5,139 research outputs found

    A cooperative approach for distributed task execution in autonomic clouds

    Get PDF
    Virtualization and distributed computing are two key pillars that guarantee scalability of applications deployed in the Cloud. In Autonomous Cooperative Cloud-based Platforms, autonomous computing nodes cooperate to offer a PaaS Cloud for the deployment of user applications. Each node must allocate the necessary resources for customer applications to be executed with certain QoS guarantees. If the QoS of an application cannot be guaranteed a node has mainly two options: to allocate more resources (if it is possible) or to rely on the collaboration of other nodes. Making a decision is not trivial since it involves many factors (e.g. the cost of setting up virtual machines, migrating applications, discovering collaborators). In this paper we present a model of such scenarios and experimental results validating the convenience of cooperative strategies over selfish ones, where nodes do not help each other. We describe the architecture of the platform of autonomous clouds and the main features of the model, which has been implemented and evaluated in the DEUS discrete-event simulator. From the experimental evaluation, based on workload data from the Google Cloud Backend, we can conclude that (modulo our assumptions and simplifications) the performance of a volunteer cloud can be compared to that of a Google Cluster

    Modelling of a Gas Cap Gas Lift System

    Get PDF
    Imperial Users onl

    Efficient Parallel Simulation of CO2 Geologic Sequestration in Saline Aquifers

    Get PDF

    Surface Drilling Data for Constrained Hydraulic Fracturing and Fast Reservoir Simulation of Unconventional Wells

    Get PDF
    The objective is to present a new integrated workflow which leverages commonly available drilling data from multiple wells to build reservoir models to be used for designing and optimizing hydraulic fracture treatment and reservoir simulation. The use of surface drilling data provides valuable information along every wellbore. This information includes estimations of geomechanical logs, pore pressure, stresses, porosity and natural fractures. These rock properties may be used as a first approximation in a well-centric approach to geoengineer completions. Combining these logs from multiple wells into 3D reservoir models provides more value including using them in reservoir geomechanics, 3D planar hydraulic fracturing design and reservoir simulation. When using these 3D models and their results in a fast marching method simulator, the impact of the interference between wells can be estimated quickly while providing results like those derived with a classical reservoir simulator. Integrating surface drilling data with 3D reservoir models, hydraulic fracturing design and reservoir simulation into a single software platform results in a fast and constrained approach which allows for a more efficient management of unconventional wells

    A Study of Interwell Interference and Well Performance in Unconventional Reservoirs Based on Coupled Flow and Geomechanics Modeling with Improved Computational Efficiency

    Get PDF
    Completion quality of tightly spaced horizontal wells in unconventional reservoirs is important for hydrocarbon recovery efficiency. Parent well production usually leads to heterogeneous stress evolution around parent wells and at infill well locations, which affects hydraulic fracture growth along infill wells. Recent field observations indicate that infill well completions lead to frac hits and production interference between parent and infill wells. Therefore, it is important to characterize the heterogeneous interwell stress/pressure evolutions and hydraulic fracture networks. This work presents a reservoir-geomechanics-fracturing modeling workflow and its implementation in unconventional reservoirs for the characterization of interwell stress and pressure evolutions and for the modeling of interwell hydraulic fracture geometry. An in-house finite element model coupling fluid flow and geomechanics is first introduced and used to characterize production-induced stress and pressure changes in the reservoir. Then, an in-house complex fracture propagation model coupling fracture mechanics and wellbore/fracture fluid flow is used for the simulation of hydraulic fractures along infill wells. A parallel solver is also implemented in a reservoir geomechanics simulator in a separate study to investigate the potential of improving computational efficiency. Results show that differential stress (DS), parent well fracture geometry, legacy production time, bottomhole pressure (BHP) for legacy production, and perforation cluster location are key parameters affecting interwell fracture geometry and the occurrence of frac hits. In general, transverse infill well fractures are obtained in scenarios with large DS and small legacy producing time/BHP. Non-uniform parent well fracture geometry leads to frac hits in certain cases, while the assumption of uniform parent well fracture half-lengths in the numerical model could not capture the phenomenon of frac hits. Perforation cluster locations along infill wells do not play an important role in determining whether an infill well hydraulic fracture is transverse, while they are important for the occurrence of frac hits. In addition, the implementation of a parallel solver, PETSc, in a fortran-based simulator indicates that an overall speedup of 14 can be achieved for simulations with one million grid blocks. This result provides a reference for improving computational efficiency for geomechanical simulation involving large matrices using finite element methods (FEM)

    GAWPS: A MRST-based module for wellbore profiling and graphical analysis of flow units

    Get PDF
    Several graphical methods have been developed to understand the stratigraphy observed in wells and assist experts in estimating rock quality, defining limits for barriers, baffles, and speed zones, and in particular, delineating hydraulic flow units. At present, there exists no computational tool that bundles the main graphical methods used for defining flow units. This paper introduces an add-on module to the MATLAB Reservoir Simulation Toolbox that contains computational routines to carry out such graphical analyses, both qualitatively and quantitatively. We also describe a new secondary method defined as the derivative of the stratigraphic modified Lorenz plot, which we use to classify depth ranges within the reservoir into barriers, strong baffles, weak baffles, and normal units, based on flow unit speed over those depths. We demonstrate the capabilities of the “Graphical Analysis for Well Placement Strategy” module by applying it to several case studies of both real and synthetic reservoirs.Cited as: Oliveira, G. P., Rodrigues, T. N. E., Lie, K.-A. GAWPS: A MRST-based module for wellbore profiling and graphical analysis of flow units. Advances in Geo-Energy Research, 2021, 6(1): 38-53. https://doi.org/10.46690/ager.2022.01.0
    corecore