of algorithms which extract and quantify UMBS-derived sleep metrics. Preliminary experimental and community deployments investigated the suitability of the sensor for long-term monitoring. Rigorous experimental development rened algorithms which extract respiration rate as well as motion metrics which outperform traditional forms of ambulatory sleep monitoring. Spatial, temporal, statistical and spatiotemporal features were derived from UMBS data as a means of describing movement during sleep. These features were compared across experimental, domestic and clinical data sets, and across multiple sleeping episodes. Lastly, the optimal classier (built using a combina- tion of the UMBS-derived features) was shown to infer sleep/wake state accurately and reliably across both younger and older cohorts. Through long-term deployment, it is envisaged that the UMBS-derived features (in- cluding spatial, temporal, statistical and spatiotemporal features, respiration rate, and sleep/wake state) may be used to provide unobtrusive, continuous insights into over- all health status, the progression of the symptoms of chronic conditions, and allow the objective measurement of daily (sleep/wake) patterns and routines

    AUTOMATIC EEG CLASSIFICATION USING DENSITY BASED ALGORITHMS DBSCAN AND DENCLUE

    Get PDF
    Electroencephalograph (EEG) is a commonly used method in neurological practice. Automatic classifiers (algorithms) highlight signal sections with interesting activity and assist an expert with record scoring. Algorithm K-means is one of the most commonly used methods for EEG inspection. In this paper, we propose/apply a method based on density-oriented algorithms DBSCAN and DENCLUE. DBSCAN and DENCLUE separate the nested clusters against K-means. All three algorithms were validated on a testing dataset and after that adapted for a real EEG records classification. 24 dimensions EEG feature space were classified into 5 classes (physiological, epileptic, EOG, electrode, and EMG artefact). Modified DBSCAN and DENCLUE create more than two homogeneous classes of the epileptic EEG data. The results offer an opportunity for the EEG scoring in clinical practice. The big advantage of the proposed algorithms is the high homogeneity of the epileptic class

    MVPAlab: A machine learning decoding toolbox for multidimensional electroencephalography data

    Get PDF
    This research was supported by the Spanish Ministry of Sci- ence and Innovation under the PID2019–111187GB-I00 grant, by the MCIN/AEI/10.13039/50110 0 011033/ and FEDER “Una manera de hacer Europa’’ under the RTI2018-098913-B100 project, by the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B- TIC-586-UGR20 and P20-00525 projects. The first author of this work is supported by a scholarship from the Spanish Ministry of Science and Innovation (BES-2017–079769). Funding for open ac- cess charge: Universidad de Granada / CBUA. The sample EEG dataset was extracted from an original experiment previously ap- proved by the Ethics Committee of the University of Granada.Background and Objective: The study of brain function has recently expanded from classical univariate to multivariate analyses. These multivariate, machine learning-based algorithms afford neuroscientists extracting more detailed and richer information from the data. However, the implementation of these procedures is usually challenging, especially for researchers with no coding experience. To address this problem, we have developed MVPAlab, a MATLAB-based, flexible decoding toolbox for multidimensional electroencephalography and magnetoencephalography data. Methods: The MVPAlab Toolbox implements several machine learning algorithms to compute multivariate pattern analyses, cross-classification, temporal generalization matrices and feature and frequency contri- bution analyses. It also provides access to an extensive set of preprocessing routines for, among others, data normalization, data smoothing, dimensionality reduction and supertrial generation. To draw statisti- cal inferences at the group level, MVPAlab includes a non-parametric cluster-based permutation approach. Results: A sample electroencephalography dataset was compiled to test all the MVPAlab main function- alities. Significant clusters (p < 0.01) were found for the proposed decoding analyses and different config- urations, proving the software capability for discriminating between different experimental conditions. Conclusions: This toolbox has been designed to include an easy-to-use and intuitive graphic user interface and data representation software, which makes MVPAlab a very convenient tool for users with few or no previous coding experience. In addition, MVPAlab is not for beginners only, as it implements several high and low-level routines allowing more experienced users to design their own projects in a highly flexible manner.Spanish Government PID2019-111187GB-I00 BES-2017-079769MCIN/AEIFEDER "Una manera de hacer Europa'' RTI2018-098913-B100Junta de AndalucíaEuropean Commission CV20-45250 A-TIC-080-UGR18 BTIC-586-UGR20 P20-00525Universidad de Granada/CBU

    Heuristic Optimization Algorithm with Ensemble Learning Model for Intelligent Intrusion Detection and Classification

    Get PDF
    Intrusion Detection (ID) for network security prevents and detects malicious behaviours or unauthorized activities that occurs in the network. An ID System (IDS) refers to a safety tool that monitors events or network traffic for responding to and identifying illegal access attempts or malevolent activities. IDS had a vital role in network security by finding and alerting security teams or administrators about security breaches or potential intrusions. Machine Learning (ML) methods are utilized for ID by training methods for recognizing behaviours and patterns linked with intrusions. Deep Learning (DL) methods are implemented to learn complicated representations and patterns in network data. DL methods have witnessed promising outcomes in identifying network intrusions by automatically learning discriminatory features from raw network traffic. This article presents a new Teaching and Learning based Optimization with Ensemble Learning Model for Intelligent Intrusion Detection and Classification (TLBOEL-IDC) technique. The presented TLBOEL-IDC method mainly detects and classifies the intrusions in the network. To attain this, the TLBOEL-IDC method primarily preprocesses the input networking data. Besides, the TLBOEL-IDC technique involves the design of an ensemble classifier by the integration of three DL models called Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM (BLSTM). Moreover, the hyperparameter tuning of the DL models takes place using the TLBO approach that improves the overall ID outputs. The simulation assessment of the TLBOEL-IDC approach takes place on a benchmark dataset and the outputs are measured under various factors. The comparative evaluation emphasized the best accomplishment of the TLBOEL-IDC technique over other present models by means of diverse metrics
    corecore