6,396 research outputs found

    A multiprocessor based packet-switch: performance analysis of the communication infrastructure

    Get PDF
    The intra-chip communication infrastructures are receiving always more attention since they are becoming a crucial part in the development of current SoCs. Due to the high availability of pre-characterized hard-IP, the complexity of the design is moving toward global interconnections which are introducing always more constraints at each technology node. Power consumption, timing closure, bandwidth requirements, time to market, are some of the factors that are leading to the proposal of new solutions for next generation multi-million SoCs. The need of high programmable systems and the high gate-count availability is moving always more attention on multiprocessors systems (MP-SoC) and so an adequate solution must be found for the communication infrastructure. One of the most promising technologies is the Network-On-Chip (NoC) architecture, which seems to better fit with the new demanding complexity of such systems. Before starting to develop new solutions, it is crucial to fully understand if and when current bus architectures introduce strong limitations in the development of high speed systems. This article describes a case study of a multiprocessor based ethernet packet-switch application with a shared-bus communication infrastructure. This system aims to depict all the bottlenecks which a shared-bus introduces under heavy load. What emerges from this analysis is that, as expected, a shared-bus is not scalable and it strongly limits whole system performances. These results strengthen the hypothesis that new communication architectures (like the NoC) must be found

    Adaptive Transactional Memories: Performance and Energy Consumption Tradeoffs

    Get PDF
    Energy efficiency is becoming a pressing issue, especially in large data centers where it entails, at the same time, a non-negligible management cost, an enhancement of hardware fault probability, and a significant environmental footprint. In this paper, we study how Software Transactional Memories (STM) can provide benefits on both power saving and the overall applications’ execution performance. This is related to the fact that encapsulating shared-data accesses within transactions gives the freedom to the STM middleware to both ensure consistency and reduce the actual data contention, the latter having been shown to affect the overall power needed to complete the application’s execution. We have selected a set of self-adaptive extensions to existing STM middlewares (namely, TinySTM and R-STM) to prove how self-adapting computation can capture the actual degree of parallelism and/or logical contention on shared data in a better way, enhancing even more the intrinsic benefits provided by STM. Of course, this benefit comes at a cost, which is the actual execution time required by the proposed approaches to precisely tune the execution parameters for reducing power consumption and enhancing execution performance. Nevertheless, the results hereby provided show that adaptivity is a strictly necessary requirement to reduce energy consumption in STM systems: Without it, it is not possible to reach any acceptable level of energy efficiency at all

    Speculative Concurrency Control for Real-Time Databases

    Full text link
    In this paper, we propose a new class of Concurrency Control Algorithms that is especially suited for real-time database applications. Our approach relies on the use of (potentially) redundant computations to ensure that serializable schedules are found and executed as early as possible, thus, increasing the chances of a timely commitment of transactions with strict timing constraints. Due to its nature, we term our concurrency control algorithms Speculative. The aforementioned description encompasses many algorithms that we call collectively Speculative Concurrency Control (SCC) algorithms. SCC algorithms combine the advantages of both Pessimistic and Optimistic Concurrency Control (PCC and OCC) algorithms, while avoiding their disadvantages. On the one hand, SCC resembles PCC in that conflicts are detected as early as possible, thus making alternative schedules available in a timely fashion in case they are needed. On the other hand, SCC resembles OCC in that it allows conflicting transactions to proceed concurrently, thus avoiding unnecessary delays that may jeopardize their timely commitment

    Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts

    Get PDF
    During the past decade, parallelism-related issues have been at the forefront of real-time systems research due to the advent of multicore technologies. In the coming years, such issues will loom ever larger due to increasing core counts. Having more cores means a greater potential exists for platform capacity loss when the available parallelism cannot be fully exploited. In this paper, such capacity loss is considered in the context of real-time locking protocols. In this context, lock nesting becomes a key concern as it can result in transitive blocking chains that force tasks to execute sequentially unnecessarily. Such chains can be quite long on a larger machine. Contention-sensitive real-time locking protocols have been proposed as a means of "breaking" transitive blocking chains, but such protocols tend to have high overhead due to more complicated lock/unlock logic. To ease such overhead, the usage of lock servers is considered herein. In particular, four specific lock-server paradigms are proposed and many nuances concerning their deployment are explored. Experiments are presented that show that, by executing cache hot, lock servers can enable reductions in lock/unlock overhead of up to 86%. Such reductions make contention-sensitive protocols a viable approach in practice
    • 

    corecore