-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Stirling Online Research Repository

Performance Evaluation of Structured Peer-to-Peer Overlays
for Use on Mobile Networks

Farida Chowdhury, Jamie Furness, Mario Kolberg

Computing Science and Mathematics
Universty of Stirling, Stirling, Scotland
{fch,jrf,mko} @cs.stir.ac.uk

Abstract: Distributed Hash Table (DHT) based Peer-to-Peer (P2P) overlays have been widely researched and deployed in many
applications such as file sharing, IP telephony, content distribution and media streaming applications. However, their deployment
has largely been restricted to fixed, wired networks. This is due to the fact that supporting P2P overlays on wireless networks such
as the public mobile data network is more challenging due to constraints in terms of data transmissions on cellular networks,
limited battery power of the handsets and increased levels of node churn. However, the proliferation of smartphones makes the
use of P2P applications on mobile handsets very desirable.

In this paper, we have analysed and evaluated the performance and efficiency of five popular DHT based structured P2P overlays
(Chord, Pastry, Kademlia, Broose and EpiChord) under conditions as commonly experienced in public mobile data networks. Our
results show that the conditions in mobile networks, including a high chum rate and the relatively low bandwidth availability is
best matched by Kademlia and EpiChord. These overlays exhibit a high lookup success ratio and low hop count while consuming
a moderate amount of bandwidth. These characteristics make these two overlays suitable candidates for use in mobile networks.

1. INTRODUCTION

Peer-to-Peer (P2P) communication networks have been very popular over the last decade due to their capability to
facilitate information storage and retrieval among a potentially very large number of nodes while avoiding the use of
central servers. Especially Distributed Hash Table (DHT) based structured P2P overlays offer an efficient routing
architecture that is adaptive, self-organizing, fault tolerant, scalable and massively distributed. P2P has been used
primarily for content distribution but more recently it has also been used for multicasting, distributed collaboration
systems and grid computing.

P2P applications have been very successful on fixed, wired networks. With the explosive increase in popularity of
smartphones the consumption of data services on the move has increased substantially, a move which makes the
availability of P2P overlay networks very desirable.

On the other hand, mobile networked devices often have strict bandwidth limits and limited processing power. These
limitations are typically caused by expensive bandwidth costs and restrictive battery performance. Furthermore, in a
mobile network setting, the performance can be affected significantly by frequent join and leave events of mobile
nodes — commonly known as node churn. As the proportion of mobile nodes increases in the network, many P2P
overlays cannot cope and simply collapse under high churn rate [1],[2]. Furthermore, the communication link may be
impacted by high packet loss rate and bandwidth fluctuations which make the mobile environment much more
challenging. The mobile handset devices also have limited battery power. With P2P applications becoming
increasingly popular for networked devices, P2P systems are required to minimise their network overhead to prolong
device battery life while coping with high levels of node churn.

Structured P2P overlays make use of a Distributed Hash Table (DHT) to distribute index information about the
shared data items across the participating peers. Each node is assigned a unique ID (e.g. a hashed IP address) and
responsible for storing a range of keys which is closest to its node ID. Each data item is also assigned a file ID (e.g.
the hash of a file name) and each node is responsible for a particular range of the file ID space. If a node queries a
key, the network returns the node ID where the associated file with that key is stored. Therefore the nodes exchange
data items based on their keys. Well-known examples of such algorithms are Chord [3], Pastry [4], Kademlia [5],
Broose [6] and EpiChord [7].

Chord [3] uses consistent hash function to generate an m-bit identifier for each node and resource, where m is a pre-
defined system parameter. Nodes are ordered to form a ring circle of modulo 2m. Each node has a successor and a
predecessor on the ring. Each node maintains a routing table which consists of two parts: the first part is a finger
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table that contains the m entries and the predecessor of this node. The second part is a neighbour table that contains
the successor list of size . When a lookup is initiated, it is forwarded clockwise to its closer nodes.

Pastry [4] also consists of a circular identifier space where each node and data item are assigned a 128-bit identifier
using a consistent hash function. In addition to the routing table, each node in Pastry maintains a Leaf set and a
Neighbourhood set. Pastry uses prefix routing to route messages where each entry in the routing table contains the IP
address of peers whose identifiers have the appropriate prefix and it is chosen according to a close proximity metric.

Kademlia [5] is another DHT based P2P overlay that assigns a NodeID in each node in the 160-bit key space and the
[key,value] pairs are stored on nodes with IDs close to the key. It uses XOR-based metric topology for routing.
Kademlia nodes contain lists of entries, known as buckets, which are used to send parallel lookups.

Broose [6] is based on the De-Bruijn topology that allows a distributed hash table to be maintained in a loose
manner. Similar to Kademlia, it stores an association of & nodes instead of one to get high reliability without any
node failures and uses a constant size routing table of O(k) contacts for allowing lookups in O(log N) messages
exchange.

EpiChord [7] is a DHT algorithm where peers maintain a full routing table and ideally approach O(7) hop lookup
performance compared to the O(logN) hop performance offered in many multi-hop networks. EpiChord is based on
the Chord DHT and organized as a one-dimensional circular space where each node is assigned a unique node
identifier. The node responsible for a key is the node whose identifier most closely follows the key. In addition to
maintaining a list of the & succeeding nodes, EpiChord also maintains a list of the £ preceding nodes and a cache of
nodes. Nodes update their cache by observing lookup traffic. Therefore nodes add an entry anytime they learn of a
node not already in the cache and remove entries which are considered dead. In general terms EpiChord can be
thought of as Chord with a cache of extra node addresses. With a well-populated cache this results in lookup
performance approaching one hop. Under high churn the performance may drop to that of Chord, O(log N) hops as a
lower bound.

In this paper, we present a comparative analysis of these five structured P2P overlays using the OverSim [8]
simulation framework under the more extreme requirements that the public mobile data networks pose.

The contributions of our paper are:

e  Presentation of an EpiChord overlay model for the OverSim simulation environment and validation of the
performance of the model.

e  Comparative performance evaluation of Chord, Pastry, Kademlia, Broose and EpiChord, considering high
levels of churn and bandwidth consumption as required in mobile networks.

e  Identifying the most suitable configuration of these five DHTs to achieve the optimal performance in
mobile environments.

The rest of the paper is structured as follows: Section 2 gives the related work. Section 3 compares the available P2P
simulators and justifies why we have used OverSim. Section 4 presents an overview of the OverSim simulator. In
section 5, EpiChord has been validated and the results have been presented after making changes to the original
EpiChord model. Section 6 describes the experiment design and simulation setup. How the best parameters for each
overlay have been selected is discussed in section 7. Performance evaluations are discussed in Section 8 and we
summarise in Section 9.

2. RELATED WORK

A large number of multi-hop structured Peer-to-Peer (P2P) algorithms have been proposed [9]. These algorithms are
characterized by O(log N) hop count. Because each overlay hop translates to potentially many hops in the underlying
network, multi-hop overlays have a relatively poor latency characteristic for connecting large numbers of peers.
Consequently, systems have been developed to trade-off latency for larger routing tables. However these designs
lead to increased network traffic for managing larger routing tables. Thus the efficient overlay maintenance in O(1)-
hop (one-hop) overlays is an important research question. Two techniques have emerged [9] for maintaining routing
tables in overlays: active stabilization where peers have fixed communication to maintain a target routing table
accuracy, and opportunistic updating where routing table maintenance depends on lookup load and available
bandwidth. Active stabilization provides for higher routing table accuracy and hence lookup performance at the cost
of increased maintenance traffic.



DHT based P2P overlays from the viewpoint of wired and wireless networks have received significant attention and
therefore the performance have been evaluated in a number of studies [14], [15], [15],[17]. A Performance Versus
Cost (PVC) framework has been presented to evaluate the cost and performance of various DHTs under churn in
[14]. The authors simulated Chord, Kademlia, Kelips, OneHop and Tapestry; and showed that all of these measured
DHTs can achieve reasonable performance if parameters are optimised.

In [15], Chord, Koorde, Pastry, Bamboo, Kademlia and Broose are compared based on the PVC evaluation
framework [14]. While churn settings were simulated, the simulation parameters were not chosen to reflect the
conditions of wireless networks, but are based on the conditions found in fixed wired networks. Consequently, the
overlays are not configured for the conditions they are meant to operate in and thus do not yield best performance.

In [17] Chord, Kelips and Tapestry are analysed. However, the experiments were based on rather small networks of
1000 nodes. In [18], several multi-hop DHT algorithms’ suitability for interpersonal communication was
investigated. Desired features of DHTs were presented as well as the suitability of the algorithms for mobile
networks was assessed. However, the analysis was carried out in a theoretical way and no simulation based
evaluation is presented.

In [19], the performance of the Kademlia P2P system in mobile networks in the presence of different levels of churn
was evaluated. They conclude that a 3-way parallel lookup together with a resource replication factor of 3 are
sufficient for a robust system under churn. Besides focussing on a single overlay, the experimentation carried out
was based on very small networks with about 400 nodes only.

EpiChord was originally proposed in [7]. The authors validated their model using SSFNet [20] and compared
EpiChord with Chord. The performance of EpiChord has been evaluated in two different workloads: Lookup-
intensive and Churn-intensive. The analysis and simulations presented in the paper show that EpiChord offers
significantly better lookup hop count and success ratio performance with only slightly higher bandwidth costs than
Chord by using parallel lookups and by amortizing the network maintenance costs into the lookup costs. To date,
there is no further investigation of EpiChord’s performance under the constraints of mobile networks. In this paper,
we address its applicability for mobile networks.

3. REVIEW OF SIMULATORS

Before deciding on OverSim, a detailed review of other available and active P2P network simulators was carried out.
A summary of these tools is provided in Table I.

PeerSim [21] is a Java based simulator whose main focus is to provide high scalability, with network sizes of up to
10° nodes. However, this scalability comes at the cost of omitting the behavior of the underlying communication
network.

P2PSim [22] is a discrete event simulator for P2P overlays written in C++. Models for Chord, Accordion, Koorde,
Kelips, Tapestry, and Kademlia are available. However, these implementations are specific to P2PSim and do not
model all features of the protocols. P2PSim has been simulated with up to 3,000 nodes using the Chord
implementation. This simulator is largely undocumented and therefore hard to extend.

Overlay Weaver [23] is a toolkit for P2P Overlays written in Java. It has been tested with tens of thousands of nodes
(their website quotes 300,000). Chord, Kademlia, Pastry, Tapestry and Koorde models are available. The simulations
have to be run in real-time environments and there is no statistical output which limits its use.

PlanetSim [24] is a discrete event simulation framework for both structured and unstructured overlays, written in
Java. It has a modular, well-structured architecture and services can be re-used for other overlays. Chord and
Symphony models exist and can consist of up to 100,000 nodes. However, it provides rather limited support to
collect statistics. It has a much simplified underlying network layer without consideration of bandwidth and latency
costs.

NS2 [25] is a discrete-event simulator that provides substantial support for simulation of lower layer protocols. Only
one P2P protocol, Gnutella, is available in NS2. Simulations in NS2 are constructed using C++ and OTcl. It is
mostly used with small networks and due to the models’ complexity is generally unsuitable for large scale P2P
networks.

SSFNet [20] is a discrete-event simulation framework written in Java and C++. This framework is built on the
Scalable Simulation Framework (SSF) and uses the Domain Modeling Language (DML) to configure networks.



Chord and EpiChord have been implemented in SSFNet. There is a claim that SSFNet manages to run models with
33,000 nodes, however, the authors of the original EpiChord paper [2] and ourselves could not simulate networks

with more than 10k nodes.

Table I. A comparison of available active P2P simulators

Simulator P2P Protocols Network size Language

PeerSim Collection of internally developed | >10° Java
P2P models

P2PSim Chord, Accordion, Koorde, | 3000 C++
Kelips, Tapestry, Kademlia

Overlay Weaver Chord, Kademlia, Koorde, Pastry, | Tens of thousand Java
Tapestry and FRT-Chord

PlanetSim Chord, Symphony 100,000 Java

NS2 Gnutella N/A C++/0Tcl

SSFNet Chord, EpiChord 33,000 Java/C++/DML

OverSim Chord, Kademlia, Pastry, | 100,000 C++
Bamboo, Broose, Gia

PeerfactSim.Kom CAN, Chord, Kademlia, Gia, C- | 50,000 Java
DHT, Pastry,
Gnutella 0.4/0.6

D-P2P-Sim+ Chord 400,000 Java

OverSim [8] is an open-source P2P simulation framework for the OMNeT++ simulation environment. It provides a
generic lookup mechanism and an RPC interface to facilitate additional protocol implementations. It allows large-
scale simulations of simplified networks as well as complex heterogeneous underlay networks. Several P2P
algorithms such as Chord, Kademlia, Bamboo, Broose, Koorde, NICE, NTree, Pastry, and GIA have been
implemented in OverSim. Models can scale to over 100,000 nodes.

PeerfactSim.Kom [28] is a discrete event based P2P simulator environment. Its focus is on being extendable and on
large scale network models. This simulator offers the potential to model different types of peer-to-peer systems
including distributed CDNs, streaming applications and overlay systems. It comes with a built-in churn generator.
The simulator includes models of lower layers but does not yet include TCP.

D-P2P-Sim+ [29] is a distributed simulation environment which employs multi-threading, asynchronous message
passing and distributed environment with graphical user interface. There is little information on this simulator
besides a short paper and a poster. These report simulated network sizes of up to 400,000 nodes. It seems the only
implemented overlay algorithm is Chord. The system is extensible and other algorithms could be implemented.
Multiple computers running the simulator may be interconnected to achieve larger simulated network sizes.

Based on this study OverSim was selected for our experimentation due to its flexibility with respect to underlay
characteristics, possible high scalability and a strong support of DHT based P2P algorithms. OverSim also provides
an interactive GUI and real-time messages which are extremely useful for debugging models. Other surveys of P2P
network simulators can be found in [26], [27].

4. OVERSIM

OverSim [8] is designed as a modular simulation framework, with many common overlay features implemented as
part of a generic base overlay class. OverSim provides message passing using Remote Procedure Calls (RPC), and
supports both iterative and recursive routing. Applications within OverSim are split into multiple tiers, allowing an
application to sit on-top of another application. These applications are implemented as modules and interface with
overlays through the Key-Based Routing (KBR) API [30], which represents basic capabilities common to all
structured overlays. As mentioned above, OverSim provides a number of different network models, for both
structured and unstructured overlays. The OverSim architecture is illustrated in Fig. 1.
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Fig. 1. OverSim architecture

At the lower layer OverSim provides multiple underlay models to allow for inclusion of specific underlay
characteristics in the simulation (at a cost of scalability), or underlay abstraction for increased scalability. Using the
simple model, data packets are sent directly from one node to another by using a global routing table. The INET
underlay model includes simulation models for all network layers. The single host underlay allows for simulation of
a single node, connected to other OverSim instances over a real network.

5. VALIDATION OF EPICHORD

A number of multi-hop overlay models are already available with OverSim. However EpiChord, which is a one-hop
overlay, was not available in OverSim. Therefore we implemented and validated EpiChord in OverSim [31]. We
made some alteration to the original EpiChord protocol while implementing it as an OverSim module. These are
detailed below.

5.1 Node Join Protocol

In the original EpiChord algorithm, upon receipt of a join request a node will instantly update their predecessor list
and finger cache to include the joining node. In our implementation we found this was occasionally causing
messages to be routed to nodes who are still in the process of joining, and hence are not yet ready to correctly handle
requests. To solve this issue a three-way handshake was implemented. In our implementation the joining node will
send a final acknowledgment when they are ready to handle requests, indicating they can now be safely added as a
predecessor.

5.2 Lookup Algorithm

The OverSim framework provides modules for iterative and recursive routing offering support for parallelism. While
this makes implementing overlays easier and reduces duplicated code, only certain parts of the module can be easily
overwritten. This was a problem for EpiChord, primarily due to the non-linear order in which nodes are to be
queried, and EpiChord’s ability to check for false negative responses. To implement these features changes to the
iterative routing module were made, allowing overwriting additional parts of the module with EpiChord specific
code.

5.3 Application layer Lookups

In the original EpiChord model all lookup types (JOIN, MAINTENANCE, and APPLICATION) are included when
calculating results. The KBRTestApp in OverSim only includes lookups in the results, which it has initiated
(APPLICATION). We feel this is actually a more useful metric for anyone wishing to build on-top of EpiChord, so
we instead recalculated the results from the original model using only APPLICATION lookups. A comparison of the
average path lengths can be seen in Fig. 2; the other metrics remained unchanged.
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Fig. 2. Comparison of average path length with APPLICATION lookups only vs. all lookup.

In [14], authors proposed two generic classes of workloads: lookup intensive and churn intensive. These metrics were
adopted by the EpiChord authors for experimentation. For the purposes of validating our model, we also adopt these
two metrics. In the lookup intensive workload, node lifetimes are exponentially distributed with a mean of 10
minutes, with each node performing a lookup on average every 0.5 seconds. In this scenario the background
maintenance traffic is negligible compared to the active lookup rate. In the churn intensive workload, node lifetimes
are again exponentially distributed with a mean of 10 minutes, however this time each node only performs lookups
on average every 100 seconds. In this scenario, lookups arising from node joins and cache maintenance substantially
outnumber the active lookups.

Fig 2 shows that the average path length remains unchanged for the lookup intensive workload. This is to be
expected, as the lookup intensive workload is dominated by APPLICATION lookups. In the churn intensive
workload we see a rise in average hop count as the network size increases; this is because the results in the original
EpiChord paper were dominated by JOIN and MAINTENANCE lookups, which tend to be for closer keys.

5.4 Fixing the lookup parameter, p

The original EpiChord paper [7] stipulates that a maximum of p lookups should be initiated. However in the source
code of the original model we encountered that in many cases, p+/ parallel requests were generated. Results
comparing the average path lengths and success rates when p=1/ can be seen in Fig.3.

From these results we observe a rise in average path length, and a small decline in lookup success rate, for both
workloads. We also observe a drop in the size of nodes cache tables, which increases with the network size. This is
to be expected, as fewer queries are dispatched and hence fewer new nodes are discovered.
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Fig. 3. Average path length and success rate with fixed p.



6. EXPERIMENTAL SETUP

In order to evaluate the suitability of overlay algorithms for use in mobile networks, a set of key requirements and
performance metrics need to be identified. A set of desired features of DHTs from the viewpoint of mobile networks
was proposed in [18]. Below, we briefly summarise the key requirements and then the performance metrics used in
our study. The study focusses on the following overlays: Chord, Pastry, Kademlia, Broose and EpiChord.

Key requirements:

e  Suitability for Mobile Devices: Mobile devices connected to mobile networks will be the primary devices
connecting to the P2P network. The network connections used by these devices offer lower bandwidth than for
wired nodes. Thus a suitable DHT should require as little bandwidth as possible.

e  Delay in DHTs: Generally, mobile connections offer slower transmission speeds than wired connections. Thus
minimizing the number of hops for each lookup will minimize the delay for lookup operations in DHTs.

e  Robustness: A DHT suitable for use in mobile networks should be able to handle the higher degree of node
churn experienced in such environments. Node churn may be introduced due to variation in signal strength, or
using the network connection for voice services. A key metric to indicate the robustness of a DHT is its lookup
success ratio. The DHT should achieve an acceptable lookup success ratio during periods of high churn.

Performance Metrics:

e  Mean Maintenance Traffic Load: The mean number of maintenance bytes sent per second by each node. This
metric will be considered as a parameter for bandwidth consumption in this paper.

e  Hop Count: The mean number of overlay hops to send a message from a source to a destination node.

e  Lookup Success Ratio: The percentage of successful lookups in the overlay.

6.1 Simulation Setup

Experiments have been carried out using a 10,000 nodes network. The level of churn is simulated by various mean
lifetime values ranging from 100 seconds to 1000 seconds. The simulations employ OverSim’s Lifetime Churn
model with Weibull distribution. A shorter lifetime means a higher level of churn. The Weibull distribution has been
shown to model churn in P2P overlays much more accurately [32]. Each configuration was repeated 5 times, and
results were averaged. The overlays have been configured to use iterative routing.

7. MOST SUITED PARAMETER SELECTION

The overlay evaluation process includes two simulation steps. During the first step, the values of key parameters for
each overlay are determined in order to yield the best possible performance under churn. Thus this step tunes the
parameters to yield an optimal configuration for each overlay. For this step we have investigated the performance at
100s and 1000s average node lifetime. In the second step, the best performing configurations of all the overlays are
compared with each other to identify the best performing overlay under churn. Table I summarizes the parameters
and their values for Chord, Kademlia, Pastry, Broose and EpiChord. More details on the performance of the overlays
using these parameters are provided in the following subsections.

Table II. Simulation Parameters

P2P Protocols Parameters 1% step 2™ step
Stabilize Delay (sec) 5,10, 20, 30, 40, 50, 60, 120 20
Fix-finger Delay (sec) 30, 60, 90, 120,180, 240,300 | 30
Chord Successor List Size 4,8,16,32 8
CheckPredecessor delay(s) 5,10, 30, 60 5
Size of Extended Finger Table 0,1,4,8,16 0
Bucket Size, k 4,8, 16, 32, 40, 64, 72, 80 8
Kademlia Number of Siblings, s 2,4,8,16,32 2

Number of Bits, b 1,2,4,6,8 1




P2P Protocols Parameters 1% step 2™ step
Lookup Redundant Nodes 1,2,4,8,16,20 8
Bucket Refresh Interval (sec) 100, 600, 1000,3000, 5000 1000
No. of Parallel Lookups 1,2,3,4,5 3
Bits per Digit 1,2,4,6 4
Number of Leaves 4,8,16,32 8
pasry Lookup Redundant Nodes 2,4,8 4
Number of Neighbors 0,2,4,8,16 0
Bucket Size 4,8,16,32 8
Shifting Bits 2,3,4 2
Broose Bucket Refresh Interval (sec) 30, 60, 120, 180, 300, 600 30
No. of Parallel Lookups 1,2,3,4,5 3
Stabilize Delay (sec) 10, 20, 60, 100 60
EpiChord Successor List Size 2,4,8 4
No. of Parallel Lookups 1,2,3,4,5 3

7.1 Chord

For Chord the key parameters are the stabilization delay, fixfinger delay, successor list size, check predecessor delay
and extended finger table size. Fig. 4 shows the results for success ratio and bandwidth consumption with varying
values for these simulation parameters.

In Chord, each node learns about newly joined nodes and updates its successors and predecessor after a stabilisation
delay. For step 1 in our experimentation, we have varied the stabilisation delay between 5s and 120s. Fig. 4(a) shows
that a low stabilisation delay improves the success ratio but also increases the bandwidth requirement. To
compromise, a value of 20s was chosen.
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and e) extended finger table sizes.



In Chord, finger (routing) tables are updated in fixed intervals (fix finger delay). The fix fingers interval was varied
between 30 and 300 second. Fig. 4(b) shows that a lower value improves the success ratio. We have selected a value
of 30s to get the best possible lookup success ratio at a moderate level of bandwidth usage.

Results when varying the successor list size and the check predecessor delay are depicted in Fig. 4(c) and 4(d)
respectively. A successor list size of 8 and the check predecessor delay of 5s were chosen to maintain a reasonable
success ratio while minimizing the maintenance traffic.

Fig. 4(e) shows the effect of using extended finger tables. Based on these results, we have not increased the size of
the extended finger table. We found that any increases lead to more traffic with no significant improvement in
performance. Overall, we note the very poor lookup performance of Chord at high churn. We revisit this fact in the
second simulation step when comparing the different overlays against each other.

7.2 Pastry

In Fig. 5, key parameters of Pastry are evaluated. Fig. 5(a) shows the effect of different numbers of leaf nodes. In the
low churn scenario (1000s), there is no significant performance difference. In the high churn scenario (100s) we
observed the highest success ratio when using 8 leaf nodes. Hence the number of leaf nodes of 8 was selected. The
results of varying levels of bits per digit are shown in Fig. 5(b). Using higher number of bits can improve the success
ratio as well as hop count (Fig. 5¢) but it increases the maintenance cost. Considering the high churn scenario results,
we have selected 4 bits per digit. In Fig. 5(d), we simulated Pastry with neighbour sets and without neighbour sets
and did not notice any major improvements in success ratio (and bandwidth consumption). Therefore we decided not
to use neighbour sets. In Fig. 5(e), the effects of altering the number of redundant nodes are shown. Higher values of
redundant nodes can improve the success ratio but also cause an increased amount of maintenance traffic. Therefore
a fixed value of 4 was chosen to balance between a good lookup success ratio and maintenance traffic load.
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Fig. 5. Pastry: Selecting best parameters according to a) Leaf set, b) Bits per digits, ¢) No. of redundant nodes and d) No. of Neighbours.

7.3 Kademlia

Fig. 6 illustrates the success ratio and bandwidth consumption for different parameters of Kademlia. The number of
buckets (k), number of siblings (s), number of redundant nodes () and number of bits per digit (») were varied in
Fig. 6(a), 6(b), 6(c) and 6(d) respectively. To achieve the best performance, we evaluated the traded-off between a
higher success ratio and the increased maintenance traffic.

Consequently, we selected the value of 8 for &, 2 for s, 8 for » and 1 for b. In Fig. 6(e), the bucket refresh interval was
altered. As shown in the figure, an interval of 1000s is sufficient to keep the buckets consistent. As Kademlia
supports parallel lookups, we investigated the effect of parallel lookups in Fig. 6(f). In high churn environments,
parallelism lookups can increases the success ratio significantly. Therefore we selected a value of 3 for lookup
parallelism with a moderate increase in bandwidth.
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Fig. 6. Kademlia: Selecting best parameters according to a) Bucket size, b) No. of siblings, ¢) No. of redundant nodes, d) Bits per digits, ¢)
Bucket refresh interval and f) No. of parallel lookups.

7.4 Broose

Fig. 7 shows the results for different parameters of Broose. The bucket size, k and bucket refresh interval were varied
in Fig. 7(a) and 7(b) respectively. Fig 7(a) shows that the success ratio is improved with larger buckets; however also
the maintenance traffic increases drastically. Therefore a value of 8 for k is appropriate. In terms of the bucket
refresh interval, a value of 30s was selected in order to get the best performance as well as moderate level of
maintenance traffic under high churn. Shifting more than one bit at each routing step clearly improves the success
ratio, however, also increases the maintenance traffic. Thus we have selected a value of 2 bits (Fig. 7(c)). Increasing
parallel lookups does not show any significant lookup performance improvement (Fig. 7(d)). Hence the value of 3
has been selected.
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Fig. 7. Broose: Selecting best parameters according to a) Bucket size, b) Bucket refresh interval, ¢) Shifting bits and d) No. of Parallel lookups.




7.5 EpiChord

Fig. 8 reveals the results of success ratio and bandwidth consumption for EpiChord. The stabilization delay and
successor list size were altered in Fig. 8(a) and 8(b) respectively. Increasing the stabilization delay does not affect the
performance of EpiChord regarding the success ratio and bandwidth consumption; therefore a value of 60s was
selected. The successor list size of 4 is a fair choice to compromise success ratio performance and maintenance
traffic load. Fig 8(c) shows the effect of parallel lookups on success ratio and maintenance traffic. However, in
EpiChord, the parallel lookup does not substantially affect the success rate and the maintenance traffic. Rather, the
hop count (path length) to the destination node is improved. Also as the parallelism applies to lookup messages only,
considering the lookup traffic is a better measure of cost. In Fig. 8(d), we show the lookup hop count and lookup
traffic for varying levels of parallelism. Based on these results we have opted for a level of parallelism of 3.
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Fig. 8. EpiChord: Selecting best parameters according to Stabilize delay, b) Successor list size, ¢) Parallel lookups(i) and d) Parallel lookups (ii).

8. PERFORMANCE EVALUATION

In the following, we present the simulation results of the chosen P2P overlays with the selected parameters from the
previous step, and evaluate the performance under high level of churn according to lookup success rate, hop count
and bandwidth consumption.

8.1 Effects of Churn

In this experiment the performance of the overlays under varying levels of churn was observed. Each node performs
a lookup every 60 seconds in all overlays. Results in Fig. 9a show the lookup success rate under varying levels of
churn. It is evident from the figure that Chord’s performance is heavily affected by high levels of churn. For a node
lifetime of 100 sec the lookup success ratio collapses to a mere 2%. While this increases to about 80% as the node
lifetime increases to 1000 sec, it is evident Chord is not a good candidate for a network consisting of mobile nodes.
One likely reason for Chord’s poor performance is that Chord does not immediately correct its successor and
predecessor pointers of all relevant nodes as new nodes join, but waits for the periodic stabilization process to update
the pointers. Therefore under high levels of churn when nodes join and leave the network at a very high rate, routing
table entries are not updated sufficiently frequently.
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Fig. 9. a) Lookup Success Ratio b) Bandwidth consumption and c¢) Lookup hop count of Chord, Kademlia, Pastry, Broose and EpiChord operated
on 10,000 networks under various level of churn.

In our experiment, Broose exhibits around 55% of lookup success ratio at 100 sec of node lifetime (this increases to
about 95% at 1000 sec of node lifetime). However, when nearly half of lookups fail in high churn networks, Broose
also does not seem well suited for such environments. This is emphasized by the fact that Broose has comparatively
high bandwidth costs in high churn situations (Fig 9b).

In Pastry, the lookup success ratio is 70% at 100 sec of node lifetime, increasing to around 93% at 1000 sec of node
lifetime. While this performance is acceptable, this comes at the price of the highest maintenance cost (with quite a
large margin, Fig 9b). Thus Pastry has to be ruled out due to this cost.

Kademlia exhibits a 97% successful lookup rate in the high churn environment (100 sec mean node lifetime).
Kademlia sends parallel lookup requests to avoid timeout delays from failed nodes. Also Kademlia updates routing
table entries from data attached to lookups rather than requiring separate maintenance requests. These characteristics
paired with a modest bandwidth usage and modest lookup count (4 for 10,000 nodes network) as shown in Fig 9b)
and c) respectively, make Kademlia well suited for mobile environments.

Finally, EpiChord, an overlay which can approach one-hop performance, approached 99% success ratio under lower
levels of churn (lifetime=1000s). In high churn, the overlay performed less favourably with a lookup success rate of
about 63%. This increases to a more usable 97% as the mean lifetime approaches 300 seconds. Like Kademlia,
EpiChord uses reactive routing state maintenance employing lookup response messages to carry routing table update
information. EpiChord also uses parallel lookup messages. As we show separately, EpiChord can achieve an even
better hop count performance at the cost of an increased number of lookups [33].

8.2 Bandwidth Consumption

Figure 9(b) shows the results on the required bandwidth for the selected overlays under varying levels of churn. In
high churn environments when the node lifetime is 100s, Chord and EpiChord have the lowest bandwidth cost using
26 bytes/s and 70 bytes/s respectively. However, as already discussed, Chord’s lookup performance is very poor
under these conditions. Pastry consumes the highest bandwidth which is 1674 bytes/s at this level of high churn. This
is due to its expensive joining process and reactive maintenance for the routing table, leaf set and neighbour list.
Broose also requires significant bandwidth at high churn levels (934 bytes/s per node at the node lifetime of 100s).
Kademlia consumes higher traffic (316 bytes/s) than Chord and EpiChord however less than Pastry and Broose, even
under very high churn.

Unlike all other P2P overlays compared here, Chord shows an increasing amount of maintenance traffic with an
increasing node lifetime. This is due to Chord periodically calling its stabilization process and updating its finger
tables (routing tables). This approach increases the bandwidth requirements as nodes stay in the network for longer.
The lookup hop count for all overlays is plotted in Fig. 9(c). Kademlia, Pastry and EpiChord show similar hop counts
(~3.5) under varying levels of churn whereas Chord and Broose exhibit a higher lookup hop count.

8.3 Discussion
Based on the simulations of five popular structured P2P overlays, the following observations can be made:
e Chord’s algorithm is relatively simple. However, Chord’s lookup performance collapses to a mere 2% under high

node churn. This is due to the inconsistency of node pointers. When a new node joins the network, Chord does
not update successor and predecessor pointers of all relevant nodes immediately. It heavily relies on its periodic



stabilization process. Consequently, under high levels of churn, Chord’s routing table entries become out of date
and the lookup success ratio degrades drastically.

e Pastry requires considerably higher bandwidth under high churn than the other overlays. This is because Pastry
nodes use parts of other nodes’ routing tables to build their own routing table. Furthermore, Pastry's complex
algorithm for optimizing routing tables requires additional bandwidth. Pastry nodes detecting node failures have
to repair their states by gathering information from other nodes. This affects the overall performance of success
ratio and lookup hop count. Thus it is not a good candidate for mobile environments.

e Broose exhibits an average result for lookup success but consumes more bandwidth than Chord, EpiChord and
Kademlia. It also requires a higher lookup hop count than the other overlays. This is because Broose has a very
exhaustive and expensive node join process. When a node joins the network, the joining node builds up its
routing table using queries to other nodes for their routing table entries. Broose needs a large bucket for
redundancy and cannot reduce the number of routing steps.

e Kademlia shows the best result in terms of lookup success ratio at very high churn paired with a reasonable use of
bandwidth. EpiChord shows moderate bandwidth consumption and a good lookup success performance even
under high churn. Note that EpiChord’s performance can be improved further by introducing additional lookups
to the network [33]. The requirements of mobile networks where the churn rate is expected to be high and the
bandwidth availability low (or expensive) matches well with Kademlia and EpiChords’ high lookup success ratio,
reasonable amount of bandwidth consumption and low hop count and thus make these two candidates well suited
to be used in mobile networks. Both Kademlia and EpiChord use opportunistic maintenance mechanisms to keep
their routing tables up-to-date. In opportunistic maintenance, a node attaches routing table data to a response
lookup message. The receiver then updates its routing table with this information - adding new node entries and
removing node entries which are considered dead [9]. This kind of maintenance saves a bandwidth as it reduces
the need for dedicated messages to update routing table entries.

With increasing node churn the demand for routing table accuracy increases. In such situations and depending on
the number of lookup messages sent in the network, opportunistic maintenance alone may not be adequate and
nodes may need to employ sending additional lookup messages to receive more routing table updates. Both
Kademlia and EpiChord use lookup parallelism to improve their routing table accuracy and lookup efficiency.

9. SUMMARY

Distributed Hash Table (DHT) based structured P2P overlay networks offer an efficient routing architecture that is
adaptive, self-organizing, fault tolerant, scalable and massively distributed. Such an overlay network provides a
suitable substrate for developing distributed applications. It would be desirable to offer P2P applications also on
devices connected to the public mobile networks. Nevertheless there are concerns regarding the performance and
efficiency of these overlays in mobile environments. Therefore we have evaluated the performance of four multi-hop
structured P2P overlays: Chord, Pastry, Kademlia and Broose and one one-hop structured P2P overlay EpiChord in
OverSim in the presence of high churn and investigated their suitability for mobile networks.

The simulation results suggest Kademlia as the most appropriate P2P overlay to implement on the mobile network
according to lookup success ratio under high levels of churn. At the same time Kademlia consumes moderate level of
bandwidth. Similarly, EpiChord also achieves a high success ratio while consuming the least amount of bandwidth
making it also a strong candidate algorithm for mobile environments. Using opportunistic maintenance mechanism
and lookup parallelism make Kademlia and EpiChord more efficient than the other overlays.
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