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Abstract
The extraction of buildings from aerial imagery is a complex problem for automated computer

vision. It requires locating regions in a scene that possess properties distinguishing them as man-

made objects as opposed to naturally occurring terrain features. The building extraction process

requires techniques that exploit knowledge about the structure of man-made objects. Techniques
do exist that take advantage of this knowledge; various methods use edge-line analysis, shadow

analysis, and stereo imagery analysis to produce building hypotheses. It is reasonable, however,
to assume that no single detection method will correctly delineate or verify buildings in every

scene. As an example, a feature extraction system that relies on analysis of cast shadows to

predict building locations is likely to fail in cases where the sun is directly above the scene.

It seems clear that a cooperative-methods paradigm is useful in approaching the building

extraction problem. Using this paradigm, each extraction technique provides information which
can then be added or assimilated into an overall interpretation of the scene. Thus, our research

focus is to explore the development of a computer vision system that integrates the results of
various scene analysis techniques into an accurate and robust interpretation of the underlying
three-dimensional scene.

This paper describes preliminary research on the problem of building hypothesis fusion in
aerial imagery. Building extraction techniques are briefly surveyed, including four building

extraction, verification, and clustering systems that form the basis for the work described here.

A method for fusing the symbolic data generated by these systems is described, and applied to

monocular image and stereo image data sets. Evaluation methods for the fusion results are

described, and the fusion results are analyzed using these methods.

1This research was primarily sponsored by the U.S. Army Engineer Topographic Laboratories under Contract
DACA72-87-C-0001 and partially supported by the Defense Advanced Research Projects Agency, DoD, through
DARPA order 4976, and monitored by the Air Force Avionics Laboratory Under Contract F33615-87-C-1499. The
views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the U.S. Army Engineering Topographic
Laboratories, or the Defense Advanced Research Projects Agency, or of the United States Government.
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1. Introduction

In the cooperative-methods paradigm it is assumed that no single method can provide a
complete set of building hypotheses for a scene. However, each method may provide a subset of

the information necessary to produce a more meaningful interpretation of the scene. For

instance, a shadow-based method might provide unique information in situations where ground

and roof intensity are similar. An intensity-based method can provide boundary information in
instances where shadows were weak or nonexistent, or in situations where structure height was

sufficiently low that stereo disparity analysis would not provide reliable information. The

implicit assumption behind this paradigm is that the symbolic interpretations produced by each
of these techniques can be integrated into a more meaningful collection of building hypotheses.

It is reasonable to expect that there will be complications in fusing real monocular data. In the

best case, the building hypotheses will not only be accurate, but complementary. It is just as

likely, however, that some building hypotheses may be unique. Further, it is rare that building

hypotheses are always accurate, or even mutually supportive of one another. For a cooperative-
methods data fusion system to be successful, it must address the problems of redundant and

conflicting data.

2. Building extraction techniques

At the Digital Mapping Laboratory, we have developed several techniques for the extraction of

man-made objects from aerial imagery. The goal of many of these techniques is to organize the

image into manageable parts for further processing, by using external knowledge to organize

these parts into regions.

For the experiments described in this paper, a set of four monocular building detection and

evaluation systems were used. Three of these were shadow-based systems; the fourth was line-

corner based. The shadow based systems are described more fully by Irvin and McKeown [5],

and the line-corner system is described by Aviad, McKeown, and Hsieh [2]. A brief description
of each of the four detection and evaluation systems follows.

BABE (Builtup Area Building Extraction) is a building detection system based on a line-corner

analysis method. BABE starts with intensity edges for an image, and examines the proximity and

angles between edges to produce corners. To recover the structures represented by the corners,
BABE constructs chains of corners such that the direction of rotation along a chain is either

clockwise or counterclockwise, but not both. Since these chains may not necessarily form closed

segmentations, BABE generates building hypotheses by forming boxes out of the individual lines

that comprise a chain. These boxes are then evaluated in terms of size and line intensity

constraints, and the best boxes for each chain are kept, subject to shadow intensity
constraints [4], [7].

SHADE (SHAdow DEtection) is a building detection system based on a shadow analysis

method. SHADE uses the shadow intensity computed by BABE as a threshold for an image.

Connected region extraction techniques are applied to produce segmentations of those regions
with intensities below the threshold, i.e., the shadow regions. SHADE then examines the edges

comprising shadow regions, and keeps those edges that are adjacent to the buildings casting the
shadows. These edges are then broken into nearly straight line segments by the use of an

imperfect sequence finder [I]. Those line segments that form nearly right-angled corners are

joined, and the corners that are concave with respect to the sun are extended into parallelograms,

SHADE's final building hypotheses.
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SHAVE(SHAdowVErification) is a systemfor verificationof building hypothesesby shadow
analysis.SHAVEtakesasinput asetof building hypotheses,anassociatedimage,anda shadow
thresholdproducedby BABE. SHAVEbeginsby determiningwhich sidesof the hypothesized
buildingboxescouldpossiblycastshadows,giventhesunillumination angle,andthenperforms
a walk awayfrom the sun illumination anglefor everypixel alonga building/shadowedgeto
delineatethe shadow.Theedgeis thenscoredbasedona measureof thevarianceof the length
of the shadowwalksfor thatedge. Thesescorescanthenbeexaminedto estimatethelikelihood
that a building hypothesiscorrespondsto a building, basedon the extent to which it casts
shadows.

GROUPERis a systemdesignedto cluster, or group, fragmentedbuilding hypotheses,by
examiningtheir relationshipsto possiblebuilding/shadowedges. GROUPERstartswith a setof
hypothesesand the building/shadowedgesproducedby BABE. GROUPERback-projectsthe
endpointsof a building/shadowedgetowardsthesunalongthe sunillumination angle,andthen
connectstheseprojectedendpointsto form a regionof interestin which buildingsmight occur.
GROUPERintersectseachbuilding hypothesiswith theseregionsof interest. If the degreeof
overlapis sufficiently high (thecriteriais currently75%overlap),thenthehypothesisis assumed
to be a part of the structurewhich is castingthe building]shadowedge. All hypothesesthat
intersectasingleregionof interestaregroupedtogetherto form a singlebuildingcluster.

Thereare manyother interestingbuilding detectionand extractiontechniques. We briefly
mentionsomerecentlydevelopedmethods,to illustratethe variety of techniquesthat produce
buildinghypothesisinformation. Although thisby nomeansconstitutesacomprehensivesurvey
of building detectiontechniques,it providessomeexamplesof the methodsusedto generate
hypothesesfor a scene,aswell asexamplesof thetypesof datathatmayeventuallybe integrated
intoacooperative-methodsbuildinganalysisscheme.

Mohan and Nevatia[6] describeda methodby which simple imagetokenssuchas lines or
edgescould be clusteredinto morecomplexgeometricfeaturesconsistingof parallelopipeds.
Huertasand Nevatia[4] describeda methodfor detectingbuildings in aerial images. Their
methoddetectedlinesandcomersin an imageandconstructedchainsof theseto form building
hypotheseswhich werethensubjectto shadowverification.

FuaandHanson[3] describeda systemthat usedgenericgeometricmodelsandnoise-tolerant
geometry parsing rules to allow semanticinformation to interact with low-level geometric
information,producingsegmentationsof objectsin the aerial image. Nicolin and Gabler[7]
describeda systemfor analysisof aerial images. The systemhadfour components:a method-
baseof domain-independentprocessingtechniques,a long-termmemory containinga priori

knowledge about the problem domain, a short-term memory containing intermediate results from
the image analysis process, and a control module responsible for invocation of the various

processing techniques. Gray-level analysis was applied to a resolution pyramid of imagery to

suggest segmentation techniques, and structural analysis was performed after segmentation to

provide geometric interpretations of the image.

3. A simple hypothesis merging technique
Building hypotheses typically take the form of geometric descriptions of objects in the context

of an image. One can imagine "stacking" sets of these geometric descriptions on the image: in

the process, those regions of the image that represent man-made structure in the scene should

accumulate more building hypotheses than those regions of the image that represent natural
features in the scene. The merging technique developed here exploits this idea.
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The method takes as input an arbitrary collection of polygons. An image is created that is

sufficiently large to contain all of the polygons, and each pixel in this image is initialized to zero.

Each polygon is scan-converted into the image, and each pixel touched during the scan is

incremented. The resulting image then has the property that the value of each pixel in the image

is the number of input polygons that cover it.

Segmentations can then be generated from this "accumulator" image by applying connected

region extraction techniques. If the image is thresholded at a value of 1 (i.e, all non-zero pixels

are kept), the regions produced by a connected region extraction algorithm will simply be the
geometric unions of the input polygons. It is the case, however, that the image could be

thresholded at higher values. We motivate threshoiding experiments in Section 4.4.

4. Merging multiple hypothesis sets

This section outlines the experiments performed with the scan-conversion hypothesis fusion

technique. The procedure used to apply this technique to the results of four building detection

and evaluation systems (BABE, SHADE, SHAVE, and GROUPER) is described. A technique for
quantitative evaluation of building hypotheses is described, and applied to the hypothesis fusion

results. These results are analyzed to suggest improvements to the fusion technique.

4.1. The merging technique applied to four extraction systems
There were two merging problems under consideration. The first of these was the creation of a

single hypothesis out of a collection of fragmented hypotheses believed to correspond to a single

man-made structure. This problem was addressed by applying the scan-conversion technique to

the fragmented clusters produced by GROUPER. The technique was applied to each cluster

individually, and the resulting accumulator image was thresholded at 1, and connected region
extraction techniques were applied to provide the geometric union of each cluster. These

clusters were then used as the building hypotheses produced by GROUPER.

The second problem was the fusion of each of these monocular hypothesis sets into a single set

of hypotheses for the scene. Again, the scan-conversion technique was applied. The four

hypothesis sets were scan-converted, and the resulting accumulator image was thresholded at 1.
Connected region extraction techniques were applied to produce the final segmentation for the

image.

Figure 4-1 shows a section of a suburban area in Washington, D.C. Figure 4-2 shows the
SHADE results for this scene, Figure 4-3 shows the SHAVE results, Figure 4-4 shows the

GROUPER results, and Figure 4-5 shows the BABE results. Figure 4-6 shows the fusion of these

four monocular hypothesis sets.

4.2. Evaluation of the technique

To judge the correctness of an interpretation of a scene, it is desirable to have some mechanism

for quantitatively evaluating that interpretation. One approach is to compare a given set of

hypotheses against a set that is known to be correct, and analyze the differences between the

given set of hypotheses and the correct ones. In performing evaluations of the fusion results, we
use ground-truth segmentations as the correct detection results for a scene. Ground-truth

segmentations are manually produced segmentations of the buildings in an image.
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Figure 4-1:DC37 image with ground-truth segmentation

There exist two simple criteria for measuring the degree of similarity between a building

hypothesis and a ground-truth building segmentation: the rnutual area of overlap and the
difference in orientation. A correct building hypothesis and the corresponding ground-truth

segmentation region should cover roughly the same area, and should have roughly the same

alignment with respect to the image. A scoring function can be developed that incorporates

these criteria. A region matching scheme such as this, however, suffers from the fact that

multiple buildings in the scene are segmented by a single region in the hypothesis set. In these
cases, the building hypothesis will have low matching scores with each of the buildings it

contains, due to the differences in overlap area.

A simpler coverage-based global evaluation method was developed. This evaluation method
works in the following manner. H, a set of building hypotheses for an image, and G, a ground-

truth segmentation of that image, are given. The image is then scanned, pixel by pixel. For any

pixel P in the image, there are four possibilities:
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Figure 4-2:DC37 SHADE results Figure 4-3:DC37 SHAVE results

Figure 4-4:DC37 GROUPER results Figure 4-5:DC37 BABE results

1. Neither a region in H nor a region in G covers P. This is interpreted to mean that

the system producing H correctly denoted P as being part of the background, or
natural structure, of the scene.

2. No region in H covers P, but a region in G covers P. This is interpreted to mean

that the system producing H did not recognize P as being part of a man-made
structure in the scene. In this case, the pixel is referred to as a "false negative".

3. A region (or regions) in H cover P, but no region in G covers P. This is interpreted
to mean that the system producing H incorrectly denoted P as belonging to some

man-made structure, when it is in fact part of the scene's background. In this case,
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Figure 4-6: Monocular hypothesis fusion for DC37

the pixel is referred to as a "false positive".

4. A region (or regions) in H and a region in G both cover P. This is interpreted to

mean that the system producing H correctly denoted P as belonging to a man-made
structure in the scene.

By counting the number of pixels that fall into each of these four categories, we may obtain

measurements of the percentage of building hypotheses that were successful (and unsuccessful)

in denoting pixels as belonging to man-made structure, and the percentage of the background of
the scene that was correctly (and incorrectly) labeled as such. Further, we may use these

measurements to define a building pixel branching factor, which will represent the degree to

which a building detection system overclassifies background pixels as building pixels in the

process of generating building hypotheses. The building pixel branching factor is defined as the

number of false positive pixels divided by the number of correctly detected building pixels.
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4.3. Results and analysis
The fusion process was run on other scenes in addition to the DC37 scene: DC36A, DC36B,

and DC38, three more scenes from the Washington, D.C. area; and LAX, a scene from the Los

Angeles International Airport. The coverage-based evaluation program was then applied to

generate Tables 4-1 through 4-5. Each table gives the statistics for a single scene. The first

column represents a building extraction system. The next two columns give the percentage of

building and background terrain correctly identified as such. The fourth and fifth columns show

incorrect identification percentages for buildings and terrain. The next two columns give the
breakdown (in percentages) of incorrect pixels in terms of false positives and false negatives.

The last column gives the building pixel branching factor.

Evaluation results for the fusion process on DC37

System % Bid % Bkgd % Bid % Bkgd % False % False Br

Detected Detected Missed Missed Pos. Neg. Factor

SHADE 37.5 98.2 62.5 1.8 15.0 85.0 0.294

SHAVE 47.2 96.8 52.8 3.2 26.8 73.2 0.408

GROUPER 48.7 95.8 51.3 4.2 32.6 67.4 0.508

BABE 58.9 97.2 41. t 2.8 28.5 71.5 0.278

FUSION 77.7 92.0 22.3 8.0 68.0 32.0 0.611

99 regions in ground truth

Table 4-1: Evaluation statistics for DC37 hypothesis fusion

Evaluation results for the fusion process on DC36A

System % Bid % Bkgd % Bld % Bkgd % False % False Br

Detected Detected Missed Missed Pos. Neg. Factor

SHADE 53.8 97.0 46.2 3.0 30.7 69.3 0.381

SHAVE 63.6 96.2 36.4 3.8 41.8 58.2 0.411

GROUPER 58.0 95.8 42.0 4.2 40.6 59.4 0.495

BABE 51.0 97.9 49.0 2.1 22.1 77.9 0.273

FUSION 80.9 91.9 19.1 8.1 74.3 25.7 0.682

51 regions in ground truth

Table 4-2: Evaluation statistics for DC36A hypothesis fusion

We note that the quantitative results generated by the new evaluation method accurately reflect
the visual quality of the set of building hypotheses. Further, the building pixel branching factor

provides a rough estimate of the amount of noise generated in the fusion process. Judging by

these measures, we note that the final results of the hypothesis fusion process significantly

improve the detection of buildings in a scene. In all of the scenes, the detection percentage for

the final fusion is greater than the same percentage for any of the individual extraction system

hypotheses, although the building pixel branching factor also increases due to the accumulation
of delineation errors from the various input hypotheses.
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Evaluation results for the fusion process on DC36B

System % Bid % Bkgd % Bld % Bkgd % False % False Br
Detected Detected Missed Missed Pos. Neg. Factor

SHADE 29.8 93.8 70.2 6.2 46.3 53.7 2.034

SHAVE 28.4 96.7 71.6 3.3 31.3 69.7 1.146

GROUPER 10.3 96.8 89.7 3.2 25.9 74.1 3.027

BABE 9.9 98.8 90.1 1.2 11.3 88.7 1.159

FUSION 49.8 89.2 50.2 10.8 67.8 32.2 2.126

133 regions in ground truth

Table 4-3: Evaluation statistics for DC36B hypothesis fusion

Evaluation results for the fusion process on DC38

System

SHADE

SHAVE

GROUPER

BABE

FUSION

% Bid

Detected

51.3

43.1

54.6

44.7

74.7

% Bkgd
Detected

97.4

95.3

95.8

96.0

90.6

% Bld

Missed

48.7

56.9

45.4

55.3

25.3

% Bkgd
Missed

2.6

4.7

4.2

4.0

9.4

% False

Pos.

13.2

19.1

21.0

17.3

51.5

% False

Neg.

86.8

80.9

79.0

82.7

48.5

Br

Factor

0.144

0.311

0.221

0.260

0.360

53 regions in ground truth

Table 4-4: Evaluation statistics for DC38 hypothesis fusion

Evaluation results for the fusion process on LAX

System

SHADE

SHAVE

% Bid

Detected

34.4

54.1

46.0

% Bkgd
Detected

99.0

94.9

98.5

% False

Pos.
% Bid % Bkgd
Missed Missed

65.6 1.0

45.9 5.1

54.0 1.5

36.7 1.2

27.0 7.1

!0.1

43.6

16.5

% False

Neg.

89.9

56.4

83.5

Br

Factor

0.213

0.655

0.232GROUPER

BABE 63.3 98.8 18.3 81.7 0.130

FUSION 73.0 92.9 65.0 35.0 0.687

26 regions in ground truth

Table 4-5: Evaluation statistics for LAX hypothesis fusion

It is worth noting that the results for the DC36B scene (Table 4-3) are substantially worse than

those of the other scenes. This is in large part due to the fact that the DC36B scene has a low

dynamic range of intensities, and the component systems used for these fusion experiments are
inherently intensity-based. The building pixel branching factors reflect the poor performance of
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the componentsystems;in GROUPER'scase,over 3 pixels are incorrectly hypothesizedas
building pixels for every correctbuilding pixel. The fusion process,however,improved the
buildingdetectionpercentagenoticeablyoverthepercentagesof thecomponentsystems.

We also note that severaldifficulties are attributableto performancedeficiencies in the
systemsproducingtheoriginalbuildinghypotheses.Theshadow-baseddetectionandevaluation
systems,SHADEand SHAVE,both usea thresholdto generate"shadowregions" in an image.
This thresholdis generatedautomaticallyby BABE,a line-comerbaseddetectionsystem. In
somecases,the thresholdis too low, and the resultingshadowregionsare incomplete,which
resultsin fewerhypothesizedbuildings.

GROUPER,theshadow-basedhypothesisclusteringsystem,clustersfragmentedhypothesesby
tkmninga region(basedon shadow-buildingedges)in which building structureis expectedto
occur. This region is typically largerthanthe truebuildingcreatingthe shadow-buildingedge,
and incorrect fragmentssometimesfall within this region and are grouped with correct
fragments.Theresultinggroupstendto belargerthanthetruebuildings,andthusproduceafair
numberof falsepositivepixels.

SHAVEscoresa set of hypothesesbasedon theextent to which they castshadows,andthen
selectsthe top fifteen percentof theseas"good"building hypotheses.In somecases,buildings
whosescoresfell in the top fifteen percentactually had relatively low absolutescores. This
resultedin the inclusionof incorrecthypothesesin thefinal merger.

SHADEusesan imperfectsequencefinderto locatecomersin thenoisyshadow-buildingedges
producedby thresholding.Thesequencefinder usesa thresholdvalueto determinetheamount
of noisethat will be ignoredwhensearchingfor comers. In somesituations,the true building
cornersaresufficiently smallthat thesequencefinder regardsthemasnoise,andasa result,the
final buildinghypothesescaneitherbeerroneousor incomplete.

4.4. Thresholding the accumulator image
As part of the scan-conversion fusion process, an accumulator image is produced which

represents the "building density" of the scene. More precisely, each pixel in the image has a
value, which is the number of hypotheses that overlapped the pixel. Pixels with higher values

represent areas of the image that have higher probability of being contained in a man-made
structure. Theoretically, thresholding this image at higher values and then applying connected

region extraction techniques would produce sets of hypotheses containing fewer false positives,

and these hypotheses would only represent those areas that had a high probability of

corresponding to structure in the scene.

To test this idea, the accumulator images for each of the six scenes were thresholded at values

of 2, 3, and 4, since four systems were used to produce the final hypothesis fusion. Connected

region extraction techniques were then applied to these thresholded images to produce new

hypothesis segmentations. The new evaluation method was then applied to these new

hypotheses.

In each of the scenes, increasing the threshold from its default value of I to a value of 2 causes

a reduction of roughly 20 percent in the number of correctly detected building pixels. This

suggests that a fair number of hypothesized building pixels are unique; i.e., several pixels can

only be correctly identified as building pixels by one of the detection methods. Another

interesting observation is that the building pixel branching factor roughly doubles every time the
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thresholdis decremented.Theseobservationssuggestthat thresholdingalonemay eliminate
uniqueinfom-lationproducedby the individual detectionsystems,andthat morework will need
to bedoneto limit thenumberof falsepositives(anderroneousdelineations)producedby each
system,andby thefinal fusionasa whole.

5. Conclusions
This paper has described a simple method for fusing sets of monocular building hypotheses for

aerial imagery. Scan-conversion and connected region extraction techniques were applied to

produce mergers of sets of building hypotheses, and the results were analyzed by the use of an

evaluation technique based on pixel coverage.

The simple hypothesis fusion approach developed here appears promising: the detection rate

can be improved significantly by applying it to the results of several building detection systems.
Much work remains to be done, however. Analysis of the fusion results has revealed

shortcomings in each of the building detection systems, and there are also a number of directions

to pursue in terms of improving the intermediate and final fusions generated during the overall

fusion process.

1. BABE produces two shadow thresholds, only one of which is used by SHAVE and

SHADE. It may be the case that the other threshold more accurately reflects the
shadow threshold for a given image, or perhaps some combination of the two may

prove more effective. Experiments need to be performed in this area.

2. GROUPER is effective in clustering the fragmented hypotheses that are typically

produced by BABE, but several of the grouped fragments do not correspond to

building structure in the scene. Experimentation with disparity maps to refine

these clusters is currently underway.

3. SHAVE'S scoring system is simplistic and sometimes allows hypotheses with low

shadow scores to pass as good hypotheses. Alternative scoring schemes might be

explored.

4. SHADE's comer finding system can be improved. Work is currently underway on a
method for iteratively approximating the location of comers in noisy lines by using

an imperfect sequence finder to break lines at potential comers, and applying a

gradient-based line evaluation function to score the breaks.

5. The fusion steps in the overall fusion process tend to increase the number of false

positive pixels, and thresholding alone may not improve this without decreasing
the number of correctly hypothesized pixels as well. The use of a refined disparity

map, as well as the use of the original intensity image, may aid in eliminating false

positive pixels from hypothesized regions in the final fusion. Alternatively, active
contour models might be used to refine segmentations, using the fusion

segmentations (possibly thresholded) as the initial seed to the process.

6. Another interesting application of this fusion technique would be on binocular

irnagery. One could imagine merging hypotheses frorn the left and right images of

a stereo pair to obtain an improved interpretation of a scene, since it is likely that
the left and right hypothesis sets would differ due to changes in image perspective.

Experiments are underway in this area.

109



A moregeneralquestionconcernsthe effectivenessof simplefusion approachessuchasthe
one describedhere. Certainly, one can envision other approachesfor combining building
hypothesesthat would make use of a priori information about the systems producing the

hypotheses to produce meaningful fusions of the individual hypotheses. It is unclear, however,

whether such approaches would ultimately benefit from the additional complexity required to

take advantage of such knowledge. Although the results at this stage are rough, the fusion
method developed here appears to be a simple and effective means for increasing the building

detection rate for a scene, and may eventually provide a means for incorporating several sources

of photometric information into a single interpretation of the scene.

6. Acknowledgments
We would like to thank the members of the Digital Mapping Laboratory for providing an

interesting and congenial working environment. Particular thanks go to Yuan Hsieh and
Frederic Perlant for interesting discussions about information fusion and building extraction

techniques.

References

III Aviad, Z.

Locating Corners ill Noisy Curves by Delineating Imperfect Sequences.

Technical Report CMU-CS-88-199, Carnegie-Mellon University, December, 1988.

[21 Aviad, Z., McKeown, D. M., Hsieh, Y.

The Generation of Building Hypotheses From Monocular Views.
Technical Report, Carnegie-Mellon University, 1990.

to appear.

131 Fua, P., Hanson, A. J.

Resegmentation Using Generic Shape: Locating General Cultural Objects.

Technical Report, Artificial Intelligence Center, SRI International, May, 1986.

[41 Huertas, A. and Nevatia, R.

Detecting Buildings in Aerial Images.

Computer Vision. Graphics. and Image Processing 41 :! 31 - 152, April, ! 988.

151 R. B. Irvin and D. M. McKeown.

Methods for exploiting the relationship between buildings and their shadows in aerial

imagery.
IEEE Transactions on Systems, Man and Cybernetics 19(6): 1564-1575, November, 1989.

161 Mohan, R., Nevatia, R.

Perceptual Grouping for the Detection and Description of Structures in Aerial Images.
In Proceedings: DARPA linage Understanding Workshop, April 1988, pages 512-526.

April, 1988.

[71 Nicolin, B., and Gabler, R.

A Knowledge-Based System for the Analysis of Aerial Images.
IEEE Transactions on Geoscience and Remote Sensing GE-25(3):317-329, May, 1987.

110


