530 research outputs found

    Performance analysis of a collaborative DSA-based network with malicious nodes

    Get PDF
    This work analyses the performance of a Dynamic Spectrum Access (DSA) network with secondary nodes to provide Internet services, and studies the impact of malicious nodes and cooperative secondary nodes on the performance of the network and spectrum utilization. The work mathematically models the throughput, latency, and spectrum utilization with varying numbers of malicious nodes, secondary nodes, miss probabilities, and false alarm probabilities, and studies their effect on the performance of the network. The results point to rapid spectrum starvation as the number of malicious nodes increase, as well as the negative impact of too many secondary nodes crowding out available spectrum with resultant degradation of throughput and latenc

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Reinforcement learning-based trust and reputation model for spectrum leasing in cognitive radio networks

    Get PDF
    Cognitive Radio (CR), which is the next generation wireless communication system, enables unlicensed users or Secondary Users (SUs) to exploit underutilized spectrum (called white spaces) owned by the licensed users or Primary Users(PUs) so that bandwidth availability improves at the SUs, which helps to improve the overall spectrum utilization. Collaboration, which has been adopted in various schemes such distributed channel sensing and channel access, is an intrinsic characteristic of CR to improve network performance. However, the requirement to collaborate has inevitably open doors to various forms of attacks by malicious SUs, and this can be addressed using Trust and Reputation Management (TRM). Generally speaking, TRM detects malicious SUs including honest SUs that turn malicious. To achieve a more efficient detection, we advocate the use of Reinforcement Learning (RL), which is known to be flexible and adaptable to the changes in operating environment in order to achieve optimal network performance. Its ability to learn and re-learn throughout the duration of its existence provides intelligence to the proposed TRM model, and so the focus on RL-based TRM model in this paper. Our preliminary results show that the detection performance of RLbased TRM model has an improvement of 15% over the traditional TRM in a centralized cognitive radio network. The investigation in the paper serves as an important foundation for future work in this research field

    Intelligent spectrum management techniques for wireless cognitive radio networks

    Get PDF
    PhD ThesisThis thesis addresses many of the unique spectrum management chal- lenges in CR networks for the rst time. These challenges have a vital e ect on the network performance and are particularly di cult to solve due to the unique characteristics of CR networks. Speci cally, this thesis proposes and investigates three intelligent spectrum management tech- niques for CR networks. The issues investigated in this thesis have a fundamental impact on the establishment, functionality and security of CR networks. First, an intelligent primary receiver-aware message exchange protocol for CR ad hoc networks is proposed. It considers the problem of alleviat- ing the interference collision risk to primary user communication, explic- itly to protect primary receivers that are not detected during spectrum sensing. The proposed protocol achieves a higher measure of safeguard- ing. A practical scenario is considered where no global network topology is known and no common control channel is assumed to exist. Second, a novel CR broadcast protocol (CRBP) to reliably disseminate the broadcast messages to all or most of the possible CR nodes in the network is proposed. The CRBP formulates the broadcast problem as a bipartite-graph problem. Thus, CRBP achieves a signi cant successful delivery ratio by connecting di erent local topologies, which is a unique feature in CR ad hoc networks. Finally, a new defence strategy to defend against spectrum sensing data falsi cation attacks in CR networks is proposed. In order to identify malicious users, the proposed scheme performs multiple veri cations of sensory data with the assistance of trusted nodes.Higher Committee For Education Devel- opment in Iraq (HCED-Iraq

    Sybil attacks against mobile users: friends and foes to the rescue

    Get PDF
    Collaborative applications for co-located mobile users can be severely disrupted by a sybil attack to the point of being unusable. Existing decentralized defences have largely been designed for peer-to-peer networks but not for mobile networks. That is why we propose a new decentralized defence for portable devices and call it MobID. The idea is that a device manages two small networks in which it stores information about the devices it meets: its network of friends contains honest devices, and its network of foes contains suspicious devices. By reasoning on these two networks, the device is then able to determine whether an unknown individual is carrying out a sybil attack or not. We evaluate the extent to which MobID reduces the number of interactions with sybil attackers and consequently enables collaborative applications.We do so using real mobility and social network data. We also assess computational and communication costs of MobID on mobile phones

    Security in Dynamic Spectrum Access Systems: A Survey

    Get PDF
    Dynamic Spectrum Access (DSA) systems are being developed to improve spectrum utilization. Most of the research on DSA systems assumes that the participants involved are honest, cooperative, and that no malicious adversaries will attack or exploit the network. Some recent research efforts have focused on studying security issues in cognitive radios but there are still significant security challenges in the implementation of DSA systems that have not been addressed. In this paper we focus on security issues in DSA. We identify various attacks (e.g., DoS attacks, system penetration, repudiation, spoofing, authorization violation, malware infection, data modification, etc.) and suggest various approaches to address them. We show that significant security issues exist that should be addressed by the research community if DSA is to find its way into production systems. We also show that, in many cases, existing approaches to securing IT systems can be applied to DSA and identify other DSA specific security challenges where additional research will be required

    Spectrum Sensing and Security Challenges and Solutions: Contemporary Affirmation of the Recent Literature

    Get PDF
    Cognitive radio (CR) has been recently proposed as a promising technology to improve spectrum utilization by enabling secondary access to unused licensed bands. A prerequisite to this secondary access is having no interference to the primary system. This requirement makes spectrum sensing a key function in cognitive radio systems. Among common spectrum sensing techniques, energy detection is an engaging method due to its simplicity and efficiency. However, the major disadvantage of energy detection is the hidden node problem, in which the sensing node cannot distinguish between an idle and a deeply faded or shadowed band. Cooperative spectrum sensing (CSS) which uses a distributed detection model has been considered to overcome that problem. On other dimension of this cooperative spectrum sensing, this is vulnerable to sensing data falsification attacks due to the distributed nature of cooperative spectrum sensing. As the goal of a sensing data falsification attack is to cause an incorrect decision on the presence/absence of a PU signal, malicious or compromised SUs may intentionally distort the measured RSSs and share them with other SUs. Then, the effect of erroneous sensing results propagates to the entire CRN. This type of attacks can be easily launched since the openness of programmable software defined radio (SDR) devices makes it easy for (malicious or compromised) SUs to access low layer protocol stacks, such as PHY and MAC. However, detecting such attacks is challenging due to the lack of coordination between PUs and SUs, and unpredictability in wireless channel signal propagation, thus calling for efficient mechanisms to protect CRNs. Here in this paper we attempt to perform contemporary affirmation of the recent literature of benchmarking strategies that enable the trusted and secure cooperative spectrum sensing among Cognitive Radios
    corecore