509 research outputs found

    Evaluation of Directive-Based GPU Programming Models on a Block Eigensolver with Consideration of Large Sparse Matrices

    Get PDF
    Achieving high performance and performance portability for large-scale scientific applications is a major challenge on heterogeneous computing systems such as many-core CPUs and accelerators like GPUs. In this work, we implement a widely used block eigensolver, Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG), using two popular directive based programming models (OpenMP and OpenACC) for GPU-accelerated systems. Our work differs from existing work in that it adopts a holistic approach that optimizes the full solver performance rather than narrowing the problem into small kernels (e.g., SpMM, SpMV). Our LOPBCG GPU implementation achieves a 2.8×{\times }–4.3×{\times } speedup over an optimized CPU implementation when tested with four different input matrices. The evaluated configuration compared one Skylake CPU to one Skylake CPU and one NVIDIA V100 GPU. Our OpenMP and OpenACC LOBPCG GPU implementations gave nearly identical performance. We also consider how to create an efficient LOBPCG solver that can solve problems larger than GPU memory capacity. To this end, we create microbenchmarks representing the two dominant kernels (inner product and SpMM kernel) in LOBPCG and then evaluate performance when using two different programming approaches: tiling the kernels, and using Unified Memory with the original kernels. Our tiled SpMM implementation achieves a 2.9×{\times } and 48.2×{\times } speedup over the Unified Memory implementation on supercomputers with PCIe Gen3 and NVLink 2.0 CPU to GPU interconnects, respectively

    swTVM: Exploring the Automated Compilation for Deep Learning on Sunway Architecture

    Full text link
    The flourish of deep learning frameworks and hardware platforms has been demanding an efficient compiler that can shield the diversity in both software and hardware in order to provide application portability. Among the exiting deep learning compilers, TVM is well known for its efficiency in code generation and optimization across diverse hardware devices. In the meanwhile, the Sunway many-core processor renders itself as a competitive candidate for its attractive computational power in both scientific and deep learning applications. This paper combines the trends in these two directions. Specifically, we propose swTVM that extends the original TVM to support ahead-of-time compilation for architecture requiring cross-compilation such as Sunway. In addition, we leverage the architecture features during the compilation such as core group for massive parallelism, DMA for high bandwidth memory transfer and local device memory for data locality, in order to generate efficient code for deep learning application on Sunway. The experimental results show the ability of swTVM to automatically generate code for various deep neural network models on Sunway. The performance of automatically generated code for AlexNet and VGG-19 by swTVM achieves 6.71x and 2.45x speedup on average than hand-optimized OpenACC implementations on convolution and fully connected layers respectively. This work is the first attempt from the compiler perspective to bridge the gap of deep learning and high performance architecture particularly with productivity and efficiency in mind. We would like to open source the implementation so that more people can embrace the power of deep learning compiler and Sunway many-core processor

    C Language Extensions for Hybrid CPU/GPU Programming with StarPU

    Get PDF
    Modern platforms used for high-performance computing (HPC) include machines with both general-purpose CPUs, and "accelerators", often in the form of graphical processing units (GPUs). StarPU is a C library to exploit such platforms. It provides users with ways to define "tasks" to be executed on CPUs or GPUs, along with the dependencies among them, and by automatically scheduling them over all the available processing units. In doing so, it also relieves programmers from the need to know the underlying architecture details: it adapts to the available CPUs and GPUs, and automatically transfers data between main memory and GPUs as needed. While StarPU's approach is successful at addressing run-time scheduling issues, being a C library makes for a poor and error-prone programming interface. This paper presents an effort started in 2011 to promote some of the concepts exported by the library as C language constructs, by means of an extension of the GCC compiler suite. Our main contribution is the design and implementation of language extensions that map to StarPU's task programming paradigm. We argue that the proposed extensions make it easier to get started with StarPU,eliminate errors that can occur when using the C library, and help diagnose possible mistakes. We conclude on future work

    Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    Full text link
    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core GPUs, exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenACC, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.Comment: 26 pages, 2 png figures, preprint of an article submitted for consideration in International Journal of Modern Physics

    Benchmarking Fortran DO CONCURRENT on CPUs and GPUs Using BabelStream

    Get PDF

    Domain-Specific Acceleration and Auto-Parallelization of Legacy Scientific Code in FORTRAN 77 using Source-to-Source Compilation

    Get PDF
    Massively parallel accelerators such as GPGPUs, manycores and FPGAs represent a powerful and affordable tool for scientists who look to speed up simulations of complex systems. However, porting code to such devices requires a detailed understanding of heterogeneous programming tools and effective strategies for parallelization. In this paper we present a source to source compilation approach with whole-program analysis to automatically transform single-threaded FORTRAN 77 legacy code into OpenCL-accelerated programs with parallelized kernels. The main contributions of our work are: (1) whole-source refactoring to allow any subroutine in the code to be offloaded to an accelerator. (2) Minimization of the data transfer between the host and the accelerator by eliminating redundant transfers. (3) Pragmatic auto-parallelization of the code to be offloaded to the accelerator by identification of parallelizable maps and reductions. We have validated the code transformation performance of the compiler on the NIST FORTRAN 78 test suite and several real-world codes: the Large Eddy Simulator for Urban Flows, a high-resolution turbulent flow model; the shallow water component of the ocean model Gmodel; the Linear Baroclinic Model, an atmospheric climate model and Flexpart-WRF, a particle dispersion simulator. The automatic parallelization component has been tested on as 2-D Shallow Water model (2DSW) and on the Large Eddy Simulator for Urban Flows (UFLES) and produces a complete OpenCL-enabled code base. The fully OpenCL-accelerated versions of the 2DSW and the UFLES are resp. 9x and 20x faster on GPU than the original code on CPU, in both cases this is the same performance as manually ported code.Comment: 12 pages, 5 figures, submitted to "Computers and Fluids" as full paper from ParCFD conference entr
    • …
    corecore