1,902 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Centralized vs distributed communication scheme on switched ethernet for embedded military applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the future embedded military applications. Therefore, a new interconnection system is needed to overcome these limitations. Two new communication networks based upon Full Duplex Switched Ethernet are presented herein in this aim. The first one uses a distributed communication scheme where equipments can emit their data simultaneously, which clearly improves system’s throughput and flexibility. However, migrating all existing applications into a compliant form could be an expensive step. To avoid this process, the second proposal consists in keeping the current centralized communication scheme. Our objective is to assess and compare the real time guarantees that each proposal can offer. The paper includes the functional description of each proposed communication network and a military avionic application to highlight proposals ability to support the required time constrained communications

    Network Service Customization: End-Point Perspective (Proposal)

    Get PDF
    An important problem with cell-switched technologies such as Asynchronous Transfer Mode (ATM) is the provision of customized multiplexing behavior to applications. This customization takes the form of setting up processes in the network and end-points to meet application Quality of Service (QoS) requirements. The proposed thesis work examines the necessary components of a software architecture to provide QoS in the end-points of a cell-switched network. An architecture has been developed, and the thesis work will refine it using a driving application of the full-feedback teleoperation of a robotics system. Preliminary experimental results indicate that such teleoperation is possible using general-purpose workstations and a lightly-loaded ATM link. An important result of the experimental portion of the thesis work will be a study of the domain of applicability for various resource management techniques

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Real-time communication in packet-switched networks

    Full text link

    Resource Management in Multimedia Networked Systems

    Get PDF
    Error-free multimedia data processing and communication includes providing guaranteed services such as the colloquial telephone. A set of problems have to be solved and handled in the control-management level of the host and underlying network architectures. We discuss in this paper \u27resource management\u27 at the host and network level, and their cooperation to achieve global guaranteed transmission and presentation services, which means end-to-end guarantees. The emphasize is on \u27network resources\u27 (e.g., bandwidth, buffer space) and \u27host resources\u27 (e.g., CPU processing time) which need to be controlled in order to satisfy the Quality of Service (QoS) requirements set by the users of the multimedia networked system. The control of the specified resources involves three actions: (1) properly allocate resources (end-to-end) during the multimedia call establishment, so that traffic can flow according to the QoS specification; (2) control resource allocation during the multimedia transmission; (3) adapt to changes when degradation of system components occurs. These actions imply the necessity of: (a) new services, such as admission services, at the hosts and intermediate network nodes; (b) new protocols for establishing connections which satisfy QoS requirements along the path from send to receiver(s), such as resource reservation protocol; (c) new control algorithms for delay, rate and error control; (d) new resource monitoring protocols for reporting system changes, such as resource administration protocol; (e) new adaptive schemes for dynamic resource allocation to respond to system changes; and (f) new architectures at the hosts and switches to accommodate the resource management entities. This article gives an overview of services, mechanisms and protocols for resource management as outlined above
    corecore