1,010 research outputs found

    Fusion of monocular cues to detect man-made structures in aerial imagery

    Get PDF
    The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods

    Dense Point-Cloud Representation of a Scene using Monocular Vision

    Get PDF
    We present a three-dimensional (3-D) reconstruction system designed to support various autonomous navigation applications. The system presented focuses on the 3-D reconstruction of a scene using only a single moving camera. Utilizing video frames captured at different points in time allows us to determine the depths of a scene. In this way, the system can be used to construct a point-cloud model of its unknown surroundings. We present the step-by-step methodology and analysis used in developing the 3-D reconstruction technique. We present a reconstruction framework that generates a primitive point cloud, which is computed based on feature matching and depth triangulation analysis. To populate the reconstruction, we utilized optical flow features to create an extremely dense representation model. With the third algorithmic modification, we introduce the addition of the preprocessing step of nonlinear single-image super resolution. With this addition, the depth accuracy of the point cloud, which relies on precise disparity measurement, has significantly increased. Our final contribution is an additional postprocessing step designed to filter noise points and mismatched features unveiling the complete dense point-cloud representation (DPR) technique. We measure the success of DPR by evaluating the visual appeal, density, accuracy, and computational expense and compare with two state-of-the-art techniques

    OmniCity: Omnipotent City Understanding with Multi-level and Multi-view Images

    Full text link
    This paper presents OmniCity, a new dataset for omnipotent city understanding from multi-level and multi-view images. More precisely, the OmniCity contains multi-view satellite images as well as street-level panorama and mono-view images, constituting over 100K pixel-wise annotated images that are well-aligned and collected from 25K geo-locations in New York City. To alleviate the substantial pixel-wise annotation efforts, we propose an efficient street-view image annotation pipeline that leverages the existing label maps of satellite view and the transformation relations between different views (satellite, panorama, and mono-view). With the new OmniCity dataset, we provide benchmarks for a variety of tasks including building footprint extraction, height estimation, and building plane/instance/fine-grained segmentation. Compared with the existing multi-level and multi-view benchmarks, OmniCity contains a larger number of images with richer annotation types and more views, provides more benchmark results of state-of-the-art models, and introduces a novel task for fine-grained building instance segmentation on street-level panorama images. Moreover, OmniCity provides new problem settings for existing tasks, such as cross-view image matching, synthesis, segmentation, detection, etc., and facilitates the developing of new methods for large-scale city understanding, reconstruction, and simulation. The OmniCity dataset as well as the benchmarks will be available at https://city-super.github.io/omnicity
    corecore