40 research outputs found

    Cognitive and Energy Harvesting-Based D2D Communication in Cellular Networks: Stochastic Geometry Modeling and Analysis

    Full text link
    While cognitive radio enables spectrum-efficient wireless communication, radio frequency (RF) energy harvesting from ambient interference is an enabler for energy-efficient wireless communication. In this paper, we model and analyze cognitive and energy harvesting-based D2D communication in cellular networks. The cognitive D2D transmitters harvest energy from ambient interference and use one of the channels allocated to cellular users (in uplink or downlink), which is referred to as the D2D channel, to communicate with the corresponding receivers. We investigate two spectrum access policies for cellular communication in the uplink or downlink, namely, random spectrum access (RSA) policy and prioritized spectrum access (PSA) policy. In RSA, any of the available channels including the channel used by the D2D transmitters can be selected randomly for cellular communication, while in PSA the D2D channel is used only when all of the other channels are occupied. A D2D transmitter can communicate successfully with its receiver only when it harvests enough energy to perform channel inversion toward the receiver, the D2D channel is free, and the SINR\mathsf{SINR} at the receiver is above the required threshold; otherwise, an outage occurs for the D2D communication. We use tools from stochastic geometry to evaluate the performance of the proposed communication system model with general path-loss exponent in terms of outage probability for D2D and cellular users. We show that energy harvesting can be a reliable alternative to power cognitive D2D transmitters while achieving acceptable performance. Under the same SINR\mathsf{SINR} outage requirements as for the non-cognitive case, cognitive channel access improves the outage probability for D2D users for both the spectrum access policies.Comment: IEEE Transactions on Communications, to appea

    Performance Analysis for 5G cellular networks: Millimeter Wave and UAV Assisted Communications

    Get PDF
    Recent years have witnessed exponential growth in mobile data and traffic. Limited available spectrum in microwave (μ\muWave) bands does not seem to be capable of meeting this demand in the near future, motivating the move to new frequency bands. Therefore, operating with large available bandwidth at millimeter wave (mmWave) frequency bands, between 30 and 300 GHz, has become an appealing choice for the fifth generation (5G) cellular networks. In addition to mmWave cellular networks, the deployment of unmanned aerial vehicle (UAV) base stations (BSs), also known as drone BSs, has attracted considerable attention recently as a possible solution to meet the increasing data demand. UAV BSs are expected to be deployed in a variety of scenarios including public safety communications, data collection in Internet of Things (IoT) applications, disasters, accidents, and other emergencies and also temporary events requiring substantial network resources in the short-term. In these scenarios, UAVs can provide wireless connectivity rapidly. In this thesis, analytical frameworks are developed to analyze and evaluate the performance of mmWave cellular networks and UAV assisted cellular networks. First, the analysis of average symbol error probability (ASEP) in mmWave cellular networks with Poisson Point Process (PPP) distributed BSs is conducted using tools from stochastic geometry. Secondly, we analyze the energy efficiency of relay-assisted downlink mmWave cellular networks. Then, we provide an stochastic geometry framework to study heterogeneous downlink mmWave cellular networks consisting of KK tiers of randomly located BSs, assuming that each tier operates in a mmWave frequency band. We further study the uplink performance of the mmWave cellular networks by considering the coexistence of cellular and potential D2D user equipments (UEs) in the same band. In addition to mmWave cellular networks, the performance of UAV assisted cellular networks is also studied. Signal-to-interference-plus-noise ratio (SINR) coverage performance analysis for UAV assisted networks with clustered users is provided. Finally, we study the energy coverage performance of UAV energy harvesting networks with clustered users

    Stochastic Geometry for Modeling, Analysis and Design of Future Wireless Networks

    No full text
    This thesis focuses on the modeling, analysis and design of future wireless networks with smart devices, i.e., devices with intelligence and ability to communicate with one another with/without the control of base stations (BSs). Using stochastic geometry, we develop realistic yet tractable frameworks to model and analyze the performance of such networks, while incorporating the intelligence features of smart devices. In the first half of the thesis, we develop stochastic geometry tools to study arbitrarily shaped network regions. Current techniques in the literature assume the network regions to be infinite, while practical network regions tend to be arbitrary. Two well-known networks are considered, where devices have the ability to: (i) communicate with others without the control of BSs (i.e., ad-hoc networks), and (ii) opportunistically access spectrum (i.e., cognitive networks). First, we propose a general algorithm to derive the distribution of the distance between the reference node and a random node inside an arbitrarily shaped ad-hoc network region, which helps to compute the outage probability. We then study the impact of boundary effects and show that the outage probability in infinite regions may not be a meaningful bound for arbitrarily shaped regions. By extending the developed techniques, we further analyze the performance of underlay cognitive networks, where different secondary users (SUs) activity protocols are employed to limit the interference at a primary user. Leveraging the information exchange among SUs, we propose a cooperation-based protocol. We show that, in the short-term sensing scenario, this protocol improves the network's performance compared to the existing threshold-based protocol. In the second half of the thesis, we study two recently emerged networks, where devices have the ability to: (i) communicate directly with nearby devices under the control of BSs (i.e., device-to-device (D2D) communication), and (ii) harvest radio frequency energy (i.e., energy harvesting networks). We first analyze the intra-cell interference in a finite cellular region underlaid with D2D communication, by incorporating a mode selection scheme to reduce the interference. We derive the outage probability at the BS and a D2D receiver, and propose a spectrum reuse ratio metric to assess the overall D2D communication performance. We demonstrate that, without impairing the performance at the BS, if the path-loss exponent on cellular link is slightly lower than that on D2D link, the spectrum reuse ratio can have negligible decrease while the average number of successful D2D transmissions increases with the increasing D2D node density. This indicates that an increasing level of D2D communication is beneficial in future networks. Then we study an ad-hoc network with simultaneous wireless information and power transfer in an infinite region, where transmitters are wirelessly charged by power beacons. We formulate the total outage probability in terms of the power and channel outage probabilities. The former incorporates a power activation threshold at transmitters, which is a key practical factor that has been largely ignored in previous work. We show that, although increasing power beacon's density or transmit power is not always beneficial for channel outage probability, it improves the overall network performance

    Radio Resource Management for Cellular Networks Enhanced by Inter-User Communication

    Get PDF
    The importance of radio resource management will be more and more emphasized in future wireless communication systems. For fair penetration of wireless services and for improved local services, inter-user communication has been receiving wide attention as it opens up various possibilities for user cooperation. The capability of inter-user communication imposes higher demands on radio resource management as additional considerations are needed. The demands for intelligent management of radio resources is also emphasized by the sparsity of radio resources. As the available spectral resources are assessed as under-utilized, much effort is devoted to developing advanced resource management methods for improving the spectral usage efficiency. The research of this thesis has contributed to the radio resource management for cellular networks enhanced by inter-user communication. Recognizing that inter-user communication can be used for message relaying or for direct communication purposes, two use cases are considered that leverage the synergy of users: cooperative relay selection and Device-to-Device (D2D) communication. We identify the importance of stochastic geometry consideration on cellular users for evaluating system performance in cooperative networking. We develop an algorithm for efficiently selecting cooperative users to maximize an End-to-End (e2e) performance metric. We analyze the optimal resource sharing problem between D2D communication and infrastructure-supported communication. We study the impact of imperfect Channel State Information (CSI) on the performance of systems with inter-user communication. Simulation results show that the performance of users with unfavorable propagation conditions can be improved with cooperative communication in a multi-cell cellular environment, at the expense of radio resources. Further, our results show that the selection of multiple cooperative users is beneficial in cases where the candidate cooperative users are spatially distributed. For resource sharing between the D2D and infrastructure-supported communication, our results show that the proposed resource sharing scheme enables higher intra-cell resource reuse without blocking the infrastructure-supported communication

    Modeling and Analysis of Cellular Networks Using Stochastic Geometry: A Tutorial

    Get PDF
    This paper presents a tutorial on stochastic geometry (SG)-based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. This paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of this paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. This paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, this paper highlights the state-of-the-art research and points out future research directions

    Enabling Cyber-Physical Communication in 5G Cellular Networks: Challenges, Solutions and Applications

    Get PDF
    Cyber-physical systems (CPS) are expected to revolutionize the world through a myriad of applications in health-care, disaster event applications, environmental management, vehicular networks, industrial automation, and so on. The continuous explosive increase in wireless data traffic, driven by the global rise of smartphones, tablets, video streaming, and online social networking applications along with the anticipated wide massive sensors deployments, will create a set of challenges to network providers, especially that future fifth generation (5G) cellular networks will help facilitate the enabling of CPS communications over current network infrastructure. In this dissertation, we first provide an overview of CPS taxonomy along with its challenges from energy efficiency, security, and reliability. Then we present different tractable analytical solutions through different 5G technologies, such as device-to-device (D2D) communications, cell shrinking and offloading, in order to enable CPS traffic over cellular networks. These technologies also provide CPS with several benefits such as ubiquitous coverage, global connectivity, reliability and security. By tuning specific network parameters, the proposed solutions allow the achievement of balance and fairness in spectral efficiency and minimum achievable throughout among cellular users and CPS devices. To conclude, we present a CPS mobile-health application as a case study where security of the medical health cyber-physical space is discussed in details

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond
    corecore