6 research outputs found

    OnehopMANET: One-hop structured p2p over mobile ad hoc networks

    Get PDF
    There are many common characteristics between P2P (Peer to Peer) overlay networks and MANET (mobile ad hoc networks). Previous work has shown that when used together, the two approaches complement each other and performance synergies can be exploited. While MANET provide wireless connectivity without depending on any pre-existing infrastructure, P2P overlays provide data storage/retrieval functionality. On the other hand, both approaches face common challenges: maintaining connectivity in dynamic and decentralized networks. This paper proposes One hop MANET as a structured P2P over MANET the uses cross-layering with a proactive underlay. Unlike previous work, One hop MANET uses a P2P overlay that is capable of achieving lookups in a single hop. Through simulation we show that this approach offers performance benefits when compared with approaches which employ a multi-hop P2P overlay

    Routing performance of structured overlay in Distributed Hash Tables (DHT) for P2P

    Get PDF
    This paper presents a routing performance analysis of structured P2P overlay network. Due to the rapid development and hectic life, sharing data wirelessly is essential. P2P allows participating peers move freely by joining and leaving the network at any convenience time. Therefore, it exists constraint when one measuring the network performance. Moreover, the design of structured overlay networks is fragmented and with various design. P2P networks need to have a reliable routing protocol. In order to analyse the routing performance, this work simulates three structured overlay protocols-Chord, Pastry and Kademlia using OMNeT++ with INET and OverSim module. The result shows that Pastry is the best among others with 100% routing efficiency. However, Kademlia leads with 12.76% and 18.78% better than Chord and Pastry in lookup hop count and lookup success latency respectively. Hence, Pastry and Kamelia architectures will have a better choice for implementing structured overlay P2P network

    Performance evaluation of OnehopMANET

    Get PDF
    When used together, Peer-to-Peer overlays and MANET complement each other well. While MANET provides wireless connectivity without depending on any pre-existing infrastructure, P2P overlays provide data storage/retrieval functionality. However, both systems face common challenges: maintaining connectivity in dynamic and decentralized networks. In this paper we evaluate the performance of OnehopMANET[1] as a structured P2P over MANET system that uses cross-layering with a proactive underlay. We compare the performance of OnehopMANET with two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that use the same underlay protocol (OLSR) and that have been shown to outperform other proposals. Through simulation we show that OnehopMANET achieves a better performance in terms of file discovery delay, lookup fail rate and total traffic load for all the simulated scenarios

    Performance analysis of structured peer-to-peer overlays for mobile networks

    Get PDF
    Distributed Hash Table (DHT) based Peer-to-Peer (P2P) overlays have been widely researched and deployed in many applications such as file sharing, IP telephony, content distribution and media streaming applications. However, their deployment has largely been restricted to fixed, wired networks. This is due to the fact that supporting P2P overlays on wireless networks such as the public mobile data network is more challenging due to constraints in terms of data transmissions on cellular networks, limited battery power of the handsets and increased levels of node churn. However, the proliferation of smartphones makes the use of P2P applications on mobile handsets very desirable.  In this paper, we have analysed and evaluated the performance and efficiency of five popular DHT based structured P2P overlays (Chord, Pastry, Kademlia, Broose and EpiChord) under conditions as commonly experienced in public mobile data networks. Our results show that the conditions in mobile networks, including a high churn rate and the relatively low bandwidth availability is best matched by Kademlia and EpiChord. These overlays exhibit a high lookup success ratio and low hop count while consuming a moderate amount of bandwidth. These characteristics make these two overlays suitable candidates for use in mobile networks

    Design and evaluation of a peer-to-peer MANET crosslayer approach: OneHopOverlay4MANET

    Get PDF
    Peer-to-Peer overlay networks can be deployed over Mobile Ad hoc Networks (MANET) to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET do not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. OneHopOverlay4MANET exploits the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. In this paper, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. We evaluate OneHopOverlay4MANET with two proactive underlay (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). Through simulation we show that the use of OLSR in OneHopOverlay4MANET yields the best performance. In addition, we compare the performance of the proposed system over OLSR to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. As simulation result shows, better performance can be achieved using OneHopOverlay4MANET

    Structured Peer-to-Peer Overlays for NATed Churn Intensive Networks

    Get PDF
    The wide-spread coverage and ubiquitous presence of mobile networks has propelled the usage and adoption of mobile phones to an unprecedented level around the globe. The computing capabilities of these mobile phones have improved considerably, supporting a vast range of third party applications. Simultaneously, Peer-to-Peer (P2P) overlay networks have experienced a tremendous growth in terms of usage as well as popularity in recent years particularly in fixed wired networks. In particular, Distributed Hash Table (DHT) based Structured P2P overlay networks offer major advantages to users of mobile devices and networks such as scalable, fault tolerant and self-managing infrastructure which does not exhibit single points of failure. Integrating P2P overlays on the mobile network seems a logical progression; considering the popularities of both technologies. However, it imposes several challenges that need to be handled, such as the limited hardware capabilities of mobile phones and churn (i.e. the frequent join and leave of nodes within a network) intensive mobile networks offering limited yet expensive bandwidth availability. This thesis investigates the feasibility of extending P2P to mobile networks so that users can take advantage of both these technologies: P2P and mobile networks. This thesis utilises OverSim, a P2P simulator, to experiment with the performance of various P2P overlays, considering high churn and bandwidth consumption which are the two most crucial constraints of mobile networks. The experiment results show that Kademlia and EpiChord are the two most appropriate P2P overlays that could be implemented in mobile networks. Furthermore, Network Address Translation (NAT) is a major barrier to the adoption of P2P overlays in mobile networks. Integrating NAT traversal approaches with P2P overlays is a crucial step for P2P overlays to operate successfully on mobile networks. This thesis presents a general approach of NAT traversal for ring based overlays without the use of a single dedicated server which is then implemented in OverSim. Several experiments have been performed under NATs to determine the suitability of the chosen P2P overlays under NATed environments. The results show that the performance of these overlays is comparable in terms of successful lookups in both NATed and non-NATed environments; with Kademlia and EpiChord exhibiting the best performance. The presence of NATs and also the level of churn in a network influence the routing techniques used in P2P overlays. Recursive routing is more resilient to IP connectivity restrictions posed by NATs but not very robust in high churn environments, whereas iterative routing is more suitable to high churn networks, but difficult to use in NATed environments. Kademlia supports both these routing schemes whereas EpiChord only supports the iterating routing. This undermines the usefulness of EpiChord in NATed environments. In order to harness the advantages of both routing schemes, this thesis presents an adaptive routing scheme, called Churn Aware Routing Protocol (ChARP), combining recursive and iterative lookups where nodes can switch between recursive and iterative routing depending on their lifetimes. The proposed approach has been implemented in OverSim and several experiments have been carried out. The experiment results indicate an improved performance which in turn validates the applicability and suitability of ChARP in NATed environments
    corecore