482 research outputs found

    Optical energy-constrained slot-amplitude modulation for dimmable VLC. Suboptimal detection and performance evaluation

    Get PDF
    Energy-constrained slot-amplitude modulation (ECSAM) enables light dimming, eliminates light flicker and constrains the peak optical power while providing robust communication links. However, the complexity of the maximum-likelihood (ML) based ECSAM receiver increases exponentially with required spectral efficiency. This paper provides a comprehensive performance evaluation of ECSAM for the indoor visible light communication (VLC) channel with multipath propagation under realistic illumination constraints and imperfect channel estimation. A sub-optimal receiver that employs a slot-by-slot detection algorithm followed by a slot-correction mechanism for reducing the receiver complexity is proposed. Additionally, the method for optimal selection of parameters when designing the signal waveform is presented. The analytical upper bound on the symbol error rate of ECSAM is derived using the union-bound technique. The results show that the error performance of the sub-optimal receiver are comparable to that of the optimal ML receiver. Compared with conventional power or bandwidth efficient VLC modulation techniques such as multiple pulse position modulation (MPPM) and pulse amplitude modulation (PAM), ECSAM provides complete flexibility in modifying the signal constellation for a desired dimming level to maximise the spectral efficiency and provide a robust bit error rate performance especially in the multipath propagation channel induced intersymbol interference

    Analysis and Demonstration of Quasi Trace Orthogonal Space Time Block Coding for Visible Light Communications

    Get PDF
    In the VLC context, pulse position modulation (PPM) and similar modulations are typically used when the overall complexity of the transmitter is required to be low or the system needs to support dimming, i.e., dynamically control the illumination level of the transmitter. However, despite the power efficiency of PPM, it is known to be bandwidth inefficient. Having known the trade-off between reliability and spectral efficiency, in this paper we propose a PPM-based space-time block coding (STBC) technique named as quasi-trace-orthogonal (QTO), derived from trace-orthogonal, to increase the spectral efficiency of PPM VLC's by limiting the reliability loss. We provide Monte-Carlo simulations for a 4Ă—4 MIMO-VLC system and validate the results experimentally, and show that for a given signal-to-noise-ratio, the QTO-STBC based 4-PPM VLC system offers higher spectral efficiency at a cost of higher symbol error rate compared to trace-orthogonal STBC

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    High-dynamic-range Foveated Near-eye Display System

    Get PDF
    Wearable near-eye display has found widespread applications in education, gaming, entertainment, engineering, military training, and healthcare, just to name a few. However, the visual experience provided by current near-eye displays still falls short to what we can perceive in the real world. Three major challenges remain to be overcome: 1) limited dynamic range in display brightness and contrast, 2) inadequate angular resolution, and 3) vergence-accommodation conflict (VAC) issue. This dissertation is devoted to addressing these three critical issues from both display panel development and optical system design viewpoints. A high-dynamic-range (HDR) display requires both high peak brightness and excellent dark state. In the second and third chapters, two mainstream display technologies, namely liquid crystal display (LCD) and organic light emitting diode (OLED), are investigated to extend their dynamic range. On one hand, LCD can easily boost its peak brightness to over 1000 nits, but it is challenging to lower the dark state to \u3c 0.01 nits. To achieve HDR, we propose to use a mini-LED local dimming backlight. Based on our simulations and subjective experiments, we establish practical guidelines to correlate the device contrast ratio, viewing distance, and required local dimming zone number. On the other hand, self-emissive OLED display exhibits a true dark state, but boosting its peak brightness would unavoidably cause compromised lifetime. We propose a systematic approach to enhance OLED\u27s optical efficiency while keeping indistinguishable angular color shift. These findings will shed new light to guide future HDR display designs. In Chapter four, in order to improve angular resolution, we demonstrate a multi-resolution foveated display system with two display panels and an optical combiner. The first display panel provides wide field of view for peripheral vision, while the second panel offers ultra-high resolution for the central fovea. By an optical minifying system, both 4x and 5x enhanced resolutions are demonstrated. In addition, a Pancharatnam-Berry phase deflector is applied to actively shift the high-resolution region, in order to enable eye-tracking function. The proposed design effectively reduces the pixelation and screen-door effect in near-eye displays. The VAC issue in stereoscopic displays is believed to be the main cause of visual discomfort and fatigue when wearing VR headsets. In Chapter five, we propose a novel polarization-multiplexing approach to achieve multiplane display. A polarization-sensitive Pancharatnam-Berry phase lens and a spatial polarization modulator are employed to simultaneously create two independent focal planes. This method enables generation of two image planes without the need of temporal multiplexing. Therefore, it can effectively reduce the frame rate by one-half. In Chapter six, we briefly summarize our major accomplishments

    Interference Suppression in Massive MIMO VLC Systems

    Get PDF
    The focus of this dissertation is on the development and evaluation of methods and principles to mitigate interference in multiuser visible light communication (VLC) systems using several transmitters. All components of such a massive multiple-input multiple-output (MIMO) system are considered and transformed into a communication system model, while also paying particular attention to the hardware requirements of different modulation schemes. By analyzing all steps in the communication process, the inter-channel interference between users is identified as the most critical aspect. Several methods of suppressing this kind of interference, i.e. to split the MIMO channel into parallel single channels, are discussed, and a novel active LCD-based interference suppression principle at the receiver side is introduced as main aspect of this work. This technique enables a dynamic adaption of the physical channel: compared to solely software-based or static approaches, the LCD interference suppression filter achieves adaptive channel separation without altering the characteristics of the transmitter lights. This is especially advantageous in dual-use scenarios with illumination requirements. Additionally, external interferers, like natural light or transmitter light sources of neighboring cells in a multicell setting, can also be suppressed without requiring any control over them. Each user's LCD filter is placed in front of the corresponding photodetector and configured in such a way that only light from desired transmitters can reach the detector by setting only the appropriate pixels to transparent, while light from unwanted transmitters remains blocked. The effectiveness of this method is tested and benchmarked against zero-forcing (ZF) precoding in different scenarios and applications by numerical simulations and also verified experimentally in a large MIMO VLC testbed created specifically for this purpose
    • …
    corecore