8,574 research outputs found

    Macro-Driven Circuit Design Methodology for High-Performance Datapaths

    Get PDF
    Datapath design is one of the most critical elements in the design of a high performance microprocessor. However datapath design is typically done manually, and is often custom style. This adversely impacts the overall productivity of the design team, as well as the quality of the design. In spite of this, very little automation has been available to the designers of high performance datapaths. In this paper we present a new "macrodriven " approach to the design of datapath circuits. Our approach, referred to as SMART (Smart Macro Design Advisor), is based on automatic generation of regular datapath components such as muxes, comparators, adders etc., which we refer to as datapath macros. The generated solution is based on designer provided constraints such as delay, load and slope, and is optimized for a designer provided cost metric such as power, area. Results on datapath circuits of a high-performance microprocessor show that this approach is very effective for both designer productivity as well as design quality

    Performance Comparison of Static CMOS and Domino Logic Style in VLSI Design: A Review

    Get PDF
    Of late, there is a steep rise in the usage of handheld gadgets and high speed applications. VLSI designers often choose static CMOS logic style for low power applications. This logic style provides low power dissipation and is free from signal noise integrity issues. However, designs based on this logic style often are slow and cannot be used in high performance circuits. On the other hand designs based on Domino logic style yield high performance and occupy less area. Yet, they have more power dissipation compared to their static CMOS counterparts. As a practice, designers during circuit synthesis, mix more than one logic style judiciously to obtain the advantages of each logic style. Carefully designing a mixed static Domino CMOS circuit can tap the advantages of both static and Domino logic styles overcoming their own short comings

    Concurrent optimization strategies for high-performance VLSI circuits

    Get PDF
    In the next generation of VLSI circuits, concurrent optimizations will be essential to achieve the performance challenges. In this dissertation, we present techniques for combining traditional timing optimization techniques to achieve a superior performance;The method of buffer insertion is used in timing optimization to either increase the driving power of a path in a circuit, or to isolate large capacitive loads that lie on noncritical or less critical paths. The procedure of transistor sizing selects the sizes of transistors within a circuit to achieve a given timing specification. Traditional design techniques perform these two optimizations as independent steps during synthesis, even though they are intimately linked and performing them in alternating steps is liable to lead to suboptimal solutions. The first part of this thesis presents a new approach for unifying transistor sizing with buffer insertion. Our algorithm achieve from 5% to 49% area reduction compared with the results of a standard transistor sizing algorithm;The next part of the thesis deals with the problem of collapsing gates for technology mapping. Two new techniques are proposed. The first method, the odd-level transistor replacement (OTR) method, performs technology mapping without the restriction of a fixed library size, and maps a circuit to a virtual library of complex static CMOS gates. The second technique, the Static CMOS/PTL method, uses a mix of static CMOS and pass transistor logic (PTL) to realize the circuit, using the relation between PTL and binary decision diagrams. The methods are very efficient and can handle all ISCAS\u2785 benchmark circuits in minutes. On average, it was found that the OTR method gave 40%, and the Static/PTL gave 50% delay reductions over SIS, with substantial area savings;Finally, we extend the technology mapping work to interleave it with placement in a single optimization. Conventional methods that perform these steps separately will not be adequate for next-generation circuits. Our approach presents an integrated solution to this problem, and shows an average of 28.19%, and a maximum of 78.42% improvement in the delay over a method that performs the two optimizations in separate steps

    Modeling and Analysis of Power Processing Systems

    Get PDF
    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed
    • …
    corecore