2,329 research outputs found

    Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    Get PDF
    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel

    Implementation of a Software Defined Spread Spectrum Communication System

    Get PDF
    The goal of this thesis is to develop a framework to prototype a software defined direct sequence spread spectrum transceiver that can be used as a node in an ad hoc network. We introduce the concept of a software radio, the current state of art, and GNU Radio and its concepts. We discuss in detail the design and development methods of GNU Radio and develop a flowgraph in Python to demonstrate the method of development. We present a mathematical analysis of (DSSS) modulation and demodulation schemes along with the transmitter and receiver design. We use this design to develop an analogous design in GNU Radio using the signal processing blocks that are present in GNU Radio and ones we develop. We perform simulations and tests to validate the algorithms, signal processing blocks and flowgraphs that we developed. We find that the signal acquistion algorithm is capable of determining the code and frequency offset in a received (DSSS) signal. We also find that the carrier tracking loop is capable of tracking the received carrier when the signal has a high (SNR). We conclude that GNU Radio as a technology can be used to prototype transceivers that are highly configurable and expandable. Finally, we identify and suggest some possible areas where this design can be developed and improved further

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE

    Multi-carrier code division multiple access

    Get PDF

    Software Defined Radio Implementation Of Ds-Cdma In Inter-Satellite Communications For Small Satellites

    Get PDF
    The increased usage of CubeSats recently has changed the communication philosophy from long-range point-to-point propagations to a multi-hop network of small orbiting nodes. Separating system tasks into many dispersed satellites can increase system survivability, versatility, configurability, adaptability, and autonomy. Inter-satellite links (ISL) enable the satellites to exchange information and share resources while reducing the traffic load to the ground. Establishment and stability of the ISL are impacted by factors such as the satellite orbit and attitude, antenna configuration, constellation topology, mobility, and link range. Software Defined Radio (SDR) is beginning to be heavily used in small satellite communications for applications such as base stations. A software-defined radio is a software program that does the functionality of a hardware system. The digital signal processing blocks are incorporated into the software giving it more flexibility and modulation. With this, the idea of a remote upgrade from the ground as well as the potential to accommodate new applications and future services without hardware changes is very promising. Realizing this, my idea is to create an inter-satellite link using software defined radio. The advantages of this are higher data rates, modification of operating frequencies, possibility of reaching higher frequency bands for higher throughputs, flexible modulation, demodulation and encoding schemes, and ground modifications. However, there are several challenges in utilizing the software-defined radio to create an inter-satellite link communication for small satellites. In this paper, we designed and implemented a multi-user inter-satellite communication network using SDRs, where Code Division Multiple Access (CDMA) technique is utilized to manage the multiple accesses to shared communication channel among the satellites. This model can be easily reconfigured to support any encoding/decoding, modulation, and other signal processing schemes

    Software Defined Radio Implementation Of Ds-Cdma In Inter-Satellite Communications For Small Satellites

    Get PDF
    The increased usage of CubeSats recently has changed the communication philosophy from long-range point-to-point propagations to a multi-hop network of small orbiting nodes. Separating system tasks into many dispersed satellites can increase system survivability, versatility, configurability, adaptability, and autonomy. Inter-satellite links (ISL) enable the satellites to exchange information and share resources while reducing the traffic load to the ground. Establishment and stability of the ISL are impacted by factors such as the satellite orbit and attitude, antenna configuration, constellation topology, mobility, and link range. Software Defined Radio (SDR) is beginning to be heavily used in small satellite communications for applications such as base stations. A software-defined radio is a software program that does the functionality of a hardware system. The digital signal processing blocks are incorporated into the software giving it more flexibility and modulation. With this, the idea of a remote upgrade from the ground as well as the potential to accommodate new applications and future services without hardware changes is very promising. Realizing this, my idea is to create an inter-satellite link using software defined radio. The advantages of this are higher data rates, modification of operating frequencies, possibility of reaching higher frequency bands for higher throughputs, flexible modulation, demodulation and encoding schemes, and ground modifications. However, there are several challenges in utilizing the software-defined radio to create an inter-satellite link communication for small satellites. In this paper, we designed and implemented a multi-user inter-satellite communication network using SDRs, where Code Division Multiple Access (CDMA) technique is utilized to manage the multiple accesses to shared communication channel among the satellites. This model can be easily reconfigured to support any encoding/decoding, modulation, and other signal processing schemes

    Ultra-wideband Spread Spectrum Communications using Software Defined Radio and Surface Acoustic Wave Correlators

    Get PDF
    Ultra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator receiver with orthogonal frequency coding and software defined radio (SDR) base station transmitter. Orthogonal frequency coding (OFC) and pseudorandom noise (PN) coding provide a means for spreading of the UWB data. The use of orthogonal frequency coding (OFC) increases the correlator processing gain (PG) beyond that of code division multiple access (CDMA); providing added code diversity, improved pulse ambiguity, and superior performance in noisy environments. Use of SAW correlators reduces the complexity and power requirements of the receiver architecture by eliminating many of the components needed and reducing the signal processing and timing requirements necessary for digital matched filtering of the complex spreading signal. The OFC receiver correlator code sequence is hard-coded in the device due to the physical SAW implementation. The use of modern SDR forms a dynamic base station architecture which is able to programmatically generate a digitally modulated transmit signal. An embedded Xilinx Zynq â„¢ system on chip (SoC) technology was used to implement the SDR system; taking advantage of recent advances in digital-to-analog converter (DAC) sampling rates. SDR waveform samples are generated in baseband in-phase and quadrature (I & Q) pairs and upconverted to a 491.52 MHz operational frequency. The development of the OFC SAW correlator ultimately used in the receiver is presented along with a variety of advanced SAW correlator device embodiments. Each SAW correlator device was fabricated on lithium niobate (LiNbO3) with fractional bandwidths in excess of 20%. The SAW correlator device presented for use in system was implemented with a center frequency of 491.52 MHz; matching SDR transmit frequency. Parasitic electromagnetic feedthrough becomes problematic in the packaged SAW correlator after packaging and fixturing due to the wide bandwidths and high operational frequency. The techniques for reduction of parasitic feedthrough are discussed with before and after results showing approximately 10:1 improvement. Correlation and demodulation results are presented using the SAW correlator receiver under operation in an UWB communication system. Bipolar phase shift keying (BPSK) techniques demonstrate OFC modulation and demodulation for a test binary bit sequence. Matched OFC code reception is compared to a mismatched, or cross-correlated, sequence after correlation and demodulation. Finally, the signal-to-noise power ratio (SNR) performance results for the SAW correlator under corruption of a wideband noise source are presented

    On-Orbit Validation of a Framework for Spacecraft-Initiated Communication Service Requests with NASA's SCaN Testbed

    Get PDF
    We design, analyze, and experimentally validate a framework for demand-based allocation of high-performance space communication service in which the user spacecraft itself initiates a request for service. Leveraging machine-to-machine communications, the automated process has potential to improve the responsiveness and efficiency of space network operations. We propose an augmented ground station architecture in which a hemispherical-pattern antenna allows for reception of service requests sent from any user spacecraft within view. A suite of ground-based automation software acts upon these direct-to-Earth requests and allocates access to high-performance service through a ground station or relay satellite in response to immediate user demand. A software-defined radio transceiver, optimized for reception of weak signals from the helical antenna, is presented. Design and testing of signal processing equipment and a software framework to handle service requests is discussed. Preliminary results from on-orbit demonstrations with a testbed onboard the International Space Station are presented to verify feasibility of the concept
    • …
    corecore